Cargar los datos

library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

Estimar el modelo

library(stargazer)
modelo_estimado <- lm(price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo_estimado,type = "text",title = "Modelo Estimado")
## 
## Modelo Estimado
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                      0.002***          
##                               (0.001)          
##                                                
## sqrft                        0.123***          
##                               (0.013)          
##                                                
## bdrms                         13.853           
##                               (9.010)          
##                                                
## Constant                      -21.770          
##                              (29.475)          
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                             0.672           
## Adjusted R2                    0.661           
## Residual Std. Error      59.833 (df = 84)      
## F Statistic           57.460*** (df = 3; 84)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Indice de condición

Cálculo manual

library(stargazer)
x_mat <- model.matrix(modelo_estimado)
stargazer(head(x_mat,n=6),type="text")
## 
## =================================
##   (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1      1       6,126  2,438   4  
## 2      1       9,903  2,076   3  
## 3      1       5,200  1,374   3  
## 4      1       4,600  1,448   3  
## 5      1       6,095  2,514   4  
## 6      1       8,566  2,754   5  
## ---------------------------------
xx_mat <- t(x_mat)%*%x_mat
stargazer(xx_mat,type = "text")
## 
## ==============================================================
##             (Intercept)    lotsize         sqrft       bdrms  
## --------------------------------------------------------------
## (Intercept)     88         793,748        177,205       314   
## lotsize       793,748   16,165,159,010 1,692,290,257 2,933,767
## sqrft         177,205   1,692,290,257   385,820,561   654,755 
## bdrms           314       2,933,767       654,755      1,182  
## --------------------------------------------------------------
library(stargazer)
options(scipen = 999999)
sn <- solve(diag(sqrt(diag(xx_mat))))
stargazer(sn,type = "text") 
## 
## ==========================
## 0.107    0      0      0  
## 0     0.00001   0      0  
## 0        0    0.0001   0  
## 0        0      0    0.029
## --------------------------

\(X^tX\) normalizada:

library(stargazer)
xx_norm <- (sn%*%xx_mat)%*%sn
stargazer(xx_norm,type = "text", digits = 4)
## 
## ===========================
## 1      0.6655 0.9617 0.9736
## 0.6655   1    0.6776 0.6712
## 0.9617 0.6776   1    0.9696
## 0.9736 0.6712 0.9696   1   
## ---------------------------

Autovalores de \(X^tX\) normalizada:

library(stargazer)
lambdas <- eigen(xx_norm,symmetric = TRUE)
stargazer(lambdas$values, type = "text")
## 
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------

Cálculo de \(\kappa(x)=\sqrt{\lambda_{max}}/{\lambda_{min}}\)

K <- sqrt(max(lambdas$values)/min(lambdas$values))
print(K)
## [1] 11.86778

Como \(\kappa(x)< 30\) se considera que la multicolinealidad es leve.

Farrar-Glaubar

Cálculo manual

Cálculo de \(|R|\)

library(stargazer)
zn <- scale(x_mat[,-1])
stargazer(head(zn,n=6), type = "text")
## 
## =======================
##   lotsize sqrft  bdrms 
## -----------------------
## 1 -0.284  0.735  0.513 
## 2  0.087  0.108  -0.675
## 3 -0.375  -1.108 -0.675
## 4 -0.434  -0.980 -0.675
## 5 -0.287  0.867  0.513 
## 6 -0.045  1.283  1.702 
## -----------------------

Cáclulo la matriz R

library(stargazer)
n <- nrow(zn)
R <- (t(zn)%*%zn)*(1/(n-1))
stargazer(R,type = "text", digits = 4)
## 
## =============================
##         lotsize sqrft  bdrms 
## -----------------------------
## lotsize    1    0.1838 0.1363
## sqrft   0.1838    1    0.5315
## bdrms   0.1363  0.5315   1   
## -----------------------------

Calcular |R|

determinante_R <- det(R)
print(determinante_R)
## [1] 0.6917931

Prueba de Farrer-Glaubar (Bartlett)

Estadístico \(\chi_{FG}^2\)

m <- ncol(x_mat[,-1])
n <- nrow(x_mat[,-1])
chi_FG <- -(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122

Valor crítico

gl <- m*(m-1)/2
vc <- qchisq(p=0.95,df=gl)
print(vc)
## [1] 7.814728

Regla de decisión

library(fastGraph)
shadeDist(qchisq(0.1, chi_FG, lower.tail = FALSE), 
          ddist = "dchisq",
          parm1 = chi_FG,
          parm2 = vc,
          lower.tail = FALSE,
          col = c("black", "red"),
          sub=paste("Valor crítico:",round(vc,2)," ","FB:",round(chi_FG,2)))

como \(\chi_{FG}^2 \geq V.C\). Se rechaza la \(H_0\); es decir, hay evidencia de colinealidad en los regresores.

Factores inflacionarios de la Varianza (FIV)

Relación entre \(R_{j}^2\)

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
R_cuadrado <- c(0,0.5,.8,.9)
as.data.frame(R_cuadrado) %>% mutate(VIF=1/(1-R_cuadrado))
##   R_cuadrado VIF
## 1        0.0   1
## 2        0.5   2
## 3        0.8   5
## 4        0.9  10

Cálculo manual

print(R)
##           lotsize     sqrft     bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft   0.1838422 1.0000000 0.5314736
## bdrms   0.1363256 0.5314736 1.0000000

Inversa de la matriz de correlación \(R^{-1}\)

inversa.R <- solve(R)
print(inversa.R)
##             lotsize      sqrft       bdrms
## lotsize  1.03721145 -0.1610145 -0.05582352
## sqrft   -0.16101454  1.4186543 -0.73202696
## bdrms   -0.05582352 -0.7320270  1.39666321

VIF´s para el modelo estimado

VIFs <- diag(inversa.R)
print(VIFs)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663
plot(VIFs)

library(mctest)
mc.plot(mod=modelo_estimado,vif = 2)