library(tidyverse)
<-tibble::tribble(~Names, ~Climate.Change, ~Data.Science, ~Engineering.Design, ~ESG, ~Geochemistry, ~Goldsim, ~Hydraulics, ~Hydrology, ~Project.Management, ~Water.Management, ~Water.Treatment, ~Water.Quality, ~TOTAL,
hist_tbl"Andrea Bowie", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Anne Day", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Brandon Smith", NA, NA, NA, NA, NA, 5L, NA, NA, 3L, 1L, NA, 1L, 10L,
"Brooklyn Derry", NA, NA, NA, NA, 3L, 1L, NA, NA, NA, NA, 3L, 3L, 10L,
"Camilo Gallard", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Celine Michiels", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Charles Veilleux", NA, NA, 3L, NA, NA, NA, 2L, 1, 1L, 2L, NA, 1L, 10L,
"Christina James", NA, NA, NA, 2L, NA, 5L, NA, NA, NA, 3L, NA, NA, 10L,
"Gordon Johnston", 1L, NA, 1L, NA, NA, 2L, 2L, 1, NA, 3L, NA, NA, 10L,
"Harry Zhang", 2L, NA, NA, NA, NA, NA, 3L, 2, NA, 2L, NA, 1L, 10L,
"Jessie Watson", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Jordan Larkins", NA, NA, 3L, NA, NA, NA, 3L, NA, 1L, 3L, NA, NA, 10L,
"Lais Pereira", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Mark Sumka", 2L, NA, 2L, NA, NA, 1L, 2L, 3, NA, NA, NA, NA, 10L,
"Matthew Henderson", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Mauricio Herrera", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Michael Dabiri", 1L, NA, 3L, NA, NA, NA, 1L, 1, 1L, 3L, NA, NA, 10L,
"Nadine Shatilla", NA, NA, NA, NA, NA, 1L, NA, 5, 4L, NA, NA, NA, 10L,
"Nina Feng", NA, NA, 1L, NA, NA, 4L, 1L, 1, NA, 2L, NA, 1L, 10L,
"Noah Levin", NA, 1, NA, NA, NA, 3L, NA, NA, NA, 1L, 1L, 4L, 10L,
"Rajib Kamal", NA, NA, 1L, NA, NA, NA, 3L, 1, NA, 4L, NA, 1L, 10L,
"Rob Klein", NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 1L, 10L,
"Samantha Barnes", 1L, NA, 2L, 1L, NA, 2L, 1L, 1, NA, 2L, NA, NA, 10L,
"Shannon Hoekstra", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Sharlene Santiago", 2L, NA, NA, NA, NA, 1L, NA, NA, NA, NA, 1L, 6L, 10L,
"Simon Venter", NA, NA, 6L, NA, NA, NA, 3L, NA, NA, 1L, NA, NA, 10L,
"Simonne Mikolay", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Soren Jensen", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Tanbir Mahatab", NA, NA, NA, NA, NA, 4L, NA, 1, NA, 2L, 2L, 1L, 10L,
"Tony Fedec", NA, NA, NA, NA, 5L, NA, 1L, NA, NA, 4L, NA, NA, 10L,
"Victor Munoz", 2L, 4.5, NA, NA, NA, NA, 1L, 2.5, NA, NA, NA, NA, 10L
%>%
) ::filter(TOTAL==10) %>%
dplyr::select(-TOTAL) %>%
dplyr::melt(id.vars="Names") %>%
reshape2mutate(source="hist")
<-tibble::tribble(
proy_tbl~Names, ~Climate.Change, ~Data.Science, ~Engineering.Design, ~ESG, ~Geochemistry, ~Goldsim, ~Hydraulics, ~Hydrology, ~Project.Management, ~Water.Management, ~Water.Treatment, ~Water.Quality, ~TOTAL,
"Andrea Bowie", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Anne Day", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Brandon Smith", NA, NA, NA, NA, NA, 5, NA, NA, 3L, 1L, NA, 1L, 10L,
"Brooklyn Derry", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Camilo Gallard", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Celine Michiels", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Charles Veilleux", NA, NA, 2L, NA, NA, 1, 2L, 1L, NA, 2L, NA, 2L, 10L,
"Christina James", NA, NA, NA, 3.333333333, NA, 3.333333333, NA, NA, NA, 3L, NA, NA, 10L,
"Gordon Johnston", 1L, NA, 2L, 1, NA, 2, 2L, NA, NA, 1L, NA, 1L, 10L,
"Harry Zhang", 2L, NA, NA, NA, NA, NA, 2L, 2L, NA, 3L, NA, 1L, 10L,
"Jessie Watson", NA, NA, NA, 1, NA, 1, NA, NA, 1L, 2L, 3L, 2L, 10L,
"Jordan Larkins", NA, NA, 3L, NA, NA, NA, 1L, NA, 4L, 2L, NA, NA, 10L,
"Lais Pereira", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Mark Sumka", 1L, NA, 2L, NA, NA, 1, 2L, 1L, NA, 2L, NA, 1L, 10L,
"Matthew Henderson", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Mauricio Herrera", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Michael Dabiri", 1L, NA, 2L, 2, NA, NA, 1L, 1L, NA, 3L, NA, NA, 10L,
"Nadine Shatilla", 1L, NA, NA, 1, NA, 1, NA, 4L, 2L, 1L, NA, NA, 10L,
"Nina Feng", NA, 1L, 1L, NA, NA, 3, 2L, NA, NA, 2L, NA, 1L, 10L,
"Noah Levin", NA, 2L, NA, NA, 1L, 2, NA, NA, NA, NA, 2L, 3L, 10L,
"Rajib Kamal", NA, NA, 2L, NA, NA, NA, 3L, 1L, NA, 3L, NA, 1L, 10L,
"Rob Klein", NA, NA, 3L, 2, NA, NA, NA, NA, NA, 3L, 2L, NA, 10L,
"Samantha Barnes", 1L, NA, 2L, 1, NA, 2, 1L, 1L, NA, 2L, NA, NA, 10L,
"Shannon Hoekstra", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Sharlene Santiago", 2L, 2L, NA, 1, NA, 1, NA, NA, NA, 1L, 2L, 1L, 10L,
"Simon Venter", NA, NA, 5L, NA, NA, NA, 3L, NA, NA, 2L, NA, NA, 10L,
"Simonne Mikolay", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Soren Jensen", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0L,
"Tanbir Mahatab", NA, NA, 2L, NA, NA, 2, NA, 1L, NA, 1L, 2L, 2L, 10L,
"Tony Fedec", NA, NA, 3L, NA, NA, NA, 4L, NA, NA, 3L, NA, NA, 10L,
"Victor Munoz", 2L, 6L, NA, NA, NA, NA, NA, 2L, NA, NA, NA, NA, 10L
%>%
)::filter(TOTAL==10) %>%
dplyr::select(-TOTAL) %>%
dplyr::melt(id.vars="Names") %>%
reshape2mutate(source="proy")
<-rbind(hist_tbl,proy_tbl)
all_tbl
<-all_tbl %>%
all_sort_tblgroup_by(variable) %>%
summarize(value=sum(value,na.rm=T)) %>%
arrange(-value)
%>%
all_tblggplot(data=.,aes(x=source,y=value,fill=Names))+
geom_bar(stat = "Identity")+
facet_wrap(fct_relevel(variable,all_sort_tbl$variable %>% as.character)~.,
drop = F)+
theme_light()+
labs(y="Magnitude")
%>%
all_tbl group_by(variable,source) %>%
summarise(value=sum(value,na.rm=T)) %>%
::dcast(data=.,formula=variable~source,value.var = "value") %>%
reshape2arrange(-hist) %>%
mutate(difference=proy-hist) %>%
pandoc.table(round=0)
variable | hist | proy | difference |
---|---|---|---|
Water.Management | 36 | 37 | 1 |
Goldsim | 29 | 24 | -5 |
Hydraulics | 23 | 23 | 0 |
Engineering.Design | 22 | 29 | 7 |
Water.Quality | 20 | 16 | -4 |
Hydrology | 20 | 14 | -6 |
Project.Management | 13 | 10 | -3 |
Climate.Change | 11 | 11 | 0 |
Water.Treatment | 10 | 11 | 1 |
Geochemistry | 8 | 1 | -7 |
Data.Science | 6 | 11 | 6 |
ESG | 3 | 12 | 9 |
%>%
all_tbl group_by(variable,source) %>%
summarise(value=sum(value,na.rm=T)) %>%
::dcast(data=.,formula=variable~source,value.var = "value") %>%
reshape2mutate(change=proy-hist) %>%
arrange(-change,-hist) %>%
pandoc.table(round=0)
variable | hist | proy | change |
---|---|---|---|
ESG | 3 | 12 | 9 |
Engineering.Design | 22 | 29 | 7 |
Data.Science | 6 | 11 | 6 |
Water.Management | 36 | 37 | 1 |
Water.Treatment | 10 | 11 | 1 |
Hydraulics | 23 | 23 | 0 |
Climate.Change | 11 | 11 | 0 |
Project.Management | 13 | 10 | -3 |
Water.Quality | 20 | 16 | -4 |
Goldsim | 29 | 24 | -5 |
Hydrology | 20 | 14 | -6 |
Geochemistry | 8 | 1 | -7 |
library(cluster)
<-all_tbl %>%
all_info_tblmutate(value=if_else(is.na(value),0,value)) %>%
# dplyr::filter(source=="hi)
::dcast(data=.,formula=Names+source~variable,value.var = "value") %>%
reshape2arrange(Names,source)
<-all_info_tbl %>%
all_hist_tbl::filter(source=="hist") %>%
dplyr::select(-source) %>%
dplyrcolumn_to_rownames(var="Names")
<-scale(all_hist_tbl)
wg_norm
<-dist(wg_norm)
dist
<-hclust(dist,method="average")
wg_hclust
plot(wg_hclust)
<-dist(wg_norm,method = "euclidean")
datadistshortset
<- hclust(datadistshortset, method = "complete" )
hc1
<- pam(datadistshortset,3, diss = FALSE)
pamvshortset
clusplot(pamvshortset, shade = FALSE,labels=2,col.clus="blue",
col.p="red",span=FALSE,main="Cluster Mapping",cex=1.2)
<-data.frame(pamvshortset$clustering) %>%
all_clusterrownames_to_column(var = "Names") %>%
::rename(cluster="pamvshortset.clustering")
dplyr
left_join(all_tbl,all_cluster) %>%
mutate(variable=str_replace(variable,"\\."," ") %>% str_wrap(10)) %>%
::filter(source=="hist") %>%
dplyrmutate(value=if_else(is.na(value),0,value)) %>%
ggplot(data=.,aes(x=variable,y=value,fill=as.factor(round(value,0))))+
geom_col()+
facet_grid(Names~cluster)+
theme(strip.text.y.right = element_text(angle = 0))+
theme(axis.text.x = element_text(angle = 90,size=7))+
labs(fill="magnitude:",x=NULL,y=NULL,title="Team members divided by cluster",
subtitle="Historical work")
library(cluster)
<-all_tbl %>%
all_info_tblmutate(value=if_else(is.na(value),0,value)) %>%
# dplyr::filter(source=="hi)
::dcast(data=.,formula=Names+source~variable,value.var = "value") %>%
reshape2arrange(Names,source)
<-all_info_tbl %>%
all_hist_tbl::filter(source=="proy") %>%
dplyr::select(-source) %>%
dplyrcolumn_to_rownames(var="Names")
<-scale(all_hist_tbl)
wg_norm
<-dist(wg_norm)
dist
<-hclust(dist,method="average")
wg_hclust
plot(wg_hclust)
<-dist(wg_norm,method = "euclidean")
datadistshortset
<- hclust(datadistshortset, method = "complete" )
hc1
<- pam(datadistshortset,3, diss = FALSE)
pamvshortset
clusplot(pamvshortset, shade = FALSE,labels=2,col.clus="blue",
col.p="red",span=FALSE,main="Cluster Mapping",cex=1.2)
<-data.frame(pamvshortset$clustering) %>%
all_clusterrownames_to_column(var = "Names") %>%
::rename(cluster="pamvshortset.clustering")
dplyr
left_join(all_tbl,all_cluster) %>%
mutate(variable=str_replace(variable,"\\."," ") %>% str_wrap(10)) %>%
::filter(source=="hist") %>%
dplyrmutate(value=if_else(is.na(value),0,value)) %>%
ggplot(data=.,aes(x=variable,y=value,fill=as.factor(round(value,0))))+
geom_col()+
facet_grid(Names~cluster)+
theme(strip.text.y.right = element_text(angle = 0))+
theme(axis.text.x = element_text(angle = 90))+
theme(axis.text.x = element_text(angle = 90,size=7))+
labs(fill="magnitude:",x=NULL,y=NULL,title="Team members divided by cluster",
subtitle="Expected work")
<-here::here("data","rds",paste0("Backup Meteorological review_",as.Date(now()),".rdata"))
file.image
save.image(file = file.image)