library(wooldridge)
data(hprice1)
head(force(hprice1),n=5) #mostrar las primeras 5 observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + e
library(stargazer)
modelo_lineal<-lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
options(scipen = 9999)
stargazer(modelo_lineal, title = "Modelo estimado del precio", type = "html", digits = 5)
Dependent variable: | |
price | |
lotsize | 0.00207*** |
(0.00064) | |
sqrft | 0.12278*** |
(0.01324) | |
bdrms | 13.85252 |
(9.01015) | |
Constant | -21.77031 |
(29.47504) | |
Observations | 88 |
R2 | 0.67236 |
Adjusted R2 | 0.66066 |
Residual Std. Error | 59.83348 (df = 84) |
F Statistic | 57.46023*** (df = 3; 84) |
Note: | p<0.1; p<0.05; p<0.01 |
library(lmtest)
options(scipen=9999)
prueba_white<-bptest(modelo_lineal,~I(lotsize^2)+I(sqrft^2)+I(bdrms^2)+(lotsize*sqrft)+(lotsize*bdrms),data = hprice1)
print(prueba_white)
##
## studentized Breusch-Pagan test
##
## data: modelo_lineal
## BP = 33.471, df = 8, p-value = 0.00005065
Como p-value es de 0.00005065< 0.05 , Se rechaza la H0 , por lo tanto hay evidencia de que la varianza de los residuos no es homocedástica.
library(fastGraph)
shadeDist(xshade = 33.471,
parm1 = prueba_white$df,
sub=paste("VC:",33.471,"pw:",0.00005065),
main ="Prueba de White",
xtic = c(0.00005065,33.471))