=======================================
=======================================

PATIENTS CHARACTERISTICS

=======================================
=======================================
Dependent: First-line IO+V V IO+IO IO+IO+V
Total N (%) 41 (20.4) 85 (42.3) 52 (25.9) 23 (11.4)
Age Mean (SD) 62.4 (10.9) 68.2 (11.5) 62.4 (11.5) 62.4 (9.8)
AgeG ≥45 39 (95.1) 82 (96.5) 49 (94.2) 22 (95.7)
<45 2 (4.9) 3 (3.5) 3 (5.8) 1 (4.3)
Male1 No 9 (22.0) 23 (27.1) 11 (21.2) 9 (39.1)
Yes 32 (78.0) 62 (72.9) 41 (78.8) 14 (60.9)
Nephrectomy1 No 15 (36.6) 19 (22.4) 29 (55.8) 9 (39.1)
Yes 26 (63.4) 66 (77.6) 23 (44.2) 12 (52.2)
(Missing) 0 (0.0) 0 (0.0) 0 (0.0) 2 (8.7)
Sarcomatoid1 No 32 (78.0) 67 (78.8) 38 (73.1) 20 (87.0)
Yes 7 (17.1) 7 (8.2) 8 (15.4) 0 (0.0)
(Missing) 2 (4.9) 11 (12.9) 6 (11.5) 3 (13.0)
risk favourable 8 (19.5) 27 (33.8) 1 (2.0) 2 (8.7)
intermediate 27 (65.9) 46 (57.5) 25 (49.0) 17 (73.9)
poor 6 (14.6) 7 (8.8) 25 (49.0) 4 (17.4)
BoneMet1 No 32 (78.0) 67 (78.8) 36 (69.2) 17 (73.9)
Yes 9 (22.0) 17 (20.0) 16 (30.8) 6 (26.1)
(Missing) 0 (0.0) 1 (1.2) 0 (0.0) 0 (0.0)
LiverMet1 No 36 (87.8) 74 (87.1) 45 (86.5) 22 (95.7)
Yes 5 (12.2) 10 (11.8) 7 (13.5) 1 (4.3)
(Missing) 0 (0.0) 1 (1.2) 0 (0.0) 0 (0.0)
BrainMet1 No 39 (95.1) 81 (95.3) 44 (84.6) 23 (100.0)
Yes 2 (4.9) 3 (3.5) 8 (15.4) 0 (0.0)
(Missing) 0 (0.0) 1 (1.2) 0 (0.0) 0 (0.0)
irAE.L1 No 34 (82.9) 85 (100.0) 40 (76.9) 16 (69.6)
Yes 7 (17.1) 0 (0.0) 12 (23.1) 7 (30.4)
Line2 0 18 (43.9) 24 (28.2) 26 (50.0) 7 (30.4)
1 23 (56.1) 61 (71.8) 26 (50.0) 16 (69.6)
Line3 0 27 (65.9) 38 (44.7) 44 (84.6) 15 (65.2)
1 14 (34.1) 47 (55.3) 8 (15.4) 8 (34.8)
Line4 0 36 (87.8) 66 (77.6) 50 (96.2) 21 (91.3)
1 5 (12.2) 19 (22.4) 2 (3.8) 2 (8.7)
Line5 0 40 (97.6) 79 (92.9) 52 (100.0) 23 (100.0)
1 1 (2.4) 6 (7.1) 0 (0.0) 0 (0.0)
=======================================
=======================================

ANALYSIS OF VEGF POPULATION

=======================================
=======================================
=======================================

BASELINE OUTCOMES

=======================================
Dependent: Line1_V V
Total N (%) 85 (100.0)
Best.Response CR 1 (1.3)
PD 16 (21.1)
PR 28 (36.8)
SD 31 (40.8)
ORR_12w No 54 (63.5)
Yes 19 (22.4)
(Missing) 12 (14.1)
DCR_12w No 17 (20.0)
Yes 56 (65.9)
(Missing) 12 (14.1)
OSL1fu2 OS <2y 27 (31.8)
OS 2-5y 41 (48.2)
OS ≥5y 16 (18.8)
(Missing) 1 (1.2)
PFSL1fu2 PFS <2y 65 (76.5)
PFS 2-5y 19 (22.4)
PFS ≥5y 1 (1.2)
=======================================

ASOCIATIONS WITH RESPONSE IN L1 VEGF POPULATION

=======================================

ORR No vs Yes at week 12 and all variables

The only variable associated with ORR could be NLR at week 0.
No Yes p test
n 54 19
PltHigh_0w = Yes (%) 0 ( 0.0) 0 ( 0.0) NaN
HbLow_0w = Yes (%) 23 (42.6) 9 (47.4) 0.927
NLR_0w.cut = ≥3 (%) 30 (55.6) 5 (26.3) 0.054
PLR_0w.cut = ≥150 (%) 26 (50.0) 7 (36.8) 0.474
PltHigh_12w = Yes (%) 1 ( 1.9) 1 ( 5.3) 1.000
HbLow_12w = Yes (%) 29 (55.8) 9 (47.4) 0.719
NLR_12w.cut = ≥3 (%) 14 (26.4) 2 (11.1) 0.310
PLR_12w.cut = ≥150 (%) 24 (48.0) 6 (35.3) 0.530
BoneMet1 = Yes (%) 10 (18.5) 3 (15.8) 1.000
LiverMet1 = Yes (%) 9 (16.7) 1 ( 5.3) 0.392

DCR at week 12 and all variables

It’s quite similar to the previous analysis with ORR.
Only NLR_0w, HbLow_12w, and NLR_12w could be associated with DCR.
No Yes p test
n 17 56
PltHigh_0w = Yes (%) 0 ( 0.0) 0 ( 0.0) NaN
HbLow_0w = Yes (%) 10 (58.8) 22 (39.3) 0.253
NLR_0w.cut = ≥3 (%) 12 (70.6) 23 (41.1) 0.063
PLR_0w.cut = ≥150 (%) 10 (62.5) 23 (41.8) 0.240
PltHigh_12w = Yes (%) 1 ( 6.2) 1 ( 1.8) 0.933
HbLow_12w = Yes (%) 12 (75.0) 26 (47.3) 0.094
NLR_12w.cut = ≥3 (%) 7 (43.8) 9 (16.4) 0.049
PLR_12w.cut = ≥150 (%) 7 (50.0) 23 (43.4) 0.889
BoneMet1 = Yes (%) 4 (23.5) 9 (16.1) 0.732
LiverMet1 = Yes (%) 3 (17.6) 7 (12.5) 0.890
=======================================

PREDICTORS OF RESPONSE

=======================================
Here I’ve made a logistic regression to try to measure the relationships found in the previous analysis.
I’ve taken a look without adjusting by IMDC risk.
As we are looking for “risk factors” (means Odds Ratio), the analysis is made to predict “no ORR”.
We can change the language latter.

Predictor of ORR

NLR 0w
NLR ≥3 at week 0 have an OR 3.50 (IC 95%: 1.16-12.10) for not ORR
Means: NLR <3 at week 0 have an OR 3.50 (CI 95%: 1.16-12.10) for ORR
## # A tibble: 2 × 7
##   term         estimate std.error statistic p.value conf.low conf.high
##   <chr>           <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)      1.71     0.336      1.60  0.109     0.899      3.40
## 2 NLR_0w.cut≥3     3.50     0.589      2.13  0.0333    1.16      12.1

Predictor of DCR

NLR 0w
NLR ≥3 at week 0 have an ORR 3.44 (CI 95%: 1.12-12.1) for not DCR
Means: NLR <3 at week 0 have an ORR 3.44 (CI 95%: 1.12-12.1) for DCR
## # A tibble: 2 × 7
##   term         estimate std.error statistic   p.value conf.low conf.high
##   <chr>           <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
## 1 (Intercept)     0.152     0.480     -3.93 0.0000842   0.0519     0.355
## 2 NLR_0w.cut≥3    3.44      0.598      2.07 0.0385      1.12      12.1
Hb Low 12w
Hb low at week 12 have an OR 3.35 (IC 95%: 1.02-13.2) for not DCR
Means: Hb NOT low at week 12 have an OR 3.35 (IC 95%: 1.02-13.2) for DCR
## # A tibble: 2 × 7
##   term         estimate std.error statistic  p.value conf.low conf.high
##   <chr>           <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
## 1 (Intercept)     0.138     0.533     -3.71 0.000204   0.0409     0.350
## 2 HbLow_12wYes    3.35      0.637      1.89 0.0581     1.02      13.2
NLR 12w
NLR ≥3 at week 12 have an OR 3.98 (IC 95%: 1.16-13.7) for not DCR
Means: NLR <3 at week 12 have an OR 3.98 (IC 95%: 1.16-13.7) for DCR
## # A tibble: 2 × 7
##   term          estimate std.error statistic    p.value conf.low conf.high
##   <chr>            <dbl>     <dbl>     <dbl>      <dbl>    <dbl>     <dbl>
## 1 (Intercept)      0.196     0.364     -4.48 0.00000761   0.0896     0.381
## 2 NLR_12w.cut≥3    3.98      0.622      2.22 0.0265       1.16      13.7
=======================================

OVERALL SURVIVAL FIRST-LINE

=======================================
HR according to all variables
This is just to take a first look about what could be significant. Focus on univariable analysis.
Remember we are not including the variable “IMDC risk” here.
ORR and DCR are significant (this is obvious). Then, HbLow, PltHigh, PLR, and NLR are significant
at both week 0 and week 12. Bone and Liver mets are not significant.
This is just a first look. Then we will need to calculate the real HR adjusting by risk.
Dependent: Survival all HR (univariable) HR (multivariable)
15 ORR_12w No 54 (74.0)
16 Yes 19 (26.0) 0.37 (0.15-0.89, p=0.026) 0.35 (0.12-1.08, p=0.069)
3 DCR_12w No 17 (23.3)
4 Yes 56 (76.7) 0.22 (0.11-0.42, p<0.001) 0.14 (0.05-0.34, p<0.001)
21 PltHigh_0w No 78 (100.0)
22 Yes 0 (0.0) NA (NA-NA, p=NA) NA (NA-NA, p=NA)
5 HbLow_0w No 45 (57.7)
6 Yes 33 (42.3) 1.91 (1.05-3.50, p=0.035) 0.85 (0.33-2.20, p=0.741)
11 NLR_0w.cut <3 41 (52.6)
12 ≥3 37 (47.4) 1.91 (1.04-3.50, p=0.037) 0.26 (0.09-0.74, p=0.011)
17 PLR_0w.cut <150 42 (56.0)
18 ≥150 33 (44.0) 1.96 (1.06-3.61, p=0.032) 2.17 (0.85-5.53, p=0.104)
23 PltHigh_12w No 72 (97.3)
24 Yes 2 (2.7) 20.52 (3.70-113.65, p=0.001) 78.67 (4.45-1391.71, p=0.003)
7 HbLow_12w No 35 (47.3)
8 Yes 39 (52.7) 2.91 (1.48-5.70, p=0.002) 3.29 (1.19-9.12, p=0.022)
13 NLR_12w.cut <3 57 (77.0)
14 ≥3 17 (23.0) 2.45 (1.14-5.26, p=0.022) 3.95 (1.38-11.28, p=0.010)
19 PLR_12w.cut <150 40 (57.1)
20 ≥150 30 (42.9) 1.90 (1.01-3.58, p=0.046) 2.97 (1.05-8.38, p=0.040)
1 BoneMet1 No 67 (79.8)
2 Yes 17 (20.2) 0.76 (0.36-1.60, p=0.470) 0.98 (0.37-2.63, p=0.972)
9 LiverMet1 No 74 (88.1)
10 Yes 10 (11.9) 1.69 (0.71-4.03, p=0.234) 1.07 (0.37-3.05, p=0.904)

Differences in OS by ORR and DCR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ ORR_12w, data = dbV, 
##     type = "kaplan-meier")
## 
##    13 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## ORR_12w=No  54     35   37.9    31.0    55.2
## ORR_12w=Yes 18      7   65.4    51.5      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ DCR_12w, data = dbV, 
##     type = "kaplan-meier")
## 
##    13 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## DCR_12w=No  17     14   10.2    7.85    43.3
## DCR_12w=Yes 55     28   55.2   45.08      NA

Differences in OS by HbLow, PLR and NLR at week 0

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_0w, data = dbV, 
##     type = "kaplan-meier")
## 
##    8 observations deleted due to missingness 
##               n events median 0.95LCL 0.95UCL
## HbLow_0w=No  45     24   53.6    39.8      NA
## HbLow_0w=Yes 32     20   34.9    27.4      63
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PLR_0w.cut, data = dbV, 
##     type = "kaplan-meier")
## 
##    11 observations deleted due to missingness 
##                  n events median 0.95LCL 0.95UCL
## PLR_0w.cut=<150 41     18   55.2    39.2      NA
## PLR_0w.cut=≥150 33     24   31.0    19.3    65.4
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut, data = dbV, 
##     type = "kaplan-meier")
## 
##    8 observations deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3 40     19   53.6    41.4      NA
## NLR_0w.cut=≥3 37     25   33.2    26.6    65.4

Differences in OS by HbLow, PLR and NLR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_12w, data = dbV, 
##     type = "kaplan-meier")
## 
##    12 observations deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## HbLow_12w=No  35     17   66.0    41.4      NA
## HbLow_12w=Yes 38     24   37.9    26.6    56.6
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PLR_12w.cut, data = dbV, 
##     type = "kaplan-meier")
## 
##    15 observations deleted due to missingness 
##                   n events median 0.95LCL 0.95UCL
## PLR_12w.cut=<150 40     19   53.6    41.4      NA
## PLR_12w.cut=≥150 30     21   32.7    26.6      66
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_12w.cut, data = dbV, 
##     type = "kaplan-meier")
## 
##    12 observations deleted due to missingness 
##                 n events median 0.95LCL 0.95UCL
## NLR_12w.cut=<3 57     32   53.6    39.2      66
## NLR_12w.cut=≥3 16      9   26.6    17.0      NA

Differences in OS by NLR at week 0 + week 12

This is also interesting.
Patients who achieve a NLR < 3 at week 12 have better prognosis.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut + NLR_12w.cut, 
##     data = dbV, type = "kaplan-meier")
## 
##    12 observations deleted due to missingness 
##                                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3, NLR_12w.cut=<3 37     17  55.23    45.1      NA
## NLR_0w.cut=<3, NLR_12w.cut=≥3  1      1   5.03      NA      NA
## NLR_0w.cut=≥3, NLR_12w.cut=<3 20     15  34.89    28.5      NA
## NLR_0w.cut=≥3, NLR_12w.cut=≥3 15      8  27.76    17.0      NA

Differences in OS by NLR at week 12 and risk

The importance of NLR at week 12 remains in all IMDC risk categories.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ risk + NLR_12w.cut, 
##     data = dbV, type = "kaplan-meier")
## 
##    13 observations deleted due to missingness 
##                                    n events median 0.95LCL 0.95UCL
## risk=favourable, NLR_12w.cut=<3   18      7   66.0   45.08      NA
## risk=favourable, NLR_12w.cut=≥3    5      3   39.4   26.58      NA
## risk=intermediate, NLR_12w.cut=<3 33     19   55.2   39.16      NA
## risk=intermediate, NLR_12w.cut=≥3  9      4   19.3   16.95      NA
## risk=poor, NLR_12w.cut=<3          5      5   28.5   15.74      NA
## risk=poor, NLR_12w.cut=≥3          2      2    3.5    3.25      NA
=======================================
=======================================

ANALYSIS OF IO-IO POPULATION

=======================================
=======================================
=======================================

BASELINE OUTCOMES

=======================================
Dependent: Line1_IOIO IO+IO
Total N (%) 52 (100.0)
Best.Response CR 2 (3.9)
PD 17 (33.3)
PR 15 (29.4)
SD 16 (31.4)
mixed 1 (2.0)
ORR_12w No 36 (69.2)
Yes 14 (26.9)
(Missing) 2 (3.8)
DCR_12w No 19 (36.5)
Yes 31 (59.6)
(Missing) 2 (3.8)
OSL1fu2 OS <2y 37 (71.2)
OS 2-5y 12 (23.1)
OS ≥5y 3 (5.8)
PFSL1fu2 PFS <2y 45 (86.5)
PFS 2-5y 5 (9.6)
PFS ≥5y 1 (1.9)
(Missing) 1 (1.9)
=======================================

ASOCIATIONS WITH RESPONSE IN L1 IO-IO POPULATION

=======================================

ORR No vs Yes at week 12 and all variables

No variable is associated with ORR.
No Yes p test
n 36 14
PltHigh_0w = Yes (%) 10 (27.8) 4 (30.8) 1.000
HbLow_0w = Yes (%) 27 (75.0) 9 (69.2) 0.970
NLR_0w.cut = ≥3 (%) 24 (66.7) 12 (92.3) 0.153
PLR_0w.cut = ≥150 (%) 27 (79.4) 11 (91.7) 0.603
PltHigh_12w = Yes (%) 10 (27.8) 2 (15.4) 0.607
HbLow_12w = Yes (%) 26 (72.2) 10 (76.9) 1.000
NLR_12w.cut = ≥3 (%) 26 (72.2) 7 (53.8) 0.386
PLR_12w.cut = ≥150 (%) 21 (65.6) 10 (76.9) 0.699
BoneMet1 = Yes (%) 14 (38.9) 2 (14.3) 0.181
LiverMet1 = Yes (%) 5 (13.9) 1 ( 7.1) 0.861
irAE.L1 = Yes (%) 6 (16.7) 6 (42.9) 0.115

DCR at week 12 and all variables

It’s quite similar to the previous analysis with ORR.
Plt High at week 12 is associated with no DCR and irAE is associated with DCR.
No Yes p test
n 19 31
PltHigh_0w = Yes (%) 5 (26.3) 9 (30.0) 1.000
HbLow_0w = Yes (%) 13 (68.4) 23 (76.7) 0.760
NLR_0w.cut = ≥3 (%) 13 (68.4) 23 (76.7) 0.760
PLR_0w.cut = ≥150 (%) 17 (89.5) 21 (77.8) 0.525
PltHigh_12w = Yes (%) 8 (42.1) 4 (13.3) 0.052
HbLow_12w = Yes (%) 15 (78.9) 21 (70.0) 0.719
NLR_12w.cut = ≥3 (%) 15 (78.9) 18 (60.0) 0.287
PLR_12w.cut = ≥150 (%) 13 (76.5) 18 (64.3) 0.600
BoneMet1 = Yes (%) 6 (31.6) 10 (32.3) 1.000
LiverMet1 = Yes (%) 4 (21.1) 2 ( 6.5) 0.274
irAE.L1 = Yes (%) 1 ( 5.3) 11 (35.5) 0.037
=======================================

PREDICTORS OF RESPONSE

=======================================
Here I’ve made a logistic regression to try to measure the relationships found in the previous analysis.
I’ve taken a look without adjusting by IMDC risk.
As we are looking for “risk factors” (means Odds Ratio), the analysis is made to predict “no ORR”.
We can change the language latter.

Predictor of DCR

irAE.L1
irAE after L1 have an OR 9,90 (CI 95%: 1.67-190) for DCR
## # A tibble: 2 × 7
##   term        estimate std.error statistic p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 (Intercept)     1.11     0.325     0.324  0.746     0.587      2.12
## 2 irAE.L1Yes      9.90     1.09      2.10   0.0361    1.67     190.
=======================================

OVERALL SURVIVAL FIRST-LINE

=======================================
HR according to all variables
This is just to take a first look about what could be significant. Focus on univariable analysis.
Remember we are not including the variable “IMDC risk” here.
ORR and DCR are significant (this is obvious). Then only Hb low and NLR at week 12 are significant
This is just a first look. Then we will need to calculate the real HR adjusting by risk.
Dependent: Survival all HR (univariable) HR (multivariable)
17 ORR_12w No 36 (72.0)
18 Yes 14 (28.0) 0.37 (0.14-0.98, p=0.046) 0.51 (0.07-3.56, p=0.496)
3 DCR_12w No 19 (38.0)
4 Yes 31 (62.0) 0.26 (0.12-0.59, p=0.001) 0.03 (0.01-0.16, p<0.001)
23 PltHigh_0w No 36 (72.0)
24 Yes 14 (28.0) 1.00 (0.44-2.28, p=0.993) 1.52 (0.30-7.72, p=0.611)
5 HbLow_0w No 14 (28.0)
6 Yes 36 (72.0) 1.66 (0.63-4.41, p=0.305) 2.56 (0.51-12.77, p=0.251)
13 NLR_0w.cut <3 13 (26.0)
14 ≥3 37 (74.0) 1.65 (0.67-4.10, p=0.278) 9.43 (1.67-53.28, p=0.011)
19 PLR_0w.cut <150 8 (17.0)
20 ≥150 39 (83.0) 0.90 (0.34-2.42, p=0.842) 0.02 (0.00-0.27, p=0.002)
25 PltHigh_12w No 37 (75.5)
26 Yes 12 (24.5) 1.55 (0.66-3.65, p=0.310) 0.75 (0.13-4.29, p=0.743)
7 HbLow_12w No 13 (26.5)
8 Yes 36 (73.5) 2.58 (0.89-7.53, p=0.082) 2.70 (0.48-15.09, p=0.259)
15 NLR_12w.cut <3 16 (32.7)
16 ≥3 33 (67.3) 2.61 (1.04-6.53, p=0.041) 2.26 (0.65-7.87, p=0.200)
21 PLR_12w.cut <150 14 (31.1)
22 ≥150 31 (68.9) 1.17 (0.46-2.96, p=0.735) 3.32 (0.58-19.11, p=0.180)
1 BoneMet1 No 36 (69.2)
2 Yes 16 (30.8) 1.24 (0.57-2.72, p=0.585) 4.22 (1.00-17.77, p=0.049)
11 LiverMet1 No 45 (86.5)
12 Yes 7 (13.5) 1.13 (0.39-3.30, p=0.818) 0.39 (0.05-2.95, p=0.360)
9 irAE.L1 No 40 (76.9)
10 Yes 12 (23.1) 0.75 (0.28-1.98, p=0.557) 10.26 (1.37-76.61, p=0.023)

Differences in OS by ORR and DCR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ ORR_12w, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## ORR_12w=No  36     21   12.6    9.56      NA
## ORR_12w=Yes 14      5     NA   20.30      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ DCR_12w, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## DCR_12w=No  19     15   9.56    8.25    18.6
## DCR_12w=Yes 31     11     NA   20.30      NA

Differences in OS by HbLow, PLR and NLR at week 0

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_0w, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##               n events median 0.95LCL 0.95UCL
## HbLow_0w=No  14      5     NA    9.76      NA
## HbLow_0w=Yes 36     22   14.8    9.56      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PLR_0w.cut, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    5 observations deleted due to missingness 
##                  n events median 0.95LCL 0.95UCL
## PLR_0w.cut=<150  8      5   14.3   11.83      NA
## PLR_0w.cut=≥150 39     20   18.6    9.76      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3 13      6   26.8   14.26      NA
## NLR_0w.cut=≥3 37     21   12.6    8.64      NA

Differences in OS by HbLow, PLR and NLR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_12w, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    3 observations deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## HbLow_12w=No  13      4     NA   14.26      NA
## HbLow_12w=Yes 36     22   12.6    8.64      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PLR_12w.cut, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    7 observations deleted due to missingness 
##                   n events median 0.95LCL 0.95UCL
## PLR_12w.cut=<150 14      6   27.2    11.8      NA
## PLR_12w.cut=≥150 31     18   15.0    11.4      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_12w.cut, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##    3 observations deleted due to missingness 
##                 n events median 0.95LCL 0.95UCL
## NLR_12w.cut=<3 16      6   27.2   20.30      NA
## NLR_12w.cut=≥3 33     20   11.4    8.02      NA

Differences in OS by irAE at L1

This is also interesting. There is no significant difference between the curves.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ irAE.L1, data = dbIOIO, 
##     type = "kaplan-meier")
## 
##              n events median 0.95LCL 0.95UCL
## irAE.L1=No  40     22   14.8   11.83      NA
## irAE.L1=Yes 12      5   27.2    7.85      NA

Differences in OS by NLR at week 0 + week 12

This is also interesting.
Patients who achieve a NLR < 3 at week 12 have better prognosis.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut + NLR_12w.cut, 
##     data = dbIOIO, type = "kaplan-meier")
## 
##    3 observations deleted due to missingness 
##                                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3, NLR_12w.cut=<3  7      2     NA   14.26      NA
## NLR_0w.cut=<3, NLR_12w.cut=≥3  6      4  18.60   11.40      NA
## NLR_0w.cut=≥3, NLR_12w.cut=<3  9      4  27.20   20.30      NA
## NLR_0w.cut=≥3, NLR_12w.cut=≥3 27     16   9.56    7.85      NA

Differences in OS by NLR at week 12 and risk

The importance of NLR at week 12 remains in IMDC risk categories.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ risk + NLR_12w.cut, 
##     data = dbIOIO, type = "kaplan-meier")
## 
##    3 observations deleted due to missingness 
##                                    n events median 0.95LCL 0.95UCL
## risk=favourable, NLR_12w.cut=≥3    1      0     NA      NA      NA
## risk=intermediate, NLR_12w.cut=<3 11      3     NA   27.20      NA
## risk=intermediate, NLR_12w.cut=≥3 13      5     NA    8.64      NA
## risk=poor, NLR_12w.cut=<3          5      3  20.30   14.75      NA
## risk=poor, NLR_12w.cut=≥3         19     15   9.56    6.77    18.6
=======================================
=======================================

ANALYSIS OF IO + VEGF POPULATION

=======================================
=======================================
=======================================

BASELINE OUTCOMES

=======================================
Dependent: Line1_IOV IO+V
Total N (%) 41 (100.0)
Best.Response CR 3 (7.3)
PD 1 (2.4)
PR 26 (63.4)
SD 11 (26.8)
ORR_12w No 21 (51.2)
Yes 18 (43.9)
(Missing) 2 (4.9)
DCR_12w No 2 (4.9)
Yes 37 (90.2)
(Missing) 2 (4.9)
OSL1fu2 OS <2y 16 (39.0)
OS 2-5y 13 (31.7)
OS ≥5y 12 (29.3)
PFSL1fu2 PFS <2y 26 (63.4)
PFS 2-5y 10 (24.4)
PFS ≥5y 5 (12.2)
=======================================

ASOCIATIONS WITH RESPONSE IN L1 IO + VEGF POPULATION

=======================================

ORR No vs Yes at week 12 and all variables

No variable is associated with ORR
No Yes p test
n 21 18
PltHigh_0w = Yes (%) 2 ( 9.5) 1 ( 5.6) 1.000
HbLow_0w = Yes (%) 6 (28.6) 8 (44.4) 0.487
NLR_0w.cut = ≥3 (%) 9 (42.9) 8 (44.4) 1.000
PLR_0w.cut = ≥150 (%) 15 (71.4) 9 (50.0) 0.298
PltHigh_12w = Yes (%) 4 (19.0) 0 ( 0.0) 0.154
HbLow_12w = Yes (%) 7 (33.3) 3 (16.7) 0.412
NLR_12w.cut = ≥3 (%) 7 (33.3) 4 (22.2) 0.680
PLR_12w.cut = ≥150 (%) 12 (60.0) 7 (38.9) 0.330
BoneMet1 = Yes (%) 5 (23.8) 4 (22.2) 1.000
LiverMet1 = Yes (%) 2 ( 9.5) 3 (16.7) 0.853
irAE.L1 = Yes (%) 5 (23.8) 2 (11.1) 0.541

DCR at week 12 and all variables

It’s quite similar to the previous analysis with ORR.
No variable is associated with ORR, but we need to considere that just a few patient had PD.
No Yes p test
n 2 37
PltHigh_0w = Yes (%) 0 ( 0.0) 3 ( 8.1) 1.000
HbLow_0w = Yes (%) 0 ( 0.0) 14 (37.8) 0.742
NLR_0w.cut = ≥3 (%) 2 (100.0) 15 (40.5) 0.358
PLR_0w.cut = ≥150 (%) 2 (100.0) 22 (59.5) 0.688
PltHigh_12w = Yes (%) 1 ( 50.0) 3 ( 8.1) 0.480
HbLow_12w = Yes (%) 1 ( 50.0) 9 (24.3) 1.000
NLR_12w.cut = ≥3 (%) 1 ( 50.0) 10 (27.0) 1.000
PLR_12w.cut = ≥150 (%) 1 (100.0) 18 (48.6) 1.000
BoneMet1 = Yes (%) 2 (100.0) 7 (18.9) 0.074
LiverMet1 = Yes (%) 0 ( 0.0) 5 (13.5) 1.000
irAE.L1 = Yes (%) 0 ( 0.0) 7 (18.9) 1.000
=======================================

PREDICTORS OF RESPONSE

=======================================
Here I’ve made a logistic regression to try to measure the relationships found in the previous analysis.
There is no variables associated with ORR or DCR.
=======================================

OVERALL SURVIVAL FIRST-LINE

=======================================
HR according to all variables
This is just to take a first look about what could be significant. Focus on univariable analysis.
Remember we are not including the variable “IMDC risk” here.
ORR and DCR are not significant (???).
Hb Low, Plt High, and NLR at week 0 are significant
PLt high and BoneMet at week 12 are significant. NLR at week 12 could be significant.
This is just a first look. Then we will need to calculate the real HR adjusting by risk.
Dependent: Survival all HR (univariable) HR (multivariable)
17 ORR_12w No 21 (53.8)
18 Yes 18 (46.2) 0.70 (0.29-1.68, p=0.423) 0.43 (0.13-1.49, p=0.186)
3 DCR_12w No 2 (5.1)
4 Yes 37 (94.9) 0.40 (0.09-1.74, p=0.221) 7.71 (0.35-169.44, p=0.195)
23 PltHigh_0w No 36 (90.0)
24 Yes 4 (10.0) 9.32 (2.36-36.80, p=0.001) 2.01 (0.18-21.79, p=0.567)
5 HbLow_0w No 25 (62.5)
6 Yes 15 (37.5) 2.19 (0.95-5.03, p=0.065) 2.33 (0.63-8.61, p=0.204)
13 NLR_0w.cut <3 23 (57.5)
14 ≥3 17 (42.5) 2.78 (1.19-6.53, p=0.019) 8.43 (1.56-45.47, p=0.013)
19 PLR_0w.cut <150 15 (37.5)
20 ≥150 25 (62.5) 1.48 (0.62-3.49, p=0.376) 0.49 (0.09-2.72, p=0.412)
25 PltHigh_12w No 35 (89.7)
26 Yes 4 (10.3) 3.44 (0.99-11.92, p=0.051) 13.54 (0.96-191.05, p=0.054)
7 HbLow_12w No 29 (74.4)
8 Yes 10 (25.6) 2.04 (0.79-5.25, p=0.140) 0.88 (0.14-5.47, p=0.889)
15 NLR_12w.cut <3 28 (71.8)
16 ≥3 11 (28.2) 1.86 (0.75-4.58, p=0.179) 0.48 (0.09-2.62, p=0.397)
21 PLR_12w.cut <150 19 (50.0)
22 ≥150 19 (50.0) 0.97 (0.41-2.30, p=0.952) 1.09 (0.24-4.91, p=0.910)
1 BoneMet1 No 32 (78.0)
2 Yes 9 (22.0) 2.50 (1.00-6.25, p=0.049) 3.44 (0.79-14.91, p=0.099)
11 LiverMet1 No 36 (87.8)
12 Yes 5 (12.2) 1.88 (0.63-5.65, p=0.259) 1.02 (0.20-5.36, p=0.978)
9 irAE.L1 No 34 (82.9)
10 Yes 7 (17.1) 0.59 (0.17-1.99, p=0.393) 0.34 (0.06-1.96, p=0.228)

Differences in OS by ORR and DCR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ ORR_12w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## ORR_12w=No  21     14   45.2    17.5      NA
## ORR_12w=Yes 18      8   41.3    31.5      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ DCR_12w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##              n events median 0.95LCL 0.95UCL
## DCR_12w=No   2      2   26.8    6.83      NA
## DCR_12w=Yes 37     20   43.8   31.64      NA

Differences in OS by Hb Low, Plt High and NLR at week 0

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_0w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    1 observation deleted due to missingness 
##               n events median 0.95LCL 0.95UCL
## HbLow_0w=No  25     12   57.8    40.3      NA
## HbLow_0w=Yes 15     11   31.5    17.5      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PltHigh_0w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    1 observation deleted due to missingness 
##                 n events median 0.95LCL 0.95UCL
## PltHigh_0w=No  36     20  45.37  34.760      NA
## PltHigh_0w=Yes  4      3   7.39   0.953      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    1 observation deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3 23     11   85.0    31.6      NA
## NLR_0w.cut=≥3 17     12   31.5    21.8      NA

Differences in OS by Hb Low, Plt High and NLR at week 12

## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ HbLow_12w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                n events median 0.95LCL 0.95UCL
## HbLow_12w=No  29     16   46.7    34.8      NA
## HbLow_12w=Yes 10      6   21.8    14.6      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ PltHigh_12w, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                  n events median 0.95LCL 0.95UCL
## PltHigh_12w=No  35     19   45.4   34.76      NA
## PltHigh_12w=Yes  4      3   10.2    6.83      NA
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_12w.cut, data = dbIOV, 
##     type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                 n events median 0.95LCL 0.95UCL
## NLR_12w.cut=<3 28     15   46.7    40.3      NA
## NLR_12w.cut=≥3 11      7   21.8    14.7      NA

Differences in OS by NLR at week 0 + week 12

This is also interesting.
Patients who achieve a NLR < 3 at week 12 have better prognosis.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ NLR_0w.cut + NLR_12w.cut, 
##     data = dbIOV, type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                                n events median 0.95LCL 0.95UCL
## NLR_0w.cut=<3, NLR_12w.cut=<3 19      9   85.0    41.3      NA
## NLR_0w.cut=<3, NLR_12w.cut=≥3  3      1     NA    17.5      NA
## NLR_0w.cut=≥3, NLR_12w.cut=<3  9      6   40.3    24.0      NA
## NLR_0w.cut=≥3, NLR_12w.cut=≥3  8      6   21.8    14.6      NA

Differences in OS by NLR at week 12 and risk

The importance of NLR at week 12 remains in all IMDC risk categories.
## Call: survfit(formula = Surv(OSL1m, Ddeathcnsr) ~ risk + NLR_12w.cut, 
##     data = dbIOV, type = "kaplan-meier")
## 
##    2 observations deleted due to missingness 
##                                    n events median 0.95LCL 0.95UCL
## risk=favourable, NLR_12w.cut=<3    7      2     NA   29.21      NA
## risk=intermediate, NLR_12w.cut=<3 19     11   46.7   40.31      NA
## risk=intermediate, NLR_12w.cut=≥3  8      5   31.5   14.69      NA
## risk=poor, NLR_12w.cut=<3          2      2   24.3    7.39      NA
## risk=poor, NLR_12w.cut=≥3          3      2   18.2   14.55      NA