recibos<- c(266.63,163.41,219.41,162.64,187.16,289.17,306.55,335.48,343.50,226.80,208.99,230.46)
#MEDIA
media <- mean(recibos)
media
## [1] 245.0167
mediana<- median(recibos)
mediana
## [1] 228.63
#RANGO
rango<- max(recibos)-min(recibos)
rango
## [1] 180.86
#VARIANZA
recibos1<- recibos-media
recibos1
## [1] 21.61333 -81.60667 -25.60667 -82.37667 -57.85667 44.15333 61.53333
## [8] 90.46333 98.48333 -18.21667 -36.02667 -14.55667
recibos2<- recibos1*recibos1
recibos2
## [1] 467.1362 6659.6480 655.7014 6785.9152 3347.3939 1949.5168 3786.3511
## [8] 8183.6147 9698.9669 331.8469 1297.9207 211.8965
recibos3<- sum(recibos2)
recibos3
## [1] 43375.91
varianza_poblacional<- recibos3/12
varianza_poblacional
## [1] 3614.659
desviacion_estandar_poblacional<- sqrt(varianza_poblacional)
desviacion_estandar_poblacional
## [1] 60.12203
a <- (pnorm(600,1300,600))
a
## [1] 0.1216725
b <- (pnorm(1500,1300,600)-pnorm(1000,1300,600))*100
b
## [1] 32.20211
c <- (1-pnorm(2200,1300,600))*100
c
## [1] 6.68072
pnorm (21,18,7,5)
## [1] 0.6658824
1-pnorm(21,18,7,5)
## [1] 0.3341176
1-pnorm(90,80,4)
## [1] 0.006209665
pnorm(85,80,4)-pnorm(70,80,4)
## [1] 0.8881406
pnorm(100,80,4)*1000
## [1] 999.9997
pnorm(90,80,4)*1000
## [1] 993.7903
#Summary
data <- data.frame(
Pais = c("Filipinas", "Indonesia", "Tailandia", "Singapur", "Malasia",
"Corea del Sur", "Taiwan", "Hong Kong", "Australia"),
Capitalizacion_MDD = c(17, 21, 44, 50, 79, 86, 140, 178, 203))
# Print the table
knitr::kable(data, format = "markdown",
col.names = c("Pais", "Capitalizacion_MDD"),
caption = "Ejercicios del mundo real")
| Pais | Capitalizacion_MDD |
|---|---|
| Filipinas | 17 |
| Indonesia | 21 |
| Tailandia | 44 |
| Singapur | 50 |
| Malasia | 79 |
| Corea del Sur | 86 |
| Taiwan | 140 |
| Hong Kong | 178 |
| Australia | 203 |
capitalizacion <- c(17,21,44,50,79,86,140,178,203)
#a
media_capitalizacion <- mean(capitalizacion)
media
## [1] 245.0167
#b
mediana_capitalizacion <- median(capitalizacion)
mediana
## [1] 228.63
# c
# No hay moda para datos sin agrupar.
#d
histograma_capitalizacion <- hist(capitalizacion)
capitalizacion2 <- capitalizacion-media
capitalizacion2
## [1] -228.01667 -224.01667 -201.01667 -195.01667 -166.01667 -159.01667 -105.01667
## [8] -67.01667 -42.01667
capitalizacion3 <- capitalizacion2* capitalizacion2
capitalizacion3
## [1] 51991.600 50183.467 40407.700 38031.500 27561.534 25286.300 11028.500
## [8] 4491.234 1765.400
capitalizacion4 <- sum(capitalizacion3)
capitalizacion4
## [1] 250747.2
varianza_poblacional_capitalizacion <- capitalizacion4 /9
desviacion_estandar_poblacional_capitalizacion<-sqrt(varianza_poblacional_capitalizacion)
dias <- c(212,220,230,210,228,229,231,219,221,222)
dias
## [1] 212 220 230 210 228 229 231 219 221 222
rango_dias <- max(dias)-min(dias)
rango_dias
## [1] 21
media_dias <- mean(dias)
media_dias
## [1] 222.2
dias2 <- dias -media_dias
dias2
## [1] -10.2 -2.2 7.8 -12.2 5.8 6.8 8.8 -3.2 -1.2 -0.2
dias3 <- dias2*dias2
dias3
## [1] 104.04 4.84 60.84 148.84 33.64 46.24 77.44 10.24 1.44 0.04
dias4 <- sum(dias3)
dias4
## [1] 487.6
varianza_poblacional_dias <- dias4/10
varianza_poblacional_dias
## [1] 48.76
desviacion_estandar_poblacional_dias <- sqrt(varianza_poblacional_dias)
kilometros <- c(4.77,6.11, 6.11, 5.05, 5.99, 4.91, 5.27, 6.01, 5.75, 4.89, 6.05, 5.22, 6.02, 5.24, 6.11, 5.02)
#a)
mediana_km <- median(kilometros)
mediana_km
## [1] 5.51
#b)
media_km <- mean(kilometros)
media_km
## [1] 5.5325
#c)
clases_km <- cut(kilometros, breaks = 5)
clases_km
## [1] (4.77,5.04] (5.84,6.11] (5.84,6.11] (5.04,5.31] (5.84,6.11] (4.77,5.04]
## [7] (5.04,5.31] (5.84,6.11] (5.57,5.84] (4.77,5.04] (5.84,6.11] (5.04,5.31]
## [13] (5.84,6.11] (5.04,5.31] (5.84,6.11] (4.77,5.04]
## Levels: (4.77,5.04] (5.04,5.31] (5.31,5.57] (5.57,5.84] (5.84,6.11]
clases_km2 <- table(clases_km)
clases_km2
## clases_km
## (4.77,5.04] (5.04,5.31] (5.31,5.57] (5.57,5.84] (5.84,6.11]
## 4 4 0 1 7
#d)
histograma_km <- hist(kilometros)
histograma_km
## $breaks
## [1] 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2
##
## $counts
## [1] 1 2 2 3 0 1 1 6
##
## $density
## [1] 0.3125 0.6250 0.6250 0.9375 0.0000 0.3125 0.3125 1.8750
##
## $mids
## [1] 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1
##
## $xname
## [1] "kilometros"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
#Depende
#e)
rango_km <- max(kilometros)-min(kilometros)
rango_km
## [1] 1.34
RESPUESTA
# ¿(n>30)? Si, 200.
z_llenado <- (31.7-32)/(1.5/sqrt(200))
z_llenado
## [1] -2.828427