library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630
  1. estime el siguiente modelo.
library(stargazer)
estimacion_modelo<-lm(price ~ lotsize + sqrft + bdrms,data = hprice1)
stargazer(estimacion_modelo,title = "Modelo Ejemplo", type = "text")
## 
## Modelo Ejemplo
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                      0.002***          
##                               (0.001)          
##                                                
## sqrft                        0.123***          
##                               (0.013)          
##                                                
## bdrms                         13.853           
##                               (9.010)          
##                                                
## Constant                      -21.770          
##                              (29.475)          
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                             0.672           
## Adjusted R2                    0.661           
## Residual Std. Error      59.833 (df = 84)      
## F Statistic           57.460*** (df = 3; 84)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
  1. Verifique si hay evidencia de la independencia de los regresores (no colinealidad), a través de:

a) Indice de condición.

library(stargazer)
x_matriz<-model.matrix(estimacion_modelo)
stargazer(head(x_matriz),type = "text",title = "matriz x")
## 
## matriz x
## =================================
##   (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1      1       6,126  2,438   4  
## 2      1       9,903  2,076   3  
## 3      1       5,200  1,374   3  
## 4      1       4,600  1,448   3  
## 5      1       6,095  2,514   4  
## 6      1       8,566  2,754   5  
## ---------------------------------
xx_matriz<- t(x_matriz)%*%x_matriz
stargazer(xx_matriz,type = "text",title = "matriz xtx")
## 
## matriz xtx
## ==============================================================
##             (Intercept)    lotsize         sqrft       bdrms  
## --------------------------------------------------------------
## (Intercept)     88         793,748        177,205       314   
## lotsize       793,748   16,165,159,010 1,692,290,257 2,933,767
## sqrft         177,205   1,692,290,257   385,820,561   654,755 
## bdrms           314       2,933,767       654,755      1,182  
## --------------------------------------------------------------
library(stargazer)
options(scipen = 999)
sn<-solve(diag(sqrt(diag(xx_matriz))))
stargazer(sn,type = "text",title = "diagonal xx")
## 
## diagonal xx
## ==========================
## 0.107    0      0      0  
## 0     0.00001   0      0  
## 0        0    0.0001   0  
## 0        0      0    0.029
## --------------------------
library(stargazer)
xx_normalizada<-(sn%*%xx_matriz)%*%sn
stargazer(xx_normalizada,type = "text",
          digits = 4,
          title = "XX normalizada",
          align = TRUE,
          notes = "Elaboracion propia")
## 
## XX normalizada
## ===========================
## 1      0.6655 0.9617 0.9736
## 0.6655   1    0.6776 0.6712
## 0.9617 0.6776   1    0.9696
## 0.9736 0.6712 0.9696   1   
## ---------------------------
## Elaboracion propia
library(stargazer)
lambdas<-eigen(xx_normalizada,symmetric = TRUE)
stargazer(lambdas$values,type = "text",title = "autovalores de xx normalizada")
## 
## autovalores de xx normalizada
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
K<-sqrt(max(lambdas$values)/min(lambdas$values))
print(K)
## [1] 11.86778

Como κ(x)<20 la multicolinealidad es leve, no se considera un problema.

cálculo del indice de condición usando libreria “mctest”

library(mctest)
X_mat<-model.matrix(estimacion_modelo)
mctest(mod = estimacion_modelo)
## 
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf, 
##     theil = theil, cn = cn)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test

cálculo del indice de condición usando librería “olsrr”

library(olsrr)
ols_eigen_cindex(model =estimacion_modelo)
##   Eigenvalue Condition Index   intercept      lotsize       sqrft       bdrms
## 1 3.48158596        1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380        2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083        9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941       11.867781 0.516954804 0.0000308514 0.173697079 0.975025872

PRUEBA DE FARRAR-GLAUBAR(BARTLETT)

library(stargazer)
Zn<-scale(X_mat[,-1])
stargazer(head(Zn),type = "text")
## 
## =======================
##   lotsize sqrft  bdrms 
## -----------------------
## 1 -0.284  0.735  0.513 
## 2  0.087  0.108  -0.675
## 3 -0.375  -1.108 -0.675
## 4 -0.434  -0.980 -0.675
## 5 -0.287  0.867  0.513 
## 6 -0.045  1.283  1.702 
## -----------------------
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R,type = "text")
## 
## ===========================
##         lotsize sqrft bdrms
## ---------------------------
## lotsize    1    0.184 0.136
## sqrft    0.184    1   0.531
## bdrms    0.136  0.531   1  
## ---------------------------
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931

Apliando la prueba de FARRAR-GLAUBAR(BARTLETT)

m<-ncol(X_mat[,-1])
n<-nrow(X_mat[,-1])
chi_fg<-(-(n-1-(2*m+5)/6)*log(determinante_R))
print(chi_fg)
## [1] 31.38122
gl<-m*(m-1)/2
V.C<-qchisq(p = 0.95,df = gl)
print(V.C)
## [1] 7.814728

Como χ2FG(31.38122)≥V.C.(7.814728) se rechaza H0, por lo tanto hay evidencia de colinealidad en los regresores

Cálculo de FG usando “mctest”

library(mctest)
mctest::omcdiag(mod = estimacion_modelo)
## 
## Call:
## mctest::omcdiag(mod = estimacion_modelo)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test

Cálculo de FG usando “psych”

library(psych)
fg_test<-cortest.bartlett(X_mat[,-1])
print(fg_test)
## $chisq
## [1] 31.38122
## 
## $p.value
## [1] 0.0000007065806
## 
## $df
## [1] 3
library(fastGraph)
shadeDist(chi_fg)

  1. Factores inflacionarios de la varianza, presente sus resultados de forma tabular y de forma gráfica.
inversa_R<-solve(R)
print(inversa_R)
##             lotsize      sqrft       bdrms
## lotsize  1.03721145 -0.1610145 -0.05582352
## sqrft   -0.16101454  1.4186543 -0.73202696
## bdrms   -0.05582352 -0.7320270  1.39666321
## VIF’s para el modelo estimado:
VIFs<-diag(inversa_R)
print(VIFs)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663

- Cálculo de los VIF’s usando “performance”

library(performance)
VIFs<-multicollinearity(x = estimacion_modelo,verbose = FALSE)
VIFs
## # Check for Multicollinearity
## 
## Low Correlation
## 
##     Term  VIF    VIF 95% CI Increased SE Tolerance Tolerance 95% CI
##  lotsize 1.04 [1.00, 11.02]         1.02      0.96     [0.09, 1.00]
##    sqrft 1.42 [1.18,  1.98]         1.19      0.70     [0.51, 0.85]
##    bdrms 1.40 [1.17,  1.95]         1.18      0.72     [0.51, 0.86]
plot(VIFs)

- Cálculo de los VIF’s usando “car”

library(car)
VIFs_car<-vif(estimacion_modelo)
VIFs_car
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663

- Cálculo de los VIF’s usando “mctest”

library(mctest)
mc.plot(mod = estimacion_modelo,vif = 2)