Reading Data

library(readxl)
Warning: package 'readxl' was built under R version 4.2.3
Data<-read_excel("E:/STAT 50/Reading.xlsx")
New names:
• `` -> `...1`
Data
# A tibble: 40 × 31
    ...1 GPRE1 GPOST1 SPRE2 SPOST2 GPRE3 GPOST3 GPRE4 GPOST4 PPRE5 PPOST5 SPRE6
   <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>
 1     1     5      4     1      3     3      2     1      1     5      1     1
 2     2     3      3     2      2     1      2     2      3     5      2     2
 3     3     5      3     3      4     1      2     2      3     4      4     2
 4     4     5      4     5      5     5      4     5      3     4      5     2
 5     5     2      3     3      4     4      2     3      2     2      3     1
 6     6     2      2     2      2     1      2     4      4     5      4     3
 7     7     3      2     2      2     3      3     4      1     5      2     2
 8     8     3      4     3      2     4      3     2      4     3      3     3
 9     9     3      3     2      3     3      4     4      4     4      4     2
10    10     2      3     2      2     2      2     1      2     1      3     3
# … with 30 more rows, and 19 more variables: SPOST6 <dbl>, GPRE7 <dbl>,
#   GPOST7 <dbl>, SPRE8 <dbl>, SPOST8 <dbl>, PPRE9 <dbl>, PPOST9 <dbl>,
#   GPRE10 <dbl>, GPOST10 <dbl>, GPRE11 <dbl>, GPOST11 <dbl>, GPRE12 <dbl>,
#   GPOST12 <dbl>, GPRE13 <dbl>, GPOST13 <dbl>, GPRE14 <dbl>, GPOST14 <dbl>,
#   PPRE15 <dbl>, PPOST15 <dbl>
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
Gupit1<-Data%>%
  mutate('Global Strategy 1' = `GPOST1`-`GPRE1` ) %>%
  mutate('Global Strategy 3' = `GPOST3`-`GPRE3`) %>%
  mutate('Global Strategy 4' = `GPOST4`-`GPRE4`) %>%
  mutate('Global Strategy 7' = `GPOST7`-`GPRE7`) %>%
  mutate('Global Strategy 10' = `GPOST10`-`GPRE10`) %>%
  mutate('Global Strategy 11' = `GPOST11`-`GPRE11`) %>%
  mutate('Global Strategy 12' = `GPOST12`-`GPRE12`) %>%
  mutate('Global Strategy 13' = `GPOST13`-`GPRE13`) %>%
  mutate('Global Strategy 14' = `GPOST14`-`GPRE14`) %>%
  mutate('Support Strategy 2' = `SPOST2`-`SPRE2` ) %>%
  mutate('Support Strategy 6' = `SPOST6`-`SPRE6`) %>%
  mutate('Support Strategy 8' = `SPOST8`-`SPRE8`) %>%
  mutate('Problem Solving 15' = `PPOST15`-`PPRE15` ) %>%
  mutate('Problem Solving 5' = `PPOST5`-`PPRE5`) %>%
  mutate('Problem Solving 9' = `PPOST9`-`PPRE9`)
library(ggpubr)
Warning: package 'ggpubr' was built under R version 4.2.3
Loading required package: ggplot2
library(rstatix)
Warning: package 'rstatix' was built under R version 4.2.3

Attaching package: 'rstatix'
The following object is masked from 'package:stats':

    filter
Data2 <- Gupit1%>% 
  gather(key ="GlobalStrategy", value = "Score", 'Global Strategy 1', 'Global Strategy 3','Global Strategy 4', 'Global Strategy 7','Global Strategy 10',  'Global Strategy 11', 'Global Strategy 12', 'Global Strategy 13', 'Global Strategy 14')%>%
  convert_as_factor(GlobalStrategy)

Global Strategy

Data3<-Data2%>%
  group_by(GlobalStrategy) %>% 
   get_summary_stats(Score, type = "mean_sd")
Data3
# A tibble: 9 × 5
  GlobalStrategy     variable     n   mean    sd
  <fct>              <fct>    <dbl>  <dbl> <dbl>
1 Global Strategy 1  Score       40  0.375 1.19 
2 Global Strategy 10 Score       40 -0.025 1.37 
3 Global Strategy 11 Score       40  0.2   1.47 
4 Global Strategy 12 Score       40  0.2   0.992
5 Global Strategy 13 Score       40  0.475 1.01 
6 Global Strategy 14 Score       40  0.175 1.26 
7 Global Strategy 3  Score       40 -0.225 0.974
8 Global Strategy 4  Score       40  0.25  1.17 
9 Global Strategy 7  Score       40  0.325 1.25 

Support Strategy

Data5 <- Gupit1%>%
  gather(key ="SupportStrategy", value = "Score", "Support Strategy 2", "Support Strategy 6","Support Strategy 8")%>%
  convert_as_factor(SupportStrategy)
Data6<-Data5%>%
  group_by(SupportStrategy) %>%
   get_summary_stats(Score, type = "mean_sd")
Data6
# A tibble: 3 × 5
  SupportStrategy    variable     n  mean    sd
  <fct>              <fct>    <dbl> <dbl> <dbl>
1 Support Strategy 2 Score       40 0.35   1.23
2 Support Strategy 6 Score       40 0.1    1.37
3 Support Strategy 8 Score       40 0.425  1.20

Problem-Solving

Data8 <- Gupit1%>%
  gather(key ="ProblemSolving", value = "Score", "Problem Solving 15", "Problem Solving 5","Problem Solving 9")%>%
  convert_as_factor(ProblemSolving)
Data9<-Data8%>%
  group_by(ProblemSolving) %>%
   get_summary_stats(Score, type = "mean_sd")
Data9
# A tibble: 3 × 5
  ProblemSolving     variable     n   mean    sd
  <fct>              <fct>    <dbl>  <dbl> <dbl>
1 Problem Solving 15 Score       40  0.95   1.36
2 Problem Solving 5  Score       40 -0.25   1.60
3 Problem Solving 9  Score       40  0.075  1.47

Test of Difference between Post test scores and Pre-test Scores

Global Strategy

Significant difference between Post Global Strategy 1 and Pre Global Strategy 1

t.test(Gupit1$'Global Strategy 1', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 1"
t = 1.9904, df = 39, p-value = 0.05359
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.006086966  0.756086966
sample estimates:
mean of x 
    0.375 

Significant difference between Post Global Strategy 3 and Pre Global Strategy 3

t.test(Gupit1$'Global Strategy 3', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 3"
t = -1.4615, df = 39, p-value = 0.1519
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.53640194  0.08640194
sample estimates:
mean of x 
   -0.225 

Significant difference between Post Global Strategy 4 and Pre Global Strategy 4

t.test(Gupit1$'Global Strategy 4', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 4"
t = 1.35, df = 39, p-value = 0.1848
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.1245796  0.6245796
sample estimates:
mean of x 
     0.25 

Significant difference between Post Global Strategy 7 and Pre Global Strategy 7

t.test(Gupit1$'Global Strategy 7', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 7"
t = 1.6466, df = 39, p-value = 0.1077
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.07423601  0.72423601
sample estimates:
mean of x 
    0.325 

Significant difference between Post Global Strategy 10 and Pre Global Strategy 10

t.test(Gupit1$'Global Strategy 10', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 10"
t = -0.11559, df = 39, p-value = 0.9086
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.462476  0.412476
sample estimates:
mean of x 
   -0.025 

Significant difference between Post Global Strategy 11 and Pre Global Strategy 11

t.test(Gupit1$'Global Strategy 11', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 11"
t = 0.85985, df = 39, p-value = 0.3951
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.2704771  0.6704771
sample estimates:
mean of x 
      0.2 

Significant difference between Post Global Strategy 12 and Pre Global Strategy 12

t.test(Gupit1$'Global Strategy 12', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 12"
t = 1.2748, df = 39, p-value = 0.2099
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.1173459  0.5173459
sample estimates:
mean of x 
      0.2 

Significant difference between Post Global Strategy 13 and Pre Global Strategy 13

t.test(Gupit1$'Global Strategy 13', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 13"
t = 2.9673, df = 39, p-value = 0.005111
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.1512115 0.7987885
sample estimates:
mean of x 
    0.475 

Significant difference between Post Global Strategy 14 and Pre Global Strategy 14

t.test(Gupit1$'Global Strategy 14', mu=0)

    One Sample t-test

data:  Gupit1$"Global Strategy 14"
t = 0.87942, df = 39, p-value = 0.3846
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.2275072  0.5775072
sample estimates:
mean of x 
    0.175 

Support Strategy

Significant difference between Post Support Strategy 2 and Pre Support Global Strategy 2

t.test(Gupit1$'Support Strategy 2', mu=0)

    One Sample t-test

data:  Gupit1$"Support Strategy 2"
t = 1.7982, df = 39, p-value = 0.07989
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.04369597  0.74369597
sample estimates:
mean of x 
     0.35 

Significant difference between Post Support Strategy 6 and Pre Support Global Strategy 6

t.test(Gupit1$'Support Strategy 6', mu=0)

    One Sample t-test

data:  Gupit1$"Support Strategy 6"
t = 0.46039, df = 39, p-value = 0.6478
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.3393454  0.5393454
sample estimates:
mean of x 
      0.1 

Significant difference between Post Support Strategy 8 and Pre Support Global Strategy 8

t.test(Gupit1$'Support Strategy 8', mu=0)

    One Sample t-test

data:  Gupit1$"Support Strategy 8"
t = 2.2477, df = 39, p-value = 0.03033
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.04253912 0.80746088
sample estimates:
mean of x 
    0.425 

Significant difference between Post Support Strategy 5 and Pre Support Global Strategy 5

t.test(Gupit1$'Problem Solving 5', mu=0)

    One Sample t-test

data:  Gupit1$"Problem Solving 5"
t = -0.9899, df = 39, p-value = 0.3283
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.7608328  0.2608328
sample estimates:
mean of x 
    -0.25 

Significant difference between Post Support Strategy 9 and Pre Support Global Strategy 9

t.test(Gupit1$'Problem Solving 9', mu=0)

    One Sample t-test

data:  Gupit1$"Problem Solving 9"
t = 0.32173, df = 39, p-value = 0.7494
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.3965211  0.5465211
sample estimates:
mean of x 
    0.075 

Significant difference between Post Support Strategy 15 and Pre Support Global Strategy 15

t.test(Gupit1$'Problem Solving 15', mu=0)

    One Sample t-test

data:  Gupit1$"Problem Solving 15"
t = 4.4251, df = 39, p-value = 7.533e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.5157582 1.3842418
sample estimates:
mean of x 
     0.95