recibos <- c(266.63, 163.41, 219.41, 162.64, 187.16, 289.17, 306.55, 335.48, 343.50, 226.80, 208.99, 230.46)
Media o Promedio
media <- mean(recibos)
media
## [1] 245.0167
Mediana
mediana <- median(recibos)
mediana
## [1] 228.63
Moda En R no hay una función directa para sacar moda
Rango
rango <- max(recibos)-min(recibos)
rango
## [1] 180.86
Varianza (la varianza en R es para muestra y en este caso es población -> se saca paso a paso)
recibos1 <- recibos-media
recibos1
## [1] 21.61333 -81.60667 -25.60667 -82.37667 -57.85667 44.15333 61.53333
## [8] 90.46333 98.48333 -18.21667 -36.02667 -14.55667
recibos2 <- recibos1*recibos1
recibos2
## [1] 467.1362 6659.6480 655.7014 6785.9152 3347.3939 1949.5168 3786.3511
## [8] 8183.6147 9698.9669 331.8469 1297.9207 211.8965
recibos3 <- sum(recibos2)
recibos3
## [1] 43375.91
varianza_pobl <- recibos3/12
varianza_pobl
## [1] 3614.659
Desviación estandar
desviacion_estandar_pobl <- sqrt(varianza_pobl)
desviacion_estandar_pobl
## [1] 60.12203
a <- (pnorm(600,1300,600))*100
a
## [1] 12.16725
b <- (pnorm(1500,1300,600)- pnorm(1000,1300,600))*100
b
## [1] 32.20211
c <- (1-pnorm(2200,1300,600))*100
c
## [1] 6.68072
a2 <- (pnorm(21,18.7,5))*100
a2
## [1] 67.72419
b2 <- (1-pnorm(21, 18.7,5))*100
b2
## [1] 32.27581
a3 <- (1-pnorm(90,80,4))*100
a3
## [1] 0.6209665
b3 <- (pnorm(85,80,4)-pnorm(70,80,4))*100
b3
## [1] 88.81406
Si un comerciante compra un lote de 1000 pilas, calcula cuantas pilas tendran una vida superior
c3 <- (1-pnorm(100,80,4))*1000
c3
## [1] 0.0002866516
d <- (1-pnorm(90,80,4))*1000
d
## [1] 6.209665
#### RESUPUESTA: Salarios de funcionarios: A; mantenimiento de
flota: C; adquisiciones de alimentos: B.
| País | Capitalización (en miles de millones de dólares) |
|---|---|
| Filipinas | 17 |
| Indonesia | 21 |
| Tailandia | 44 |
| Singapur | 50 |
| Malasia | 79 |
| Corea del Sur | 86 |
| Taiwan | 140 |
| Hong Kong | 178 |
| Australia | 203 |
capitalizacion <- c(17,21,44,50,79,86,140,178,203)
# a)
media <- mean(capitalizacion)
media
## [1] 90.88889
# b)
mediana <- median(capitalizacion)
mediana
## [1] 79
# c)
# No hay moda para datos in agrupar.
# d)
histograma <- hist(capitalizacion)
histograma
## $breaks
## [1] 0 50 100 150 200 250
##
## $counts
## [1] 4 2 1 1 1
##
## $density
## [1] 0.008888889 0.004444444 0.002222222 0.002222222 0.002222222
##
## $mids
## [1] 25 75 125 175 225
##
## $xname
## [1] "capitalizacion"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
# Como la distribución está sesgada a la derecha la mejor medida de tendencia central es la mediana.
# e)
capitalizacion2 <- capitalizacion-media
capitalizacion2
## [1] -73.888889 -69.888889 -46.888889 -40.888889 -11.888889 -4.888889 49.111111
## [8] 87.111111 112.111111
capitalizacion3 <- capitalizacion2*capitalizacion2
capitalizacion3
## [1] 5459.56790 4884.45679 2198.56790 1671.90123 141.34568 23.90123
## [7] 2411.90123 7588.34568 12568.90123
capitalizacion4 <- sum(capitalizacion3)
capitalizacion4
## [1] 36948.89
varianza_pobl_capitalizacion <- capitalizacion4/9
desv_est_pobl_capitalizacion <- sqrt(varianza_pobl_capitalizacion)
desv_est_pobl_capitalizacion
## [1] 64.07365
a) Desviación Estándar b)
dias <- c(212,220,230,210,228,229,231,219,221,222)
dias
## [1] 212 220 230 210 228 229 231 219 221 222
rango_dias <- max(dias)-min(dias)
rango_dias
## [1] 21
media_dias <- mean(dias)
media_dias
## [1] 222.2
dias2 <- dias - media_dias
dias2
## [1] -10.2 -2.2 7.8 -12.2 5.8 6.8 8.8 -3.2 -1.2 -0.2
dias3 <- dias2*dias2
dias3
## [1] 104.04 4.84 60.84 148.84 33.64 46.24 77.44 10.24 1.44 0.04
dias4 <- sum(dias3)
dias4
## [1] 487.6
varianza_pob_dias <- dias4/10
varianza_pob_dias
## [1] 48.76
desv_est_dias <- sqrt(varianza_pob_dias)
desv_est_dias
## [1] 6.982836
c) Desviación Estándar d) Nada
kilometros <- c(4.77,6.11,6.11,5.05,5.99,4.91,5.27,6.01,5.75,4.89,6.05,5.22,6.02,5.24,6.11,5.02)
# a)
mediana_km <- median(kilometros)
mediana_km
## [1] 5.51
# b)
media_km <- mean(kilometros)
media_km
## [1] 5.5325
# c)
clases_km <- cut(kilometros, breaks = 5)
clases_km
## [1] (4.77,5.04] (5.84,6.11] (5.84,6.11] (5.04,5.31] (5.84,6.11] (4.77,5.04]
## [7] (5.04,5.31] (5.84,6.11] (5.57,5.84] (4.77,5.04] (5.84,6.11] (5.04,5.31]
## [13] (5.84,6.11] (5.04,5.31] (5.84,6.11] (4.77,5.04]
## Levels: (4.77,5.04] (5.04,5.31] (5.31,5.57] (5.57,5.84] (5.84,6.11]
clases_km2 <- table(clases_km)
clases_km2
## clases_km
## (4.77,5.04] (5.04,5.31] (5.31,5.57] (5.57,5.84] (5.84,6.11]
## 4 4 0 1 7
# d)
histograma_km <- hist(kilometros)
histograma_km
## $breaks
## [1] 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2
##
## $counts
## [1] 1 2 2 3 0 1 1 6
##
## $density
## [1] 0.3125 0.6250 0.6250 0.9375 0.0000 0.3125 0.3125 1.8750
##
## $mids
## [1] 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1
##
## $xname
## [1] "kilometros"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
# Depende...
# e)
rango_km <- max(kilometros)-min(kilometros)
rango_km
## [1] 1.34
# n>30, n=200
z_lleno <- (31.7-32)/(1.5/sqrt(200))
z_lleno
## [1] -2.828427