# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("TSLA", "META", "XOM", "AAPL", "PG", "AMZN") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 102 × 3
## # Groups: symbol [6]
## symbol date Ra
## <chr> <date> <dbl>
## 1 TSLA 2022-01-31 -0.219
## 2 TSLA 2022-02-28 -0.0708
## 3 TSLA 2022-03-31 0.238
## 4 TSLA 2022-04-29 -0.192
## 5 TSLA 2022-05-31 -0.129
## 6 TSLA 2022-06-30 -0.112
## 7 TSLA 2022-07-29 0.324
## 8 TSLA 2022-08-31 -0.0725
## 9 TSLA 2022-09-30 -0.0376
## 10 TSLA 2022-10-31 -0.142
## # ℹ 92 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 17 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## 11 2022-11-30 0.0437
## 12 2022-12-30 -0.0873
## 13 2023-01-31 0.107
## 14 2023-02-28 -0.0111
## 15 2023-03-31 0.0669
## 16 2023-04-28 0.000382
## 17 2023-05-18 0.0378
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 102 × 4
## # Groups: symbol [6]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 TSLA 2022-01-31 -0.219 -0.101
## 2 TSLA 2022-02-28 -0.0708 -0.0343
## 3 TSLA 2022-03-31 0.238 0.0341
## 4 TSLA 2022-04-29 -0.192 -0.133
## 5 TSLA 2022-05-31 -0.129 -0.0205
## 6 TSLA 2022-06-30 -0.112 -0.0871
## 7 TSLA 2022-07-29 0.324 0.123
## 8 TSLA 2022-08-31 -0.0725 -0.0464
## 9 TSLA 2022-09-30 -0.0376 -0.105
## 10 TSLA 2022-10-31 -0.142 0.0390
## # ℹ 92 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 6 × 13
## # Groups: symbol [6]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA -0.293 -0.0073 -0.0843 1.91 2.03 4.44
## 2 META -0.0552 0.0082 0.103 1.07 1.02 0.525
## 3 XOM 0.634 0.0416 0.631 0.314 0.178 0.236
## 4 AAPL 0.124 0.0131 0.169 1.08 0.788 1.24
## 5 PG 0.125 0.0008 0.0092 0.0944 -0.489 -0.760
## 6 AMZN -0.0831 0.0025 0.0307 1.53 1.38 2.43
## # ℹ 6 more variables: Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>
RaRb_skewness <- RaRb %>%
mutate (skewness_Ra = skewness(Ra),
skewness_Rb = skewness(Rb))
RaRb_skewness
## # A tibble: 102 × 6
## # Groups: symbol [6]
## symbol date Ra Rb skewness_Ra skewness_Rb
## <chr> <date> <dbl> <dbl> <dbl> <dbl>
## 1 TSLA 2022-01-31 -0.219 -0.101 0.644 0.0744
## 2 TSLA 2022-02-28 -0.0708 -0.0343 0.644 0.0744
## 3 TSLA 2022-03-31 0.238 0.0341 0.644 0.0744
## 4 TSLA 2022-04-29 -0.192 -0.133 0.644 0.0744
## 5 TSLA 2022-05-31 -0.129 -0.0205 0.644 0.0744
## 6 TSLA 2022-06-30 -0.112 -0.0871 0.644 0.0744
## 7 TSLA 2022-07-29 0.324 0.123 0.644 0.0744
## 8 TSLA 2022-08-31 -0.0725 -0.0464 0.644 0.0744
## 9 TSLA 2022-09-30 -0.0376 -0.105 0.644 0.0744
## 10 TSLA 2022-10-31 -0.142 0.0390 0.644 0.0744
## # ℹ 92 more rows
So, based of the results that are showed above, in 2022, the following stocks beat the market: META, XOM, AAPL, PG, and AMZN.
# Create a bar plot of skewness
library(ggplot2)
ggplot(RaRb_skewness, aes(x = symbol, y = skewness_Ra, fill = symbol)) +
geom_bar(stat = "identity", position = "dodge", show.legend = FALSE) +
labs(x = "Stock", y = "Skewness", title = "Skewness of Returns") +
theme_minimal()
# Filter stocks with positive skewness and get distinct symbols
positive_skew_stocks <- RaRb_skewness %>%
filter(skewness_Ra > 0) %>%
distinct(symbol)
# Print the stocks with positive skewness
positive_skew_stocks
## # A tibble: 5 × 1
## # Groups: symbol [5]
## symbol
## <chr>
## 1 TSLA
## 2 XOM
## 3 AAPL
## 4 PG
## 5 AMZN