This file illustrates the step-by-step process of how I conducting data pre-processing.

Load packages and data

library(haven)
library(dplyr)
library(stargazer)
df_05 <- read_dta('v1_20230401_W5_merge_17.dta')

df <- subset(df_05, select = c('country', 'Year' ,'IDnumber', 'q1', 'q2', 'q3', 'q4',
                               'q5', 'q6', 'q7', 'q8', 'q9', 'q10', 'q11', 'q12', 
                               'q13', 'q14', 'q15', 'q16', 'q22', 'q46', 
                               'q47', 'q58', 'q60', 'q62', 'q64', 'q65', 'q67', 
                               'q98', 'q132', 'q133', 'q136', 'q166', 'q168', 
                               'q169', 'q170', 'q171', 'q172', 'q173', 
                               'SE2', 'SE3', 'SE5', 'SE5A', 'SE6', 'SE9', 'q134', 'w'))

df <- lapply(df, function(x) {
    if (class(x)[1] %in% c("haven_labelled", "vctrs_vctr")) {
        return(as.numeric(x))
    } else {
        return(x)
    }
})

df <- as.data.frame(df)

Overview the data

head(df)
##   country Year IDnumber q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16
## 1      19 2021     1001  2  2  3  2  2  1  3  4  4   6   4   6   4   6   4   6
## 2      19 2021     1002  3  2  3  3  2  2  3  4  4   6   4   6   3   6   3   6
## 3      19 2021     1003  1  1  1  2  1  1  1  3  1   3   3   4   1   3   1   4
## 4      19 2021     1004  3  3  2  3  3  3  6  3  4   4   6   4   1   4   6   6
## 5      19 2021     1005  2  1  1  1  1  1  1  3  4   4   3   4   1   4   3   3
## 6      19 2021     1006  2  2  2  3  2  3  1  3  4   4   3   4   3   4   3   4
##   q22 q46 q47 q58 q60 q62 q64 q65 q67 q98 q132 q133 q136 q166 q168 q169 q170
## 1   2   2   2   2   2   2   3   4   2   2    1    1    1    1    4    3    4
## 2   2   2   2   2   3   3   3   2   1   2    1    1    2    1    4    4    3
## 3   2   3   2   1   3   1   2   1   1   4    3    1    1    1    4    3    4
## 4   2   3   2   2   3   1   2   1   3   2    1    8    1    1    4    2    3
## 5   2   1   1   1   2   3   2   1   3   1    1    1    1    1    3    3    4
## 6   2   4   5   2   2   1   2   3   2   1    8    1    2    2    3    4    3
##   q171 q172 q173 SE2  SE3 SE5 SE5A  SE6 SE9 q134         w
## 1    3    4    2   1 1970   3    3 1902   1    4 0.7497833
## 2    3    3    2   1 1988   3    3 1902   1    2 0.7497833
## 3    4    3    2   1 1968   7    5   50   1    5 0.4763111
## 4    3    2    3   1 1956   5    5 1902   1    5 1.2464163
## 5    3    3    2   1 1989  10    9   50   2    2 0.5145350
## 6    4    2    1   2 1969   3    3   50   2    1 1.3147015

Drop data

We re-encode the data, where smaller numbers indicate higher preference for economic development, and larger numbers represent a stronger pursuit of democracy.

1. Drop those who choose decline to answer, can’t choose, missing and not understand the question

# Divided dataframe into China and non-China country (Data of China needs further manipulation)
df_china <- df %>% filter(country == 4) # 4941
df_singapore <- df %>% filter(country == 10) # 1002
df_not_china <- df %>% filter(country != 4 & country != 10) # 26024

# exclude columns of other countries
exclude_cols <- c("SE2", "SE3", "SE5", "SE6", "SE5A", "SE9","IDnumber", 'country', 'Year') # 排除的欄位
check_cols <- setdiff(names(df_not_china), exclude_cols) # 需要進行檢查的欄位

df_not_china <- subset(df_not_china, !rowSums(sapply(df_not_china[check_cols], function(x) x >= 7 | x < 0)) > 0) # 12364

# exclude columns of China (especially q7 and q16)
exclude_cols_china <- c("SE2", "SE3", "SE5",  "SE5A", "SE6", "SE9","IDnumber", 'country', 'q7', 'q16', 'Year') 
check_cols_china <- setdiff(names(df_china), exclude_cols_china) 

df_china <- subset(df_china, !rowSums(sapply(df_china[check_cols_china], function(x) x >= 7 | x < 0)) > 0) # 1896

# exclude columns of Singapore (especially q16)
exclude_cols_singapore <- c("SE2", "SE3", "SE5",  "SE5A", "SE6", "SE9","IDnumber", 'country', 'q16', 'Year') 
check_cols_singapore <- setdiff(names(df_singapore), exclude_cols_singapore) 

df_singapore <- subset(df_singapore, !rowSums(sapply(df_singapore[check_cols_singapore], function(x) x >= 7 | x < 0)) > 0) # 739

df <- rbind(df_china, df_not_china, df_singapore) # 14999

2. Delete Hong Kong, Cambodia, Australia, India, Bangladesh, Srilanka

countries_to_drop <- c(2, 12, 15, 18, 19, 20)
df <- subset(df, !(country %in% countries_to_drop))
summary(df)
##     country            Year         IDnumber             q1       
##  Min.   : 1.000   Min.   :2018   Min.   :      1   Min.   :1.000  
##  1st Qu.: 4.000   1st Qu.:2018   1st Qu.:    518   1st Qu.:2.000  
##  Median : 6.000   Median :2019   Median :   1035   Median :3.000  
##  Mean   : 7.084   Mean   :2019   Mean   : 375181   Mean   :2.905  
##  3rd Qu.:10.000   3rd Qu.:2019   3rd Qu.:   3642   3rd Qu.:4.000  
##  Max.   :14.000   Max.   :2020   Max.   :6169101   Max.   :5.000  
##        q2              q3              q4              q5       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :2.000   Median :3.000   Median :3.000  
##  Mean   :2.675   Mean   :2.456   Mean   :2.795   Mean   :2.653  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        q6              q7               q8              q9       
##  Min.   :1.000   Min.   :-1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.: 1.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median : 2.000   Median :3.000   Median :3.000  
##  Mean   :2.338   Mean   : 2.128   Mean   :2.885   Mean   :2.831  
##  3rd Qu.:3.000   3rd Qu.: 3.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   : 6.000   Max.   :6.000   Max.   :6.000  
##       q10             q11             q12             q13       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :2.000  
##  Mean   :3.117   Mean   :3.015   Mean   :2.823   Mean   :2.381  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##       q14             q15             q16              q22       
##  Min.   :1.000   Min.   :1.000   Min.   :-1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:-1.000   1st Qu.:1.000  
##  Median :3.000   Median :3.000   Median : 2.000   Median :2.000  
##  Mean   :2.693   Mean   :2.845   Mean   : 1.951   Mean   :1.684  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.: 3.000   3rd Qu.:2.000  
##  Max.   :6.000   Max.   :6.000   Max.   : 6.000   Max.   :3.000  
##       q46             q47             q58             q60       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :2.000  
##  Mean   :2.547   Mean   :2.419   Mean   :1.829   Mean   :2.159  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :5.000   Max.   :4.000   Max.   :4.000  
##       q62             q64             q65             q67       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :2.000   Median :2.000  
##  Mean   :2.574   Mean   :2.484   Mean   :1.942   Mean   :2.164  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       q98             q132            q133            q136      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :3.000   Median :1.000   Median :1.000   Median :2.000  
##  Mean   :2.504   Mean   :1.528   Mean   :1.219   Mean   :1.915  
##  3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:1.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :3.000   Max.   :2.000   Max.   :4.000  
##       q166            q168           q169            q170            q171      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.00   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :1.000   Median :3.00   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :1.502   Mean   :2.59   Mean   :2.597   Mean   :2.696   Mean   :2.662  
##  3rd Qu.:2.000   3rd Qu.:3.00   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.00   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       q172            q173            SE2              SE3      
##  Min.   :1.000   Min.   :1.000   Min.   :-1.000   Min.   :  -1  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.: 1.000   1st Qu.:1963  
##  Median :3.000   Median :3.000   Median : 1.000   Median :1977  
##  Mean   :2.793   Mean   :2.622   Mean   : 1.495   Mean   :1974  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.: 2.000   3rd Qu.:1989  
##  Max.   :4.000   Max.   :4.000   Max.   : 2.000   Max.   :2002  
##       SE5              SE5A            SE6            SE9         
##  Min.   : 1.000   Min.   :-1.00   Min.   :  -1   Min.   :-1.0000  
##  1st Qu.: 5.000   1st Qu.: 9.00   1st Qu.:  40   1st Qu.: 1.0000  
##  Median : 7.000   Median :12.00   Median :  60   Median : 1.0000  
##  Mean   : 6.579   Mean   :13.07   Mean   :3921   Mean   : 0.8939  
##  3rd Qu.: 8.000   3rd Qu.:14.00   3rd Qu.:9990   3rd Qu.: 2.0000  
##  Max.   :99.000   Max.   :99.00   Max.   :9999   Max.   : 9.0000  
##       q134             w         
##  Min.   :1.000   Min.   :0.3665  
##  1st Qu.:1.000   1st Qu.:0.7927  
##  Median :2.000   Median :1.0000  
##  Mean   :2.297   Mean   :1.0099  
##  3rd Qu.:3.000   3rd Qu.:1.1279  
##  Max.   :5.000   Max.   :4.7394

Re-code data

1. Re-code political trust (q7, q9, q10, q11, q12) with reverse coding

reverse_columns <- c('q7', 'q8', 'q9', 'q10', 'q11', 'q12', 'q13', 'q14', 'q15', 'q16')

# Define reverse function
reverse_factor_levels <- function(x) {
    x <- as.factor(x)
    levels(x) <- rev(levels(x))
    x <- as.numeric(as.character(x))
    return(x)
}

# Here we have to consider China & Singapore data again
df_china <- subset(df, country == 4)
df_singapore <- df %>% filter(country == 10)
df_not_china <- subset(df, country != 4 & country != 10) # 7592

summary(df_singapore)
##     country        Year         IDnumber             q1              q2       
##  Min.   :10   Min.   :2020   Min.   :  60023   Min.   :1.000   Min.   :1.000  
##  1st Qu.:10   1st Qu.:2020   1st Qu.:6020851   1st Qu.:2.000   1st Qu.:2.000  
##  Median :10   Median :2020   Median :6071001   Median :3.000   Median :2.000  
##  Mean   :10   Mean   :2020   Mean   :5099176   Mean   :2.926   Mean   :2.614  
##  3rd Qu.:10   3rd Qu.:2020   3rd Qu.:6115051   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :10   Max.   :2020   Max.   :6169101   Max.   :5.000   Max.   :5.000  
##        q3              q4              q5              q6       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :2.917   Mean   :2.804   Mean   :2.756   Mean   :2.693  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        q7              q8              q9             q10       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :2.562   Mean   :2.533   Mean   :2.566   Mean   :2.859  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##       q11             q12             q13             q14       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :2.000   Median :2.000  
##  Mean   :2.686   Mean   :2.512   Mean   :2.329   Mean   :2.271  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##       q15             q16          q22             q46             q47      
##  Min.   :1.000   Min.   :-1   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.000   1st Qu.:-1   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:1.00  
##  Median :3.000   Median :-1   Median :2.000   Median :2.000   Median :2.00  
##  Mean   :2.644   Mean   :-1   Mean   :1.727   Mean   :2.516   Mean   :2.41  
##  3rd Qu.:3.000   3rd Qu.:-1   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.00  
##  Max.   :6.000   Max.   :-1   Max.   :2.000   Max.   :4.000   Max.   :5.00  
##       q58             q60             q62             q64       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :3.000   Median :3.000  
##  Mean   :1.876   Mean   :2.133   Mean   :2.645   Mean   :2.804  
##  3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       q65             q67             q98             q132      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000  
##  Median :2.000   Median :2.000   Median :3.000   Median :1.000  
##  Mean   :2.054   Mean   :2.271   Mean   :2.725   Mean   :1.654  
##  3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :3.000  
##       q133            q136            q166            q168      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :1.000   Median :2.000   Median :1.000   Median :3.000  
##  Mean   :1.291   Mean   :1.881   Mean   :1.482   Mean   :2.804  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :2.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       q169            q170            q171            q172      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :2.855   Mean   :2.894   Mean   :2.894   Mean   :2.908  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       q173            SE2             SE3            SE5        
##  Min.   :1.000   Min.   :1.000   Min.   :1930   Min.   : 1.000  
##  1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1963   1st Qu.: 5.000  
##  Median :3.000   Median :1.000   Median :1976   Median : 7.000  
##  Mean   :2.609   Mean   :1.498   Mean   :1975   Mean   : 7.084  
##  3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:1988   3rd Qu.: 9.000  
##  Max.   :4.000   Max.   :2.000   Max.   :1999   Max.   :10.000  
##       SE5A            SE6            SE9             q134      
##  Min.   : 2.00   Min.   :  10   Min.   :1.000   Min.   :1.000  
##  1st Qu.:10.00   1st Qu.:  40   1st Qu.:1.000   1st Qu.:1.000  
##  Median :14.00   Median :  50   Median :1.000   Median :2.000  
##  Mean   :13.57   Mean   :1672   Mean   :1.321   Mean   :2.069  
##  3rd Qu.:16.00   3rd Qu.:  60   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :99.00   Max.   :9990   Max.   :2.000   Max.   :5.000  
##        w         
##  Min.   :0.4440  
##  1st Qu.:0.9072  
##  Median :1.0443  
##  Mean   :0.9999  
##  3rd Qu.:1.1886  
##  Max.   :1.7350
# 非中國的部分,所有需要反轉的欄位
df_not_china[reverse_columns] <- lapply(df_not_china[reverse_columns], reverse_factor_levels)

# 中國的部分,除了 'q7', 'q16' 以外的需要反轉的欄位
reverse_columns_china <- setdiff(reverse_columns, c('q7', 'q16'))
df_china$q13 <- factor(df_china$q13, levels = 1:6) # 確保 "q13" 欄位的 levels 為 1 到 6
df_china[reverse_columns_china] <- lapply(df_china[reverse_columns_china], reverse_factor_levels)

# 新加坡的部分,除了 q16' 以外的需要反轉的欄位
reverse_columns_singapore <- setdiff(reverse_columns, c('q16'))
df_china[reverse_columns_singapore] <- lapply(df_china[reverse_columns_singapore], reverse_factor_levels)

# 對非中國的部分計算 trust 和 trust_all
df_not_china <- df_not_china %>% mutate(trust = ((q7 + q9 + q10 + q11 + q12) / 5))
df_not_china <- df_not_china %>% mutate(trust_all = (q7 + q8 + q9 + q10 + q11 + q12 + q13 + q14 + q15 + q16) / 10)

# 對中國的部分計算 trust 和 trust_all,這裡我們將 'q7', 'q16' 排除在外
df_china <- df_china %>% mutate(trust = ((q9 + q10 + q11 + q12) / 4)) # 扣掉 q7
df_china <- df_china %>% mutate(trust_all = (q8 + q9 + q10 + q11 + q12 + q13 + q14 + q15) / 8) # 扣掉 q7 和 q16

# 對新加坡的部分計算 trust 和 trust_all,這裡我們將 'q16' 排除在外
df_singapore <- df_singapore %>% mutate(trust = ((q7 + q9 + q10 + q11 + q12) / 5)) 
df_singapore <- df_singapore %>% mutate(trust_all = (q7 + q8 + q9 + q10 + q11 + q12 + q13 + q14 + q15) / 9) # 扣掉 q16

df <- rbind(df_china, df_not_china, df_singapore) # 10227

2. Re-code perception of democratic effectiveness

df$q132 <- as.numeric(recode(df$q132, `1` = 3, `2` = 1, `3` = 2))
df$q133 <- 3 - df$q133
df$q136 <- ifelse(df$q136 %in% c(3, 4), 1, 2)

target_columns <- c('q168', 'q169', 'q170', 'q171', 'q172', 'q173')
df[target_columns] <- lapply(df[target_columns], function(x) {
    x <- replace(x, x == 1 | x == 2, 1)
    x <- replace(x, x == 3 | x == 4, 2)
    x <- as.numeric(as.character(x))
    x
})

df <- df %>% mutate(effectiveness = (q132 + q133 + q136 + q168 + q169 + q170 + 
                         q171 + q172 + q173) / 9)

3. Re-code economic assessment

reverse_columns <- c('q1', 'q2', 'q3', 'q4', 'q5', 'q6')
df[reverse_columns] <- lapply(df[reverse_columns], reverse_factor_levels)

df <- df %>% mutate(eco_assess = (q1 + q2 + q3 + q4 + q5 + q6) / 6)

4. Re-code social value

df <- df %>% mutate(social_value = (q58 + q60 + q62 + q64 + q65 + q67) / 6)

5. Re-code social status

df$q22 <-ifelse(df$q22 %in% c(2), 0, 1) # q22 -> (not trust people = 0)
df$SE2 <- ifelse(df$SE2 %in% c(2), 0, 1) # SE2 -> (female = 0)
df$SE9 <- ifelse(df$SE9 %in% c(2), 0, 1) # SE2 -> (not employed = 0)
df <- df %>% mutate(age = (Year - SE3 + 1)) # SE3 -> age

revalue_map <- function(x) {
    recode_map <- setNames(c(0, 1, 2, 3), c(4, 3, 2, 1))
    x <- recode_map[as.character(x)]
    x <- as.numeric(x)
    return(x)
}

reverse_columns <- c('q46', 'q166')
df[reverse_columns] <- lapply(df[reverse_columns], revalue_map)

recode_map <- setNames(c(0, 1, 2, 3, 4), c(5, 4, 3, 2, 1))
df$q47 <- recode_map[as.factor(df$q47)] # adjust 'q47'

df$SE5 <- as.factor(df$SE5)
df$SE6 <- as.factor(df$SE6)

6. Set up dependent variable (re-code to binary)

# DV is re-code with (1, 2) -> 0, (3, 4) -> 1
df$q134_without <- ifelse(df$q134 %in% c(1, 2), 0, ifelse(df$q134 %in% c(5), NA, 1))

# DV in df is re-code with (1, 2) -> 0, (3, 4, 5) -> 1
df$q134_with <- ifelse(df$q134 %in% c(1, 2), 0, 1)

6. save data

summary(df)
##     country            Year         IDnumber             q1       
##  Min.   : 1.000   Min.   :2018   Min.   :      1   Min.   :1.000  
##  1st Qu.: 4.000   1st Qu.:2018   1st Qu.:    518   1st Qu.:2.000  
##  Median : 6.000   Median :2019   Median :   1035   Median :3.000  
##  Mean   : 7.084   Mean   :2019   Mean   : 375181   Mean   :3.095  
##  3rd Qu.:10.000   3rd Qu.:2019   3rd Qu.:   3642   3rd Qu.:4.000  
##  Max.   :14.000   Max.   :2020   Max.   :6169101   Max.   :5.000  
##                                                                   
##        q2              q3              q4              q5       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :3.000   Median :4.000   Median :3.000   Median :3.000  
##  Mean   :3.325   Mean   :3.544   Mean   :3.205   Mean   :3.347  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##                                                                 
##        q6              q7               q8              q9       
##  Min.   :1.000   Min.   :-1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.: 2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :4.000   Median : 4.000   Median :3.000   Median :3.000  
##  Mean   :3.662   Mean   : 3.068   Mean   :3.416   Mean   :3.335  
##  3rd Qu.:4.000   3rd Qu.: 5.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   : 6.000   Max.   :6.000   Max.   :6.000  
##                                                                  
##       q10             q11             q12             q13       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :3.000   Median :3.000   Median :4.000   Median :4.000  
##  Mean   :3.064   Mean   :3.184   Mean   :3.694   Mean   :3.927  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :6.000   Max.   :6.000   Max.   :6.000  
##                                                                 
##       q14             q15             q16             q22        
##  Min.   :1.000   Min.   :1.000   Min.   :-1.00   Min.   :0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:-1.00   1st Qu.:0.0000  
##  Median :4.000   Median :4.000   Median : 4.00   Median :0.0000  
##  Mean   :3.595   Mean   :3.669   Mean   : 2.73   Mean   :0.3248  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.: 5.00   3rd Qu.:1.0000  
##  Max.   :6.000   Max.   :6.000   Max.   : 6.00   Max.   :1.0000  
##                                                                  
##       q46             q47             q58             q60       
##  Min.   :0.000   Min.   :0.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :2.000   Median :1.000   Median :2.000   Median :2.000  
##  Mean   :1.453   Mean   :1.419   Mean   :1.829   Mean   :2.159  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :3.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##                                                                 
##       q62             q64             q65             q67       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :2.000   Median :2.000  
##  Mean   :2.574   Mean   :2.484   Mean   :1.942   Mean   :2.164  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##                                                                 
##       q98             q132            q133            q136      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :2.000   Median :2.000  
##  Mean   :2.504   Mean   :2.419   Mean   :1.781   Mean   :1.892  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :4.000   Max.   :3.000   Max.   :2.000   Max.   :2.000  
##                                                                 
##       q166            q168           q169            q170           q171      
##  Min.   :0.000   Min.   :1.00   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:1.00   1st Qu.:1.000   1st Qu.:1.00   1st Qu.:1.000  
##  Median :3.000   Median :2.00   Median :2.000   Median :2.00   Median :2.000  
##  Mean   :2.498   Mean   :1.55   Mean   :1.553   Mean   :1.63   Mean   :1.603  
##  3rd Qu.:3.000   3rd Qu.:2.00   3rd Qu.:2.000   3rd Qu.:2.00   3rd Qu.:2.000  
##  Max.   :3.000   Max.   :2.00   Max.   :2.000   Max.   :2.00   Max.   :2.000  
##                                                                               
##       q172            q173            SE2              SE3            SE5      
##  Min.   :1.000   Min.   :1.000   Min.   :0.0000   Min.   :  -1   7      :3211  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:1963   9      :2287  
##  Median :2.000   Median :2.000   Median :1.0000   Median :1977   5      :1213  
##  Mean   :1.678   Mean   :1.587   Mean   :0.5041   Mean   :1974   3      : 982  
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:1989   8      : 772  
##  Max.   :2.000   Max.   :2.000   Max.   :1.0000   Max.   :2002   6      : 682  
##                                                                  (Other):1080  
##       SE5A            SE6            SE9             q134      
##  Min.   :-1.00   9990   :3280   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 9.00   60     :2483   1st Qu.:0.000   1st Qu.:1.000  
##  Median :12.00   40     :1476   Median :1.000   Median :2.000  
##  Mean   :13.07   10     : 985   Mean   :0.739   Mean   :2.297  
##  3rd Qu.:14.00   9999   : 707   3rd Qu.:1.000   3rd Qu.:3.000  
##  Max.   :99.00   20     : 497   Max.   :1.000   Max.   :5.000  
##                  (Other): 799                                  
##        w              trust         trust_all     effectiveness  
##  Min.   :0.3665   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:0.7927   1st Qu.:2.400   1st Qu.:2.600   1st Qu.:1.556  
##  Median :1.0000   Median :3.400   Median :3.600   Median :1.778  
##  Mean   :1.0099   Mean   :3.375   Mean   :3.508   Mean   :1.744  
##  3rd Qu.:1.1279   3rd Qu.:4.400   3rd Qu.:4.400   3rd Qu.:2.000  
##  Max.   :4.7394   Max.   :6.000   Max.   :6.000   Max.   :2.111  
##                                                                  
##    eco_assess     social_value        age           q134_without   
##  Min.   :1.000   Min.   :1.000   Min.   :  18.00   Min.   :0.0000  
##  1st Qu.:2.833   1st Qu.:1.833   1st Qu.:  31.00   1st Qu.:0.0000  
##  Median :3.500   Median :2.167   Median :  43.00   Median :0.0000  
##  Mean   :3.363   Mean   :2.192   Mean   :  45.73   Mean   :0.2724  
##  3rd Qu.:3.833   3rd Qu.:2.500   3rd Qu.:  57.00   3rd Qu.:1.0000  
##  Max.   :5.000   Max.   :4.000   Max.   :2020.00   Max.   :1.0000  
##                                                    NA's   :1072    
##    q134_with     
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.3487  
##  3rd Qu.:1.0000  
##  Max.   :1.0000  
## 
# write.csv(df, "w5.csv", row.names = FALSE)
# save(df, file = "w5.rda")

6. Logit model

1. The original model

logit.fit1 <- glm(q134_with ~ trust + effectiveness + eco_assess + social_value 
                 + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + SE2 + SE3, 
                 data = df, family = binomial())

stargazer(logit.fit1, type  = 'text',title = "Logistic Regression Results", 
          notes = 'Baseline model', style = 'default')
## 
## Logistic Regression Results
## =============================================
##                       Dependent variable:    
##                   ---------------------------
##                            q134_with         
## ---------------------------------------------
## trust                       0.045**          
##                             (0.023)          
##                                              
## effectiveness              1.768***          
##                             (0.087)          
##                                              
## eco_assess                 0.205***          
##                             (0.036)          
##                                              
## social_value               0.164***          
##                             (0.052)          
##                                              
## q46                        0.150***          
##                             (0.031)          
##                                              
## q47                          0.013           
##                             (0.019)          
##                                              
## q166                         0.040           
##                             (0.039)          
##                                              
## q22                         0.125**          
##                             (0.049)          
##                                              
## SE9                         -0.040           
##                             (0.055)          
##                                              
## SE52                        -0.029           
##                             (0.198)          
##                                              
## SE53                        -0.240           
##                             (0.177)          
##                                              
## SE54                        -0.368*          
##                             (0.216)          
##                                              
## SE55                        -0.245           
##                             (0.174)          
##                                              
## SE56                        0.0004           
##                             (0.184)          
##                                              
## SE57                        -0.281*          
##                             (0.168)          
##                                              
## SE58                        -0.183           
##                             (0.183)          
##                                              
## SE59                        -0.302*          
##                             (0.170)          
##                                              
## SE510                        0.083           
##                             (0.214)          
##                                              
## SE599                       -0.449           
##                             (0.943)          
##                                              
## SE60                        3.503**          
##                             (1.677)          
##                                              
## SE61                         0.640           
##                             (1.137)          
##                                              
## SE610                        1.099           
##                             (1.129)          
##                                              
## SE620                        1.097           
##                             (1.131)          
##                                              
## SE628                       13.693           
##                            (187.038)         
##                                              
## SE630                       -10.246          
##                            (208.979)         
##                                              
## SE640                        0.611           
##                             (1.128)          
##                                              
## SE641                        1.216           
##                             (1.809)          
##                                              
## SE642                       2.365*           
##                             (1.372)          
##                                              
## SE650                        0.874           
##                             (1.147)          
##                                              
## SE660                        1.392           
##                             (1.127)          
##                                              
## SE661                        2.244           
##                             (1.497)          
##                                              
## SE670                       -0.093           
##                             (1.567)          
##                                              
## SE671                        0.126           
##                             (1.638)          
##                                              
## SE672                        0.731           
##                             (1.217)          
##                                              
## SE673                        1.034           
##                             (1.405)          
##                                              
## SE674                       -0.214           
##                             (1.244)          
##                                              
## SE675                        1.599           
##                             (1.189)          
##                                              
## SE676                        0.361           
##                             (1.149)          
##                                              
## SE677                       -0.389           
##                             (1.548)          
##                                              
## SE680                        1.499           
##                             (1.160)          
##                                              
## SE6201                       1.628           
##                             (1.839)          
##                                              
## SE6202                      3.253**          
##                             (1.596)          
##                                              
## SE69990                      1.474           
##                             (1.127)          
##                                              
## SE69999                     1.976*           
##                             (1.130)          
##                                              
## SE2                         0.107**          
##                             (0.045)          
##                                              
## SE3                          0.001           
##                             (0.001)          
##                                              
## Constant                   -7.993***         
##                             (1.630)          
##                                              
## ---------------------------------------------
## Observations                10,227           
## Log Likelihood            -6,062.432         
## Akaike Inf. Crit.         12,218.860         
## =============================================
## Note:             *p<0.1; **p<0.05; ***p<0.01
##                                Baseline model

2. Adjusted model on trust

logit.fit2 <- glm(q134_with ~ trust_all + effectiveness + eco_assess + social_value 
                 + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + SE2 + SE3, 
                 data = df, family = binomial())

stargazer(logit.fit2, type = "text", title = "Logistic Regression Results", 
          notes = 'All trust model')
## 
## Logistic Regression Results
## =============================================
##                       Dependent variable:    
##                   ---------------------------
##                            q134_with         
## ---------------------------------------------
## trust_all                    0.018           
##                             (0.024)          
##                                              
## effectiveness              1.766***          
##                             (0.087)          
##                                              
## eco_assess                 0.204***          
##                             (0.036)          
##                                              
## social_value               0.154***          
##                             (0.052)          
##                                              
## q46                        0.152***          
##                             (0.031)          
##                                              
## q47                          0.014           
##                             (0.019)          
##                                              
## q166                         0.040           
##                             (0.039)          
##                                              
## q22                         0.122**          
##                             (0.049)          
##                                              
## SE9                         -0.046           
##                             (0.055)          
##                                              
## SE52                        -0.027           
##                             (0.198)          
##                                              
## SE53                        -0.232           
##                             (0.177)          
##                                              
## SE54                        -0.372*          
##                             (0.216)          
##                                              
## SE55                        -0.247           
##                             (0.175)          
##                                              
## SE56                         0.013           
##                             (0.184)          
##                                              
## SE57                        -0.280*          
##                             (0.168)          
##                                              
## SE58                        -0.178           
##                             (0.183)          
##                                              
## SE59                        -0.302*          
##                             (0.170)          
##                                              
## SE510                        0.080           
##                             (0.214)          
##                                              
## SE599                       -0.457           
##                             (0.943)          
##                                              
## SE60                        3.465**          
##                             (1.672)          
##                                              
## SE61                         0.613           
##                             (1.137)          
##                                              
## SE610                        1.089           
##                             (1.129)          
##                                              
## SE620                        1.068           
##                             (1.131)          
##                                              
## SE628                       13.629           
##                            (187.086)         
##                                              
## SE630                       -10.289          
##                            (209.567)         
##                                              
## SE640                        0.599           
##                             (1.128)          
##                                              
## SE641                        1.203           
##                             (1.809)          
##                                              
## SE642                       2.329*           
##                             (1.373)          
##                                              
## SE650                        0.851           
##                             (1.147)          
##                                              
## SE660                        1.374           
##                             (1.127)          
##                                              
## SE661                        2.187           
##                             (1.497)          
##                                              
## SE670                       -0.085           
##                             (1.565)          
##                                              
## SE671                        0.095           
##                             (1.637)          
##                                              
## SE672                        0.722           
##                             (1.217)          
##                                              
## SE673                        1.025           
##                             (1.404)          
##                                              
## SE674                       -0.215           
##                             (1.244)          
##                                              
## SE675                        1.568           
##                             (1.189)          
##                                              
## SE676                        0.323           
##                             (1.149)          
##                                              
## SE677                       -0.416           
##                             (1.546)          
##                                              
## SE680                        1.469           
##                             (1.160)          
##                                              
## SE6201                       1.623           
##                             (1.841)          
##                                              
## SE6202                      3.243**          
##                             (1.596)          
##                                              
## SE69990                      1.424           
##                             (1.127)          
##                                              
## SE69999                     1.979*           
##                             (1.129)          
##                                              
## SE2                         0.109**          
##                             (0.045)          
##                                              
## SE3                          0.001           
##                             (0.001)          
##                                              
## Constant                   -7.891***         
##                             (1.639)          
##                                              
## ---------------------------------------------
## Observations                10,227           
## Log Likelihood            -6,064.110         
## Akaike Inf. Crit.         12,222.220         
## =============================================
## Note:             *p<0.1; **p<0.05; ***p<0.01
##                               All trust model
logit.fit3 <- glm(q134_without ~ trust_all + effectiveness + eco_assess + social_value 
                 + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + SE2 + SE3, 
                 data = df, family = binomial())

summary(logit.fit3)
## 
## Call:
## glm(formula = q134_without ~ trust_all + effectiveness + eco_assess + 
##     social_value + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + 
##     SE2 + SE3, family = binomial(), data = df)
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -13.662264   3.594182  -3.801 0.000144 ***
## trust_all       0.012160   0.026825   0.453 0.650342    
## effectiveness   1.475472   0.095776  15.406  < 2e-16 ***
## eco_assess      0.218218   0.041352   5.277 1.31e-07 ***
## social_value    0.148015   0.057776   2.562 0.010411 *  
## q46             0.236304   0.034483   6.853 7.25e-12 ***
## q47             0.012848   0.021588   0.595 0.551743    
## q166            0.041720   0.042881   0.973 0.330594    
## q22             0.143231   0.054138   2.646 0.008153 ** 
## SE9            -0.110830   0.060503  -1.832 0.066980 .  
## SE52            0.285426   0.231272   1.234 0.217145    
## SE53            0.050138   0.211996   0.237 0.813041    
## SE54           -0.285038   0.259083  -1.100 0.271254    
## SE55           -0.054988   0.211513  -0.260 0.794884    
## SE56            0.048442   0.222560   0.218 0.827695    
## SE57           -0.070516   0.205468  -0.343 0.731452    
## SE58            0.071693   0.220774   0.325 0.745383    
## SE59           -0.077400   0.208735  -0.371 0.710781    
## SE510           0.448229   0.247548   1.811 0.070192 .  
## SE599          -0.441058   1.180535  -0.374 0.708696    
## SE60            3.062748   1.821625   1.681 0.092699 .  
## SE61            0.514317   1.137266   0.452 0.651096    
## SE610           0.813305   1.129399   0.720 0.471450    
## SE620           0.741331   1.131445   0.655 0.512335    
## SE628          13.694479 229.552074   0.060 0.952429    
## SE630         -10.390412 210.713374  -0.049 0.960672    
## SE640           0.313394   1.128782   0.278 0.781289    
## SE641           1.155824   1.809588   0.639 0.523003    
## SE642           2.282241   1.374861   1.660 0.096919 .  
## SE650           0.658163   1.149417   0.573 0.566912    
## SE660           1.038468   1.127155   0.921 0.356885    
## SE661           2.224971   1.492449   1.491 0.136009    
## SE670          -0.169023   1.571605  -0.108 0.914354    
## SE671         -11.735924 181.686054  -0.065 0.948497    
## SE672           0.602499   1.215956   0.495 0.620251    
## SE673           0.949015   1.401863   0.677 0.498427    
## SE674          -0.362842   1.243951  -0.292 0.770527    
## SE675           1.518661   1.188123   1.278 0.201178    
## SE676           0.132123   1.152167   0.115 0.908704    
## SE677          -0.434975   1.544738  -0.282 0.778262    
## SE680           1.069311   1.167952   0.916 0.359906    
## SE6201          1.676391   1.813473   0.924 0.355274    
## SE6202          2.973331   1.630159   1.824 0.068159 .  
## SE69990         0.972345   1.127308   0.863 0.388392    
## SE69999         1.352663   1.130335   1.197 0.231426    
## SE2             0.135221   0.050359   2.685 0.007249 ** 
## SE3             0.003857   0.001765   2.185 0.028860 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 10723  on 9154  degrees of freedom
## Residual deviance: 10049  on 9108  degrees of freedom
##   (1072 observations deleted due to missingness)
## AIC: 10143
## 
## Number of Fisher Scoring iterations: 11

3. Taiwan

df_taiwan <- df %>% filter(country == 7)
logit.taiwan <- glm(q134_with ~ trust + effectiveness + eco_assess + social_value 
                 + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + SE2 + SE3, 
                 data = df_taiwan, family = binomial())

summary(logit.taiwan)
## 
## Call:
## glm(formula = q134_with ~ trust + effectiveness + eco_assess + 
##     social_value + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + 
##     SE2 + SE3, family = binomial(), data = df_taiwan)
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -31.798454  15.976243  -1.990   0.0466 *  
## trust           0.370776   0.158467   2.340   0.0193 *  
## effectiveness   2.120331   0.395044   5.367 7.99e-08 ***
## eco_assess      0.293851   0.212906   1.380   0.1675    
## social_value    0.770880   0.305622   2.522   0.0117 *  
## q46             0.232900   0.147235   1.582   0.1137    
## q47            -0.034521   0.084494  -0.409   0.6829    
## q166            0.262436   0.177919   1.475   0.1402    
## q22            -0.067578   0.209341  -0.323   0.7468    
## SE9            -0.313529   0.228573  -1.372   0.1702    
## SE52           -0.958445   1.287507  -0.744   0.4566    
## SE53           -2.795773   1.117503  -2.502   0.0124 *  
## SE54           -1.449779   1.563995  -0.927   0.3539    
## SE55           -2.288218   1.058910  -2.161   0.0307 *  
## SE56           -1.768343   1.155480  -1.530   0.1259    
## SE57           -2.244534   1.008175  -2.226   0.0260 *  
## SE58           -2.191096   1.021913  -2.144   0.0320 *  
## SE59           -1.980338   1.015477  -1.950   0.0512 .  
## SE510          -1.491070   1.037001  -1.438   0.1505    
## SE610           0.812492   0.894323   0.908   0.3636    
## SE620           0.456626   0.383760   1.190   0.2341    
## SE630         -11.262063 882.743596  -0.013   0.9898    
## SE660           0.017816   0.287265   0.062   0.9505    
## SE661           3.120275   1.415847   2.204   0.0275 *  
## SE676          -0.113988   0.343637  -0.332   0.7401    
## SE677          -0.882852   1.191394  -0.741   0.4587    
## SE680           0.341008   0.972133   0.351   0.7258    
## SE69990         0.185350   0.286278   0.647   0.5173    
## SE69999        14.992481 882.896185   0.017   0.9865    
## SE2             0.298034   0.211084   1.412   0.1580    
## SE3             0.012165   0.008307   1.464   0.1431    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 782.12  on 802  degrees of freedom
## Residual deviance: 647.62  on 772  degrees of freedom
## AIC: 709.62
## 
## Number of Fisher Scoring iterations: 13

4. Japan

df_japan <- df %>% filter(country == 1)
logit.japan <- glm(q134_with ~ trust + effectiveness + eco_assess + social_value 
                 + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + SE2 + SE3, 
                 data = df_japan, family = binomial())

summary(logit.japan)
## 
## Call:
## glm(formula = q134_with ~ trust + effectiveness + eco_assess + 
##     social_value + q46 + q47 + q166 + q22 + SE9 + SE5 + SE6 + 
##     SE2 + SE3, family = binomial(), data = df_japan)
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    3.501e+00  9.724e+02   0.004   0.9971    
## trust         -2.481e-01  1.416e-01  -1.752   0.0798 .  
## effectiveness  2.854e+00  4.689e-01   6.088 1.14e-09 ***
## eco_assess    -1.179e-01  2.081e-01  -0.566   0.5712    
## social_value  -8.265e-02  2.651e-01  -0.312   0.7552    
## q46            3.210e-01  1.520e-01   2.112   0.0347 *  
## q47            3.366e-02  1.069e-01   0.315   0.7528    
## q166          -3.069e-01  1.574e-01  -1.950   0.0512 .  
## q22            3.153e-01  1.960e-01   1.608   0.1077    
## SE9            1.569e-01  2.329e-01   0.674   0.5005    
## SE53          -1.473e+01  9.723e+02  -0.015   0.9879    
## SE56          -1.472e+01  9.723e+02  -0.015   0.9879    
## SE57          -1.496e+01  9.723e+02  -0.015   0.9877    
## SE58          -1.448e+01  9.723e+02  -0.015   0.9881    
## SE59          -1.452e+01  9.723e+02  -0.015   0.9881    
## SE510         -1.444e+01  9.723e+02  -0.015   0.9881    
## SE610          1.948e+00  1.509e+00   1.291   0.1966    
## SE620          9.587e-01  2.189e+00   0.438   0.6614    
## SE630         -1.452e+01  1.455e+03  -0.010   0.9920    
## SE640         -1.440e+01  1.455e+03  -0.010   0.9921    
## SE660          1.773e+00  1.156e+00   1.534   0.1250    
## SE675          1.467e+00  1.247e+00   1.176   0.2395    
## SE680          1.021e+00  1.283e+00   0.796   0.4261    
## SE69990        1.724e+00  1.153e+00   1.495   0.1349    
## SE2           -1.413e-02  2.049e-01  -0.069   0.9450    
## SE3            2.893e-03  7.940e-03   0.364   0.7156    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 768.70  on 557  degrees of freedom
## Residual deviance: 676.66  on 532  degrees of freedom
## AIC: 728.66
## 
## Number of Fisher Scoring iterations: 14