아래와 같이 산점도를 사용하여 R에서 두 변수 간의 상관관계를 그릴 수 있습니다. 다음 코드 블록의 마지막 줄에서는 그래프에 상관 계수를 추가할 수 있습니다.
# Data generation
set.seed(1)
x <- 1:100
y <- x + rnorm(100, mean = 0, sd = 15)
# Creating the plot
plot(x, y, pch = 19, col = "lightblue")
# Regression line
abline(lm(y ~ x), col = "red", lwd = 3)
# Pearson correlation
text(paste("Correlation:", round(cor(x, y), 2)), x = 80, y = 60)
산점도 행렬을 만드는 가장 일반적인 기능은 pairs함수입니다. 설명을 위해 잘 알려진 데이터 세트를 사용하겠습니다 iris. pairs기능을 사용하면 데이터 프레임에서 쌍 또는 상관관계 도표를 만들 수 있습니다. 원하는 경우 수식을 지정할 수도 있습니다.
# 샘플 데이터
data <- iris[, 1:4] # Numerical variables
groups <- iris[, 5] # Factor variable (groups)
# Plot correlation matrix
pairs(data)
# Equivalent with a formula
pairs(~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = iris)
# Equivalent but using the plot function
plot(data)
함수는 여러 인수로 사용자 정의할 수 있습니다. 다음 예에서는 데이터 요소를 그룹별로 색상을 지정하여 산점도를 완전히 사용자 정의하는 방법을 보여줍니다.
pairs(data, # Data frame of variables
labels = colnames(data), # Variable names
pch = 21, # Pch symbol
bg = rainbow(3)[groups], # Background color of the symbol (pch 21 to 25)
col = rainbow(3)[groups], # Border color of the symbol
main = "Iris dataset", # Title of the plot
row1attop = TRUE, # If FALSE, changes the direction of the diagonal
gap = 0.5, # Distance between subplots
cex.labels = NULL, # Size of the diagonal text
font.labels = 1) # Font style of the diagonal text
# Function to add histograms
panel.hist <- function(x, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
his <- hist(x, plot = FALSE)
breaks <- his$breaks
nB <- length(breaks)
y <- his$counts
y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col = rgb(0, 1, 1, alpha = 0.5), ...)
# lines(density(x), col = 2, lwd = 2) # Uncomment to add density lines
}
# Creating the scatter plot matrix
pairs(data,
upper.panel = NULL, # Disabling the upper panel
diag.panel = panel.hist) # Adding the histograms
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
# Function to add correlation coefficients
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
Cor <- abs(cor(x, y)) # Remove abs function if desired
txt <- paste0(prefix, format(c(Cor, 0.123456789), digits = digits)[1])
if(missing(cex.cor)) {
cex.cor <- 0.4 / strwidth(txt)
}
text(0.5, 0.5, txt,
cex = 1 + cex.cor * Cor) # Resize the text by level of correlation
}
# Plotting the correlation matrix
pairs(data,
upper.panel = panel.cor, # Correlation panel
lower.panel = panel.smooth) # Smoothed regression lines
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
# install.packages("gclus")
library(gclus)
## 필요한 패키지를 로딩중입니다: cluster
# Correlation in absolute terms
corr <- abs(cor(data))
colors <- dmat.color(corr)
order <- order.single(corr)
cpairs(data, # Data frame of variables
order, # Order of the variables
panel.colors = colors, # Matrix of panel colors
border.color = "grey70", # Borders color
gap = 0.45, # Distance between subplots
main = "Ordered variables colored by correlation", # Main title
show.points = TRUE, # If FALSE, removes all the points
pch = 21, # pch symbol
bg = rainbow(3)[iris$Species]) # Colors by group
PerformanceAnalytics 패키지 의 chart.Correlation 기능은 히스토그램 , 밀도 함수, 매끄러운 회귀선 및 해당 유의 수준과의 상관 계수를 사용하여 R에서 상관 관계 도표를 생성하는 지름길입니다(별표가 없으면 변수는 통계적으로 유의하지 않지만 1, 2, 3 별표는 해당 변수가 각각 10%, 5% 및 1% 수준에서 유의함을 의미합니다.)
# install.packages("PerformanceAnalytics")
library(PerformanceAnalytics)
## 필요한 패키지를 로딩중입니다: xts
## 필요한 패키지를 로딩중입니다: zoo
##
## 다음의 패키지를 부착합니다: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## 다음의 패키지를 부착합니다: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
chart.Correlation(data, histogram = TRUE, method = "pearson")
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
The package pysch provides two interesting functions to create
correlation plots in R. The pairs.panel function is an extension of the
pairs function that allows you to easily add regression lines,
histograms, confidence intervals, … and customize several additional
arguments.
# install.packages("psych")
library(psych)
pairs.panels(data,
smooth = TRUE, # If TRUE, draws loess smooths
scale = FALSE, # If TRUE, scales the correlation text font
density = TRUE, # If TRUE, adds density plots and histograms
ellipses = TRUE, # If TRUE, draws ellipses
method = "pearson", # Correlation method (also "spearman" or "kendall")
pch = 21, # pch symbol
lm = FALSE, # If TRUE, plots linear fit rather than the LOESS (smoothed) fit
cor = TRUE, # If TRUE, reports correlations
jiggle = FALSE, # If TRUE, data points are jittered
factor = 2, # Jittering factor
hist.col = 4, # Histograms color
stars = TRUE, # If TRUE, adds significance level with stars
ci = TRUE) # If TRUE, adds confidence intervals
corrgram function
On the one hand, the corrgram package calculates the correlation of the data and draws correlograms. The function of the same name allows customization via panel functions. As an example, you can create a correlogram in R where the upper panel shows pie charts and the lower panel shows shaded boxes with the following code:
# install.packages("corrgram")
library(corrgram)
##
## 다음의 패키지를 부착합니다: 'corrgram'
## The following object is masked _by_ '.GlobalEnv':
##
## panel.cor
corrgram(data,
order = TRUE, # If TRUE, PCA-based re-ordering
upper.panel = panel.pie, # Panel function above diagonal
lower.panel = panel.shade, # Panel function below diagonal
text.panel = panel.txt, # Panel function of the diagonal
main = "Correlogram") # Main title
apropos("panel.")
## [1] "pairs.panels" "panel.bar" "panel.conf"
## [4] "panel.cor" "panel.cor" "panel.density"
## [7] "panel.ellipse" "panel.fill" "panel.hist"
## [10] "panel.lines.its" "panel.lines.tis" "panel.lines.ts"
## [13] "panel.lines.zoo" "panel.minmax" "panel.pie"
## [16] "panel.plot.custom" "panel.plot.default" "panel.points.its"
## [19] "panel.points.tis" "panel.points.ts" "panel.points.zoo"
## [22] "panel.polygon.its" "panel.polygon.tis" "panel.polygon.ts"
## [25] "panel.polygon.zoo" "panel.pts" "panel.rect.its"
## [28] "panel.rect.tis" "panel.rect.ts" "panel.rect.zoo"
## [31] "panel.segments.its" "panel.segments.tis" "panel.segments.ts"
## [34] "panel.segments.zoo" "panel.shade" "panel.smooth"
## [37] "panel.text.its" "panel.text.tis" "panel.text.ts"
## [40] "panel.text.zoo" "panel.txt"
There are several panel functions that you can use. Using the apropos function you can list all of them:
On the other hand, the corrplot package is a very flexible package, which allows creating a wide variety of correlograms with a single function. The most common arguments of the main function are described below, but we recommend you to call ?corrplot for additional details. Note that for this function you need to pass the correlation matrix instead of the variables.
# install.packages("corrplot")
library(corrplot)
## corrplot 0.92 loaded
corrplot(cor(data), # Correlation matrix
method = "shade", # Correlation plot method
type = "full", # Correlation plot style (also "upper" and "lower")
diag = TRUE, # If TRUE (default), adds the diagonal
tl.col = "black", # Labels color
bg = "white", # Background color
title = "", # Main title
col = NULL) # Color palette
par(mfrow = c(2, 3))
# Circles
corrplot(cor(data), method = "circle",
title = "method = 'circle'",
tl.pos = "n", mar = c(2, 1, 3, 1))
# Squares
corrplot(cor(data), method = "square",
title = "method = 'square'",
tl.pos = "n", mar = c(2, 1, 3, 1))
# Ellipses
corrplot(cor(data), method = "ellipse",
title = "method = 'ellipse'",
tl.pos = "n", mar = c(2, 1, 3, 1))
# Correlations
corrplot(cor(data), method = "number",
title = "method = 'number'",
tl.pos = "n", mar = c(2, 1, 3, 1))
# Pie charts
corrplot(cor(data), method = "pie",
title = "method = 'pie'",
tl.pos = "n", mar = c(2, 1, 3, 1))
# Colors
corrplot(cor(data), method = "color",
title = "method = 'color'",
tl.pos = "n", mar = c(2, 1, 3, 1))
par(mfrow = c(1, 1))
This function also allows clustering the data. The clustering methods according to the documentation are: “original” (default order), “AOE” (angular order of eigenvectors), “FPC” (first principal component order), “hclust” (hierarchical clustering order) and “alphabet” (alphabetical order).
If you chose hierarchical clustering you can select between the following methods: “ward”, “ward.D”, “ward.D2”, “single”, “complete”, “average”, “mcquitty”, “median” and “centroid”. In this case, you can also create clustering with rectangles. An example is shown in the following block of code:
The argument method allows you to select between “circle” (default), “square”, “ellipse”, “number”, “shade”, “pie”, and “color”. As we previously used the shaded method, we show the remaining on the following plot:
corrplot(cor(data),
method = "circle",
order = "hclust", # Ordering method of the matrix
hclust.method = "ward.D", # If order = "hclust", is the cluster method to be used
addrect = 2, # If order = "hclust", number of cluster rectangles
rect.col = 3, # Color of the rectangles
rect.lwd = 3) # Line width of the rectangles
corrplot.mixed(cor(data),
lower = "number",
upper = "circle",
tl.col = "black")
Finally, the corrplot.mixed function of the package allows drawing
correlograms with mixed methods. In this case, you can mix the
correlation plot methods setting the desired to the lower (below
diagonal) and upper (above diagonal) arguments.