UNIVERSIDAD DE EL SALVADOR

FACULTAD DE CIENCIAS ECONÓMICAS

ESCUELA DE ECONOMÍA

CICLO I - 2023

Logo de la Universidad de El Salvador

“EJERCICIO DE MULTICOLINEALIDAD”

Asignatura

Econometría

Grupo teórico

Gt 01

Docente

MSF.Carlos Ademir Peréz Alas

Realizado por:

Mendoza Lemus, Johan Eli ML18043

Ciudad universitaria, 16 de mayo de 2023


Utilizando los datos del dataframe hprice1: disponible en el paquete wooldridge use el siguiente código para generar el dataframe:

library(wooldridge) 
data(hprice1) 
head(force(hprice1), n=5) 
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

1. Estime el siguiente modelo

Price=α̂+α̂1(lotsize)+α̂2(sqrft)+α̂3(bdrms)+ε

library(stargazer)
Modelo_precio <- lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
stargazer(Modelo_precio, title = "Modelo Precio", type = "html", digits = 4)
Modelo Precio
Dependent variable:
price
lotsize 0.0021***
(0.0006)
sqrft 0.1228***
(0.0132)
bdrms 13.8525
(9.0101)
Constant -21.7703
(29.4750)
Observations 88
R2 0.6724
Adjusted R2 0.6607
Residual Std. Error 59.8335 (df = 84)
F Statistic 57.4602*** (df = 3; 84)
Note: p<0.1; p<0.05; p<0.01

2. Verifique si hay evidencia de la independencia de los regresores (no colinealidad), a través de:

A) Indice de condición y prueba FG: Presente sus resultados de manera tabular en ambos casos y para la prueba FG presente también sus resultados de forma gráfica usando la libreria fastGraph

Indice de condición de forma manual

Basado en la matriz XtX :

Matriz X

mat_x <- model.matrix(Modelo_precio)
stargazer(head(mat_x,n=6),type="html")
(Intercept) lotsize sqrft bdrms
1 1 6,126 2,438 4
2 1 9,903 2,076 3
3 1 5,200 1,374 3
4 1 4,600 1,448 3
5 1 6,095 2,514 4
6 1 8,566 2,754 5

Matriz XX

mat_xx<-t(mat_x)%*%mat_x
stargazer(head(mat_xx),type = "html")
(Intercept) lotsize sqrft bdrms
(Intercept) 88 793,748 177,205 314
lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
sqrft 177,205 1,692,290,257 385,820,561 654,755
bdrms 314 2,933,767 654,755 1,182

Cálculo de la matriz de normalización:

options(scipen = 999)
sn <- solve(diag(sqrt (diag(mat_xx))))
stargazer(head(sn),type = "html")
0.107 0 0 0
0 0.00001 0 0
0 0 0.0001 0
0 0 0 0.029

XtX normalizada

matxx_norm <- (sn %*% mat_xx) %*%sn
stargazer(matxx_norm,type = "html", digits = 4)
1 0.6655 0.9617 0.9736
0.6655 1 0.6776 0.6712
0.9617 0.6776 1 0.9696
0.9736 0.6712 0.9696 1

Autovalores de XtX Normalizada:

lambdas <- eigen(matxx_norm, symmetric = TRUE)
stargazer(lambdas$values, type = "html")
3.482 0.455 0.039 0.025

Cálculo de \(\color{red}{\kappa\left(x\right)=\sqrt{\frac{\lambda_{max}}{\lambda_{min}}}}\) :

K<-sqrt(max(lambdas$values)/min(lambdas$values))
print(K)

[1] 11.86778

Como k(x) < 20, la multicolinealidad se considera que no es un problema, ya que es leve

Indice de condición usando la librería “mctest”

library(mctest)
mctest(mod = Modelo_precio)
## 
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf, 
##     theil = theil, cn = cn)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test

Indice de condición usando la librería “olsrr”

library(olsrr)
ols_eigen_cindex(model = Modelo_precio)
##   Eigenvalue Condition Index   intercept      lotsize       sqrft       bdrms
## 1 3.48158596        1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380        2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083        9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941       11.867781 0.516954804 0.0000308514 0.173697079 0.975025872

Prueba de Farrar-Glaubar de forma manual

Calculo de |R|

zn <- scale(mat_x[,-1])
stargazer(head(zn,n=6), type = "html")
lotsize sqrft bdrms
1 -0.284 0.735 0.513
2 0.087 0.108 -0.675
3 -0.375 -1.108 -0.675
4 -0.434 -0.980 -0.675
5 -0.287 0.867 0.513
6 -0.045 1.283 1.702

Calcular la matriz R

n<-nrow(zn)
R<-(t(zn)%*%zn)*(1/(n-1))
stargazer(R,type = "html",digits = 4)
lotsize sqrft bdrms
lotsize 1 0.1838 0.1363
sqrft 0.1838 1 0.5315
bdrms 0.1363 0.5315 1

R a través de “cor”

Rcor <- cor(mat_x[,-1])
stargazer(Rcor, type = "html", digits = 4)
lotsize sqrft bdrms
lotsize 1 0.1838 0.1363
sqrft 0.1838 1 0.5315
bdrms 0.1363 0.5315 1

Calcular |R|

determinante_R<-det(R)
print(determinante_R)

[1] 0.6917931

Aplicando la prueba de Farrer Glaubar (Bartlett)

Estadístico \(\chi_{FG}^2\)

m<-ncol(mat_x[,-1])
n<-nrow(mat_x[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122

Valor crítico

gl<-m*(m-1)/2
vc<-qchisq(p = 0.95,df = gl)
print(vc)
## [1] 7.814728

Regla de desición:

Como \(\chi_{FG}^2\)V.C se rechaza H0, por lo tanto hay evidencia de colinealidad en los regresores

Cálculo de FG usando “mctest”

library(mctest)
mctest::omcdiag(mod = Modelo_precio)
## 
## Call:
## mctest::omcdiag(mod = Modelo_precio)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test

Cálculo de FG usando la “psych”

library(psych)
FG_test<-cortest.bartlett(mat_x[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
## 
## $p.value
## [1] 0.0000007065806
## 
## $df
## [1] 3

Gráfica

chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
gl<-m*(m-1)/2
vc<-qchisq(p = 0.95,df = gl)
alpha_sig <- 0.05

library(fastGraph)

shadeDist(chi_FG, ddist = "dchisq", parm1 = gl, lower.tail = FALSE, xmin = 0, xlab = "Valor de chi-cuadrado",
          main = "Prueba de Bartlett")

abline(v = vc, col = "red", lty = 2)
axis(1, at = vc, labels = paste("vc:", round(vc, 2)), col.axis = "black", las = 1)

if (chi_FG > vc) {
  text(x = vc + 0, y = 0.22, labels = "Rechazar H0", col = "blue", cex = 0.8)
} else {
  text(x = vc + 0, y = 0.22, labels = "No rechazar H0", col = "blue", cex = 0.8)
}

text(vc, 0, expression(alpha == 0.05), pos = 4, col = "black", cex = 0.8)

B) Factores inflacionarios de la varianza: presente sus resultados de forma tabular y de forma gráfica

Referencia entre \(\mathrm{R_j^2}\) :

library(dplyr)
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores) %>% mutate(VIF=1/(1-R.cuadrado.regresores))
##   R.cuadrado.regresores VIF
## 1                   0.0   1
## 2                   0.5   2
## 3                   0.8   5
## 4                   0.9  10
Cálculo manual:

Matriz de Correlación de los regresores del modelo (Como se obtuvo con anterioridad):

print(R)
##           lotsize     sqrft     bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft   0.1838422 1.0000000 0.5314736
## bdrms   0.1363256 0.5314736 1.0000000

Inversa de la matriz de correlación R−1:

R_inversa <-solve(R)
print(R_inversa)
##             lotsize      sqrft       bdrms
## lotsize  1.03721145 -0.1610145 -0.05582352
## sqrft   -0.16101454  1.4186543 -0.73202696
## bdrms   -0.05582352 -0.7320270  1.39666321

VIF’s para el modelo estimado:

VIFs<-diag(R_inversa)
print(VIFs)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663
Cálculo de los VIF’s usando “performance”
library(performance)
VIFs<-multicollinearity(x = Modelo_precio,verbose = FALSE)
print(VIFs)
## # Check for Multicollinearity
## 
## Low Correlation
## 
##     Term  VIF    VIF 95% CI Increased SE Tolerance Tolerance 95% CI
##  lotsize 1.04 [1.00, 11.02]         1.02      0.96     [0.09, 1.00]
##    sqrft 1.42 [1.18,  1.98]         1.19      0.70     [0.51, 0.85]
##    bdrms 1.40 [1.17,  1.95]         1.18      0.72     [0.51, 0.86]
plot(VIFs)

Cálculo de los VIF’s usando “car”
library(car)
VIFs_car<-vif(Modelo_precio)
print(VIFs_car)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663
Cálculo de los VIF’s usando “mctest”
library(mctest)
mc.plot(mod = Modelo_precio,vif = 2)