Data
| Adams_Kaminski_2020_001C |
Adams_Kaminski_2020_001C |
non-cancer |
non-cancer |
no |
22 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
19 |
0.6152031 |
0.1807231 |
0.1224745 |
2808 |
9 |
| Adams_Kaminski_2020_003C |
Adams_Kaminski_2020_003C |
non-cancer |
non-cancer |
no |
67 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
19 |
0.2688007 |
0.1807231 |
0.0625149 |
2808 |
2 |
| Adams_Kaminski_2020_056CO |
Adams_Kaminski_2020_056CO |
non-cancer |
non-cancer |
yes |
57 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
19 |
0.3557951 |
0.1807231 |
0.0757451 |
2808 |
3 |
| Adams_Kaminski_2020_065C |
Adams_Kaminski_2020_065C |
non-cancer |
non-cancer |
no |
66 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
19 |
0.2707238 |
0.1807231 |
0.0574544 |
2808 |
2 |
| Adams_Kaminski_2020_065C |
Adams_Kaminski_2020_065C |
non-cancer |
non-cancer |
no |
66 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
5 |
0.5043957 |
0.1536721 |
0.0623073 |
56444 |
2 |
| Adams_Kaminski_2020_098C-a |
Adams_Kaminski_2020_098C |
non-cancer |
non-cancer |
no |
41 |
Adams_Kaminski_2020 |
|
|
|
|
|
|
|
19 |
0.4186656 |
0.1807231 |
0.0919973 |
2808 |
4 |
Cluster 19

## `geom_smooth()` using formula 'y ~ x'

Categorical Regression
##
## Call:
## lm(formula = pt_std ~ factor(uicc_stage, ordered = F), data = mdata[Cluster ==
## 19])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.062214 -0.027048 0.000105 0.024254 0.068742
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.081050 0.004660 17.395 < 2e-16
## factor(uicc_stage, ordered = F)I 0.004631 0.007367 0.629 0.53051
## factor(uicc_stage, ordered = F)II 0.008718 0.011726 0.743 0.45832
## factor(uicc_stage, ordered = F)III 0.014308 0.009111 1.570 0.11837
## factor(uicc_stage, ordered = F)III or IV 0.025234 0.007861 3.210 0.00161
## factor(uicc_stage, ordered = F)IV 0.006456 0.007593 0.850 0.39645
##
## (Intercept) ***
## factor(uicc_stage, ordered = F)I
## factor(uicc_stage, ordered = F)II
## factor(uicc_stage, ordered = F)III
## factor(uicc_stage, ordered = F)III or IV **
## factor(uicc_stage, ordered = F)IV
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03228 on 155 degrees of freedom
## Multiple R-squared: 0.06864, Adjusted R-squared: 0.03859
## F-statistic: 2.285 on 5 and 155 DF, p-value: 0.04892
Linear Regression
##
## Call:
## lm(formula = pt_std ~ as.numeric(uicc_stage), data = mdata[Cluster ==
## 19])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.059566 -0.028960 0.000345 0.022481 0.072502
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.080017 0.004932 16.223 <2e-16 ***
## as.numeric(uicc_stage) 0.002895 0.001327 2.181 0.0306 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03254 on 159 degrees of freedom
## Multiple R-squared: 0.02906, Adjusted R-squared: 0.02295
## F-statistic: 4.758 on 1 and 159 DF, p-value: 0.03063
Cluster 5

## `geom_smooth()` using formula 'y ~ x'

Categorical Regression
##
## Call:
## lm(formula = pt_std ~ factor(uicc_stage, ordered = F), data = mdata[Cluster ==
## 5])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.065482 -0.018082 0.001068 0.014718 0.071035
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.079288 0.003121 25.402 < 2e-16
## factor(uicc_stage, ordered = F)I 0.015895 0.004997 3.181 0.001645
## factor(uicc_stage, ordered = F)II 0.021147 0.006152 3.437 0.000684
## factor(uicc_stage, ordered = F)III 0.036942 0.006554 5.636 4.51e-08
## factor(uicc_stage, ordered = F)III or IV 0.046284 0.005210 8.884 < 2e-16
## factor(uicc_stage, ordered = F)IV 0.009920 0.004851 2.045 0.041862
##
## (Intercept) ***
## factor(uicc_stage, ordered = F)I **
## factor(uicc_stage, ordered = F)II ***
## factor(uicc_stage, ordered = F)III ***
## factor(uicc_stage, ordered = F)III or IV ***
## factor(uicc_stage, ordered = F)IV *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02703 on 260 degrees of freedom
## Multiple R-squared: 0.2681, Adjusted R-squared: 0.254
## F-statistic: 19.04 on 5 and 260 DF, p-value: 3.895e-16
Linear Regression
##
## Call:
## lm(formula = pt_std ~ as.numeric(uicc_stage), data = mdata[Cluster ==
## 5])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.079335 -0.020495 -0.001869 0.020721 0.069626
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0823665 0.0036165 22.775 < 2e-16 ***
## as.numeric(uicc_stage) 0.0043656 0.0009554 4.569 7.52e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03019 on 264 degrees of freedom
## Multiple R-squared: 0.07329, Adjusted R-squared: 0.06978
## F-statistic: 20.88 on 1 and 264 DF, p-value: 7.524e-06
Cluster 18

## `geom_smooth()` using formula 'y ~ x'

Categorical Regression
##
## Call:
## lm(formula = pt_std ~ factor(uicc_stage, ordered = F), data = mdata[Cluster ==
## 18])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.05607 -0.01853 -0.00011 0.01898 0.06313
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.053738 0.006158 8.726 2.76e-15
## factor(uicc_stage, ordered = F)I 0.029957 0.007616 3.934 0.000123
## factor(uicc_stage, ordered = F)II 0.046322 0.008304 5.579 9.74e-08
## factor(uicc_stage, ordered = F)III 0.035970 0.008304 4.332 2.56e-05
## factor(uicc_stage, ordered = F)III or IV 0.034184 0.007893 4.331 2.57e-05
## factor(uicc_stage, ordered = F)IV 0.021921 0.007242 3.027 0.002867
##
## (Intercept) ***
## factor(uicc_stage, ordered = F)I ***
## factor(uicc_stage, ordered = F)II ***
## factor(uicc_stage, ordered = F)III ***
## factor(uicc_stage, ordered = F)III or IV ***
## factor(uicc_stage, ordered = F)IV **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02613 on 165 degrees of freedom
## Multiple R-squared: 0.1865, Adjusted R-squared: 0.1619
## F-statistic: 7.567 on 5 and 165 DF, p-value: 2.011e-06
Linear Regression
##
## Call:
## lm(formula = pt_std ~ as.numeric(uicc_stage), data = mdata[Cluster ==
## 18])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.060531 -0.021248 -0.001227 0.022737 0.054562
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.077683 0.005262 14.762 <2e-16 ***
## as.numeric(uicc_stage) 0.001090 0.001237 0.882 0.379
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02856 on 169 degrees of freedom
## Multiple R-squared: 0.004577, Adjusted R-squared: -0.001313
## F-statistic: 0.7771 on 1 and 169 DF, p-value: 0.3793
Cluster 13

## `geom_smooth()` using formula 'y ~ x'

Categorical Regression
##
## Call:
## lm(formula = pt_std ~ factor(uicc_stage, ordered = F), data = mdata[Cluster ==
## 13])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.042485 -0.014971 -0.000693 0.015387 0.063889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.054059 0.004143 13.049 < 2e-16
## factor(uicc_stage, ordered = F)I 0.015337 0.005859 2.618 0.010088
## factor(uicc_stage, ordered = F)II 0.009004 0.008910 1.011 0.314394
## factor(uicc_stage, ordered = F)III 0.034000 0.008513 3.994 0.000117
## factor(uicc_stage, ordered = F)III or IV 0.032689 0.007447 4.390 2.6e-05
## factor(uicc_stage, ordered = F)IV 0.014884 0.005859 2.540 0.012454
##
## (Intercept) ***
## factor(uicc_stage, ordered = F)I *
## factor(uicc_stage, ordered = F)II
## factor(uicc_stage, ordered = F)III ***
## factor(uicc_stage, ordered = F)III or IV ***
## factor(uicc_stage, ordered = F)IV *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02231 on 111 degrees of freedom
## Multiple R-squared: 0.2031, Adjusted R-squared: 0.1672
## F-statistic: 5.659 on 5 and 111 DF, p-value: 0.0001097
Linear Regression
##
## Call:
## lm(formula = pt_std ~ as.numeric(uicc_stage), data = mdata[Cluster ==
## 13])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.049698 -0.018628 -0.001927 0.014567 0.081227
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.057546 0.004258 13.514 < 2e-16 ***
## as.numeric(uicc_stage) 0.003294 0.001107 2.974 0.00358 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02366 on 115 degrees of freedom
## Multiple R-squared: 0.07143, Adjusted R-squared: 0.06336
## F-statistic: 8.847 on 1 and 115 DF, p-value: 0.003578