Growth of Covid-19 in March 2020

In March 2020, the Covid-19 pandemic began to take hold in the United States. In that first month, the virus spread exponentially as more and more people tested positive for the virus. My project focuses primarily on the state of New York where some of the highest numbers of positive Covid-19 tests were seen in the US.

Cited from https://coronavirus.health.ny.gov/positive-tests-over-time-region-and-county

x <- seq(1,31,1)
x    # x = number of days
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31
y <- c(0,1,0,2,22,11,24,28,63,44,56,102,164,131,294,432,1009,1769,2950,3254,4812,5707,4790,5145,6448,7379,7681,7195,6984,9298,7917)
y    # y = number of positive Covid-19 tests in New York State
##  [1]    0    1    0    2   22   11   24   28   63   44   56  102  164  131  294
## [16]  432 1009 1769 2950 3254 4812 5707 4790 5145 6448 7379 7681 7195 6984 9298
## [31] 7917
plot(x, y, main="Growth of Covid-19 March 2020",
     xlab= "Time (days)", ylab="Positive Covid-19 Tests",
     xlim = c(0,31), ylim=c(0,10000))

Exponential and Logistic Growth Models

In the following program, we will use the calculated half-life of the virus to create an additional exponential growth as well as logistic model for the data set.

t <- 0     #   initial time  

P <- 10000     #   number of people

N = 31  #  Number of time increments

Time =  31  #   each time is one day 

dt <- Time/N  

k = 0.3        # rate constant per day
#P = 10000, Pini = 1, t = 31 for equation ln(P/Pini)=k*t

#  t[1] and P[1]  are initialized 

for(i in 2:N) 
  
{    t[i] <-  t[i-1] + dt


P[i] <- P[i-1] + k*P[i-1]*dt    

print(P)
}
## [1] 10000 13000
## [1] 10000 13000 16900
## [1] 10000 13000 16900 21970
## [1] 10000 13000 16900 21970 28561
## [1] 10000.0 13000.0 16900.0 21970.0 28561.0 37129.3
## [1] 10000.00 13000.00 16900.00 21970.00 28561.00 37129.30 48268.09
## [1] 10000.00 13000.00 16900.00 21970.00 28561.00 37129.30 48268.09 62748.52
## [1] 10000.00 13000.00 16900.00 21970.00 28561.00 37129.30 48268.09 62748.52
## [9] 81573.07
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85 302875.11
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85 302875.11
## [15] 393737.64
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85 302875.11
## [15] 393737.64 511858.93
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85 302875.11
## [15] 393737.64 511858.93 665416.61
##  [1]  10000.00  13000.00  16900.00  21970.00  28561.00  37129.30  48268.09
##  [8]  62748.52  81573.07 106044.99 137858.49 179216.04 232980.85 302875.11
## [15] 393737.64 511858.93 665416.61 865041.59
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29 3211838.88
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29 3211838.88 4175390.54
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29 3211838.88 4175390.54
## [25] 5428007.70
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29 3211838.88 4175390.54
## [25] 5428007.70 7056410.01
##  [1]   10000.00   13000.00   16900.00   21970.00   28561.00   37129.30
##  [7]   48268.09   62748.52   81573.07  106044.99  137858.49  179216.04
## [13]  232980.85  302875.11  393737.64  511858.93  665416.61  865041.59
## [19] 1124554.07 1461920.29 1900496.38 2470645.29 3211838.88 4175390.54
## [25] 5428007.70 7056410.01 9173333.02
##  [1]    10000.00    13000.00    16900.00    21970.00    28561.00    37129.30
##  [7]    48268.09    62748.52    81573.07   106044.99   137858.49   179216.04
## [13]   232980.85   302875.11   393737.64   511858.93   665416.61   865041.59
## [19]  1124554.07  1461920.29  1900496.38  2470645.29  3211838.88  4175390.54
## [25]  5428007.70  7056410.01  9173333.02 11925332.93
##  [1]    10000.00    13000.00    16900.00    21970.00    28561.00    37129.30
##  [7]    48268.09    62748.52    81573.07   106044.99   137858.49   179216.04
## [13]   232980.85   302875.11   393737.64   511858.93   665416.61   865041.59
## [19]  1124554.07  1461920.29  1900496.38  2470645.29  3211838.88  4175390.54
## [25]  5428007.70  7056410.01  9173333.02 11925332.93 15502932.80
##  [1]    10000.00    13000.00    16900.00    21970.00    28561.00    37129.30
##  [7]    48268.09    62748.52    81573.07   106044.99   137858.49   179216.04
## [13]   232980.85   302875.11   393737.64   511858.93   665416.61   865041.59
## [19]  1124554.07  1461920.29  1900496.38  2470645.29  3211838.88  4175390.54
## [25]  5428007.70  7056410.01  9173333.02 11925332.93 15502932.80 20153812.64
##  [1]    10000.00    13000.00    16900.00    21970.00    28561.00    37129.30
##  [7]    48268.09    62748.52    81573.07   106044.99   137858.49   179216.04
## [13]   232980.85   302875.11   393737.64   511858.93   665416.61   865041.59
## [19]  1124554.07  1461920.29  1900496.38  2470645.29  3211838.88  4175390.54
## [25]  5428007.70  7056410.01  9173333.02 11925332.93 15502932.80 20153812.64
## [31] 26199956.44
t
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25 26 27 28 29 30
P
##  [1]    10000.00    13000.00    16900.00    21970.00    28561.00    37129.30
##  [7]    48268.09    62748.52    81573.07   106044.99   137858.49   179216.04
## [13]   232980.85   302875.11   393737.64   511858.93   665416.61   865041.59
## [19]  1124554.07  1461920.29  1900496.38  2470645.29  3211838.88  4175390.54
## [25]  5428007.70  7056410.01  9173333.02 11925332.93 15502932.80 20153812.64
## [31] 26199956.44
plot(t,P,type = "p", main="Exponential Growth of Covid-19 March 2020", xlab= "Time (days)", ylab="Positive Covid-19 Tests",xlim = c(0,Time), ylim = c(10000,15000000), col = "red")

Pc  <-  P[1] * exp(k*t)

lines(t,Pc)

#   Logistic equation 

Cap <-  1000000

t <- 0      #   initialize time  

P <- 10000     #   number of people

N = 31  #  Number of time increments

Time = 31   #   each time is one day 

dt <- Time/N  

k = 0.3        # rate constant   sec-1

#  t[1] and P[1]  are initialized 

for(i in 2:N) 
  
{    t[i] <-  t[i-1] + dt


P[i] <- P[i-1] + k*P[i-1]* (1-P[i-1]/Cap) * dt       #  we did by hand 

print(P)
}
## [1] 10000 12970
## [1] 10000.00 12970.00 16810.53
## [1] 10000.00 12970.00 16810.53 21768.92
## [1] 10000.00 12970.00 16810.53 21768.92 28157.42
## [1] 10000.00 12970.00 16810.53 21768.92 28157.42 36366.80
## [1] 10000.00 12970.00 16810.53 21768.92 28157.42 36366.80 46880.08
## [1] 10000.00 12970.00 16810.53 21768.92 28157.42 36366.80 46880.08 60284.78
## [1] 10000.00 12970.00 16810.53 21768.92 28157.42 36366.80 46880.08 60284.78
## [9] 77279.93
##  [1] 10000.00 12970.00 16810.53 21768.92 28157.42 36366.80 46880.08 60284.78
##  [9] 77279.93 98672.26
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55 965760.95
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55 965760.95
## [29] 975680.97
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55 965760.95
## [29] 975680.97 982799.25
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55 965760.95
## [29] 975680.97 982799.25 987870.72
t
##  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25 26 27 28 29 30
P
##  [1]  10000.00  12970.00  16810.53  21768.92  28157.42  36366.80  46880.08
##  [8]  60284.78  77279.93  98672.26 125353.07 158244.97 198206.02 245882.14
## [15] 301509.38 364689.82 434197.17 507898.16 582879.45 655818.75 723534.90
## [22] 783544.55 834425.29 875873.21 908489.01 933430.03 952071.55 965760.95
## [29] 975680.97 982799.25 987870.72
plot(t,P,type = "p",main="Logistic Model of Covid-19 Growth",xlim = c(0,Time), ylim = c(10000,1000000), 
     col = "red")

Pc  <-  P[1] * exp(k*t)

lines(t,Pc)

Pex = Cap / (1+(Cap/100+1) * exp(k*t))       

Non-Linear Least Square (nls)

x <- seq(15,31,1)
x   # x = number of days
##  [1] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
y <- c(294,432,1009,1769,2950,3254,4812,5707,4790,5145,6448,7379,7681,7195,6984,9298,7917)
y   # y = number of positive Covid-19 tests in New York State
##  [1]  294  432 1009 1769 2950 3254 4812 5707 4790 5145 6448 7379 7681 7195 6984
## [16] 9298 7917
tryfit <- nls(y~a * x ^ 3 + b * x + c, 
         start = list(a = 1, b = 2, c = 1))

plot(x, y, col.lab ="black", 
     col.axis ="black")

lines(x, predict(tryfit))

# error value
print(sum(resid(tryfit)^2))
## [1] 5756980
summary(tryfit)
## 
## Formula: y ~ a * x^3 + b * x + c
## 
## Parameters:
##     Estimate Std. Error t value Pr(>|t|)    
## a -2.971e-01  1.054e-01  -2.820   0.0136 *  
## b  1.024e+03  1.746e+02   5.861 4.14e-05 ***
## c -1.455e+04  2.603e+03  -5.589 6.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 641.3 on 14 degrees of freedom
## 
## Number of iterations to convergence: 1 
## Achieved convergence tolerance: 1.025e-07