library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
| price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft |
|---|---|---|---|---|---|---|---|---|---|
| 300 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 |
| 370 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 |
| 191 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 |
| 195 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 |
| 373 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 |
library(stargazer)
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer(modelo_estimado, title = "Ejercicio de pruebas de Multicolinealidad", type = "text")
##
## Ejercicio de pruebas de Multicolinealidad
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(stargazer)
X_mat<-model.matrix(modelo_estimado)
stargazer(head(X_mat, n=6), type = "text")
##
## =================================
## (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1 1 6,126 2,438 4
## 2 1 9,903 2,076 3
## 3 1 5,200 1,374 3
## 4 1 4,600 1,448 3
## 5 1 6,095 2,514 4
## 6 1 8,566 2,754 5
## ---------------------------------
XX_mattrix<-t(X_mat)%*%X_mat
stargazer(XX_mattrix, type = "text")
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(XX_mattrix))))
stargazer(Sn, type = "text")
##
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
library(stargazer)
XX_norm<-(Sn%*%XX_mattrix)%*%Sn
stargazer(XX_norm, type = "text", digits = 4)
##
## ===========================
## 1 0.6655 0.9617 0.9736
## 0.6655 1 0.6776 0.6712
## 0.9617 0.6776 1 0.9696
## 0.9736 0.6712 0.9696 1
## ---------------------------
library(stargazer)
#autovalores
lambdas<-eigen(XX_norm, symmetric = TRUE)
stargazer(lambdas$values, type = "text")
##
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
K<-sqrt(max(lambdas$values)/min(lambdas$values))
print(K)
## [1] 11.86778
library(mctest)
X_mat<-model.matrix(modelo_estimado)
mctest(mod = modelo_estimado)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
library(olsrr)
ols_eigen_cindex(model= modelo_estimado)
| Eigenvalue | Condition Index | intercept | lotsize | sqrft | bdrms |
|---|---|---|---|---|---|
| 3.4815860 | 1.000000 | 0.0036630 | 0.0277803 | 0.0041563 | 0.0029396 |
| 0.4551838 | 2.765637 | 0.0068007 | 0.9670803 | 0.0060673 | 0.0050964 |
| 0.0385108 | 9.508174 | 0.4725814 | 0.0051085 | 0.8160793 | 0.0169382 |
| 0.0247194 | 11.867781 | 0.5169548 | 0.0000309 | 0.1736971 | 0.9750259 |
library(stargazer)
Zn<-scale(X_mat[,-1])
stargazer(head(Zn, n=6), type = "text")
##
## =======================
## lotsize sqrft bdrms
## -----------------------
## 1 -0.284 0.735 0.513
## 2 0.087 0.108 -0.675
## 3 -0.375 -1.108 -0.675
## 4 -0.434 -0.980 -0.675
## 5 -0.287 0.867 0.513
## 6 -0.045 1.283 1.702
## -----------------------
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R, type = "text", digits = 4)
##
## =============================
## lotsize sqrft bdrms
## -----------------------------
## lotsize 1 0.1838 0.1363
## sqrft 0.1838 1 0.5315
## bdrms 0.1363 0.5315 1
## -----------------------------
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931
m<-ncol(X_mat[,-1])
n<-nrow(X_mat[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
gl<-m*(m-1)/2
VC<-qchisq(p=0.95,df=gl)
print(VC)
## [1] 7.814728
library(mctest)
mctest::omcdiag(mod = modelo_estimado)
##
## Call:
## mctest::omcdiag(mod = modelo_estimado)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
library(psych)
FG_test<-cortest.bartlett(X_mat[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
library(fastGraph)
alphan_sig<-0.05
chi_FG<- -(n-1-(2*m+5)/6)*log(determinante_R)
gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
shadeDist(chi_FG,ddist = "dchisq",
parm1 = gl,
lower.tail = FALSE, xmin = 0,
sub=paste("VC:", round(VC,2)," ","chi_FG", round(chi_FG,2)))
library(dplyr)
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores) %>% mutate(VIF=1/(1-R.cuadrado.regresores))
| R.cuadrado.regresores | VIF |
|---|---|
| 0.0 | 1 |
| 0.5 | 2 |
| 0.8 | 5 |
| 0.9 | 10 |
print(R)
## lotsize sqrft bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft 0.1838422 1.0000000 0.5314736
## bdrms 0.1363256 0.5314736 1.0000000
inversa_R<-solve(R)
print(inversa_R)
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
VIFs<-diag(inversa_R)
print(VIFs)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(performance)
VIFs<-multicollinearity(x = modelo_estimado,verbose = FALSE)
VIFs
| Term | VIF | VIF_CI_low | VIF_CI_high | SE_factor | Tolerance | Tolerance_CI_low | Tolerance_CI_high |
|---|---|---|---|---|---|---|---|
| lotsize | 1.037211 | 1.000138 | 11.019148 | 1.018436 | 0.9641236 | 0.0907511 | 0.9998618 |
| sqrft | 1.418654 | 1.178849 | 1.979999 | 1.191073 | 0.7048934 | 0.5050508 | 0.8482854 |
| bdrms | 1.396663 | 1.165161 | 1.952659 | 1.181805 | 0.7159922 | 0.5121221 | 0.8582509 |
library(car)
VIFs_car<-vif(modelo_estimado)
print(VIFs_car)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(mod = modelo_estimado, vif = 2)