con minimo dos factores, es como hacer el experimento dos veces, con dos aleatorizaciones. cuando los estudios tienene que ver riego de fertilizacion, densidad de siembra, maquinaria y labranza
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
xy = expand.grid(x = seq(6), y = seq(4))
xy = sample_frac(xy)
xy$f1 = gl(4, 6, 24, paste0('V',1:4))
xy$f2 = gl(3, 2, 24, paste0('R',1:3))
xy$rep = gl(2, 1, 24, paste0('r',1:2))
xy$name = paste0(xy$f1, xy$f2, xy$rep)
xy
## x y f1 f2 rep name
## 1 5 1 V1 R1 r1 V1R1r1
## 2 6 3 V1 R1 r2 V1R1r2
## 3 6 4 V1 R2 r1 V1R2r1
## 4 3 1 V1 R2 r2 V1R2r2
## 5 6 1 V1 R3 r1 V1R3r1
## 6 1 4 V1 R3 r2 V1R3r2
## 7 4 4 V2 R1 r1 V2R1r1
## 8 1 3 V2 R1 r2 V2R1r2
## 9 2 4 V2 R2 r1 V2R2r1
## 10 6 2 V2 R2 r2 V2R2r2
## 11 3 3 V2 R3 r1 V2R3r1
## 12 1 1 V2 R3 r2 V2R3r2
## 13 2 3 V3 R1 r1 V3R1r1
## 14 3 2 V3 R1 r2 V3R1r2
## 15 2 2 V3 R2 r1 V3R2r1
## 16 5 2 V3 R2 r2 V3R2r2
## 17 4 1 V3 R3 r1 V3R3r1
## 18 2 1 V3 R3 r2 V3R3r2
## 19 4 2 V4 R1 r1 V4R1r1
## 20 1 2 V4 R1 r2 V4R1r2
## 21 5 3 V4 R2 r1 V4R2r1
## 22 3 4 V4 R2 r2 V4R2r2
## 23 4 3 V4 R3 r1 V4R3r1
## 24 5 4 V4 R3 r2 V4R3r2
library(ggplot2)
ggplot(xy)+
aes(x,y,label=name)+
geom_tile(fill='blue', color='white')+
geom_text(color='white')
library(dplyr)
xy = expand.grid(y = seq(4), x = seq(6))
f2 = gl(3, 8, 24, paste0('R',1:3))
lf1 = paste0('V',1:4)
f1 = c(sample(lf1),sample(lf1),
sample(lf1),sample(lf1),
sample(lf1),sample(lf1))
rep = rep(rep(paste0('r',1:2), each=4), 3)
data = data.frame(xy, f1, f2, rep)
data$name = with(data, paste0(f1, rep))
library(ggplot2)
ggplot(data)+
aes(x,y, label=name, fill=f1)+
geom_tile(color='white')+
geom_text()+
facet_wrap(~f2, scales = 'free')+
theme(axis.text = element_blank())
set.seed(123)
data$biom = rnorm(24,8,2)
ggplot(data)+
aes(f2,biom)+
geom_boxplot()
ggplot(data)+
aes(f1,biom)+
geom_boxplot()
ggplot(data)+
aes(f2,biom, fill=f1)+
geom_boxplot()
no siempre la variedad 2 es la mejor, depende tambien de la
interaccion
library(lme4)
## Loading required package: Matrix
# mod1 = lmer(biom ~ f2*f1 + (1|f2), data)
mod1 = aov(biom ~ f2 * f1 + Error(f1), data)
summary(mod1)
##
## Error: f1
## Df Sum Sq Mean Sq
## f1 3 8.431 2.81
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## f2 2 13.33 6.664 2.106 0.164
## f2:f1 6 24.86 4.143 1.309 0.325
## Residuals 12 37.97 3.164