UNIVERSIDAD DE EL SALVADOR
FACULTAD DE CIENCIAS ECONÓMICAS
ESCUELA DE ECONOMÍA
CICLO I - 2023
“EJERCICIO DE MULTICOLINEALIDAD”
Asignatura
Econometría
Grupo teórico
Gt 01
Docente
MSF.Carlos Ademir Peréz Alas
Realizado por:
Mendoza Lemus, Johan Eli ML18043
Ciudad universitaria, 16 de mayo de 2023
Utilizando los datos del dataframe hprice1: disponible en el paquete wooldridge use el siguiente código para generar el dataframe:
library(wooldridge)
data(hprice1)
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
1. Estime el siguiente modelo
Price=α̂+α̂1(lotsize)+α̂2(sqrft)+α̂3(bdrms)+ε
library(stargazer)
Modelo_precio <- lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
stargazer(Modelo_precio, title = "Modelo Precio", type = "html", digits = 4)
| Dependent variable: | |
| price | |
| lotsize | 0.0021*** |
| (0.0006) | |
| sqrft | 0.1228*** |
| (0.0132) | |
| bdrms | 13.8525 |
| (9.0101) | |
| Constant | -21.7703 |
| (29.4750) | |
| Observations | 88 |
| R2 | 0.6724 |
| Adjusted R2 | 0.6607 |
| Residual Std. Error | 59.8335 (df = 84) |
| F Statistic | 57.4602*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
2. Verifique si hay evidencia de la independencia de los regresores (no colinealidad), a través de:
A) Indice de condición y prueba FG: Presente sus resultados de manera tabular en ambos casos y para la prueba FG presente también sus resultados de forma gráfica usando la libreria fastGraph
Indice de condición de forma manual
Basado en la matriz XtX :
Matriz X
mat_x <- model.matrix(Modelo_precio)
stargazer(head(mat_x,n=6),type="html")
| (Intercept) | lotsize | sqrft | bdrms | |
| 1 | 1 | 6,126 | 2,438 | 4 |
| 2 | 1 | 9,903 | 2,076 | 3 |
| 3 | 1 | 5,200 | 1,374 | 3 |
| 4 | 1 | 4,600 | 1,448 | 3 |
| 5 | 1 | 6,095 | 2,514 | 4 |
| 6 | 1 | 8,566 | 2,754 | 5 |
Matriz XX
mat_xx<-t(mat_x)%*%mat_x
stargazer(head(mat_xx),type = "html")
| (Intercept) | lotsize | sqrft | bdrms | |
| (Intercept) | 88 | 793,748 | 177,205 | 314 |
| lotsize | 793,748 | 16,165,159,010 | 1,692,290,257 | 2,933,767 |
| sqrft | 177,205 | 1,692,290,257 | 385,820,561 | 654,755 |
| bdrms | 314 | 2,933,767 | 654,755 | 1,182 |
Cálculo de la matriz de normalización:
options(scipen = 999)
sn <- solve(diag(sqrt (diag(mat_xx))))
stargazer(head(sn),type = "html")
| 0.107 | 0 | 0 | 0 |
| 0 | 0.00001 | 0 | 0 |
| 0 | 0 | 0.0001 | 0 |
| 0 | 0 | 0 | 0.029 |
XtX normalizada
matxx_norm <- (sn %*% mat_xx) %*%sn
stargazer(matxx_norm,type = "html", digits = 4)
| 1 | 0.6655 | 0.9617 | 0.9736 |
| 0.6655 | 1 | 0.6776 | 0.6712 |
| 0.9617 | 0.6776 | 1 | 0.9696 |
| 0.9736 | 0.6712 | 0.9696 | 1 |
Autovalores de XtX Normalizada:
lambdas <- eigen(matxx_norm, symmetric = TRUE)
stargazer(lambdas$values, type = "html")
| 3.482 | 0.455 | 0.039 | 0.025 |
Cálculo de \(\color{red}{\kappa\left(x\right)=\sqrt{\frac{\lambda_{max}}{\lambda_{min}}}}\) :
K<-sqrt(max(lambdas$values)/min(lambdas$values))
print(K)
[1] 11.86778
Como k(x) < 20, la multicolinealidad se considera que no es un problema, ya que es leve
Indice de condición usando la librería “mctest”
library(mctest)
mctest(mod = Modelo_precio)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Indice de condición usando la librería “olsrr”
library(olsrr)
ols_eigen_cindex(model = Modelo_precio)
## Eigenvalue Condition Index intercept lotsize sqrft bdrms
## 1 3.48158596 1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380 2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083 9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941 11.867781 0.516954804 0.0000308514 0.173697079 0.975025872
Prueba de Farrar-Glaubar de forma manual
Calculo de |R|
zn <- scale(mat_x[,-1])
stargazer(head(zn,n=6), type = "html")
| lotsize | sqrft | bdrms | |
| 1 | -0.284 | 0.735 | 0.513 |
| 2 | 0.087 | 0.108 | -0.675 |
| 3 | -0.375 | -1.108 | -0.675 |
| 4 | -0.434 | -0.980 | -0.675 |
| 5 | -0.287 | 0.867 | 0.513 |
| 6 | -0.045 | 1.283 | 1.702 |
Calcular la matriz R
n<-nrow(zn)
R<-(t(zn)%*%zn)*(1/(n-1))
stargazer(R,type = "html",digits = 4)
| lotsize | sqrft | bdrms | |
| lotsize | 1 | 0.1838 | 0.1363 |
| sqrft | 0.1838 | 1 | 0.5315 |
| bdrms | 0.1363 | 0.5315 | 1 |
R a través de “cor”
Rcor <- cor(mat_x[,-1])
stargazer(Rcor, type = "html", digits = 4)
| lotsize | sqrft | bdrms | |
| lotsize | 1 | 0.1838 | 0.1363 |
| sqrft | 0.1838 | 1 | 0.5315 |
| bdrms | 0.1363 | 0.5315 | 1 |
Calcular |R|
determinante_R<-det(R)
print(determinante_R)
[1] 0.6917931
Aplicando la prueba de Farrer Glaubar (Bartlett)
Estadístico \(\chi_{FG}^2\)
m<-ncol(mat_x[,-1])
n<-nrow(mat_x[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
Valor crítico
gl<-m*(m-1)/2
vc<-qchisq(p = 0.95,df = gl)
print(vc)
## [1] 7.814728
Regla de desición:
Como \(\chi_{FG}^2\) ≥ V.C se rechaza H0, por lo tanto hay evidencia de colinealidad en los regresores
Cálculo de FG usando “mctest”
library(mctest)
mctest::omcdiag(mod = Modelo_precio)
##
## Call:
## mctest::omcdiag(mod = Modelo_precio)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Cálculo de FG usando la “psych”
library(psych)
FG_test<-cortest.bartlett(mat_x[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
Gráfica
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
gl<-m*(m-1)/2
vc<-qchisq(p = 0.95,df = gl)
alpha_sig <- 0.05
library(fastGraph)
shadeDist(chi_FG, ddist = "dchisq", parm1 = gl, lower.tail = FALSE, xmin = 0, xlab = "Valor de chi-cuadrado",
main = "Prueba de Bartlett")
abline(v = vc, col = "red", lty = 2)
axis(1, at = vc, labels = paste("vc:", round(vc, 2)), col.axis = "black", las = 1)
if (chi_FG > vc) {
text(x = vc + 0, y = 0.22, labels = "Rechazar H0", col = "blue", cex = 0.8)
} else {
text(x = vc + 0, y = 0.22, labels = "No rechazar H0", col = "blue", cex = 0.8)
}
text(vc, 0, expression(alpha == 0.05), pos = 4, col = "black", cex = 0.8)
B) Factores inflacionarios de la varianza: presente sus resultados de forma tabular y de forma gráfica
Referencia entre \(\mathrm{R_j^2}\) :
library(dplyr)
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores) %>% mutate(VIF=1/(1-R.cuadrado.regresores))
## R.cuadrado.regresores VIF
## 1 0.0 1
## 2 0.5 2
## 3 0.8 5
## 4 0.9 10
Matriz de Correlación de los regresores del modelo (Como se obtuvo con anterioridad):
print(R)
## lotsize sqrft bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft 0.1838422 1.0000000 0.5314736
## bdrms 0.1363256 0.5314736 1.0000000
Inversa de la matriz de correlación R−1:
R_inversa <-solve(R)
print(R_inversa)
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
VIF’s para el modelo estimado:
VIFs<-diag(R_inversa)
print(VIFs)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(performance)
VIFs<-multicollinearity(x = Modelo_precio,verbose = FALSE)
print(VIFs)
## # Check for Multicollinearity
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## lotsize 1.04 [1.00, 11.02] 1.02 0.96 [0.09, 1.00]
## sqrft 1.42 [1.18, 1.98] 1.19 0.70 [0.51, 0.85]
## bdrms 1.40 [1.17, 1.95] 1.18 0.72 [0.51, 0.86]
plot(VIFs)
library(car)
VIFs_car<-vif(Modelo_precio)
print(VIFs_car)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(mod = Modelo_precio,vif = 2)