Carga de datos

library(wooldridge)
data("hprice1")
head(force(hprice1),n=5)
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

Modelo Estimado

library(stargazer)
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo_estimado,type = "text",title = "Modelo Estimado")
## 
## Modelo Estimado
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                      0.002***          
##                               (0.001)          
##                                                
## sqrft                        0.123***          
##                               (0.013)          
##                                                
## bdrms                         13.853           
##                               (9.010)          
##                                                
## Constant                      -21.770          
##                              (29.475)          
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                             0.672           
## Adjusted R2                    0.661           
## Residual Std. Error      59.833 (df = 84)      
## F Statistic           57.460*** (df = 3; 84)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Indice de condición

#Matriz X
mat_X<-model.matrix(modelo_estimado)
stargazer(head(mat_X,n=6),type = "text",title = "Matriz X")
## 
## Matriz X
## =================================
##   (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1      1       6,126  2,438   4  
## 2      1       9,903  2,076   3  
## 3      1       5,200  1,374   3  
## 4      1       4,600  1,448   3  
## 5      1       6,095  2,514   4  
## 6      1       8,566  2,754   5  
## ---------------------------------
#Matriz XX
mat_XX<-t(mat_X)%*%mat_X
stargazer(mat_XX,type = "text",title = "Matriz XX")
## 
## Matriz XX
## ==============================================================
##             (Intercept)    lotsize         sqrft       bdrms  
## --------------------------------------------------------------
## (Intercept)     88         793,748        177,205       314   
## lotsize       793,748   16,165,159,010 1,692,290,257 2,933,767
## sqrft         177,205   1,692,290,257   385,820,561   654,755 
## bdrms           314       2,933,767       654,755      1,182  
## --------------------------------------------------------------
#Normalización de la matriz XX
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(mat_XX))))
stargazer(Sn,type = "text",title = "Matriz de normalización")
## 
## Matriz de normalización
## ==========================
## 0.107    0      0      0  
## 0     0.00001   0      0  
## 0        0    0.0001   0  
## 0        0      0    0.029
## --------------------------
#Matriz XX normalizada
normalizada_XX<-(Sn%*%mat_XX)%*%Sn
stargazer(normalizada_XX,type = "text",title = "Matriz Normalizada")
## 
## Matriz Normalizada
## =======================
## 1     0.666 0.962 0.974
## 0.666   1   0.678 0.671
## 0.962 0.678   1   0.970
## 0.974 0.671 0.970   1  
## -----------------------
#Autovalores de la matriz XX normalizada
lambdas<-eigen(normalizada_XX,symmetric = TRUE)
stargazer(lambdas$values,type = "text",title = "Autovalores de matriz XX normalizada")
## 
## Autovalores de matriz XX normalizada
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
#Cálculo de K (número de condición)
K<-sqrt(max(lambdas$values)/min(lambdas$values))
stargazer(K,title = "K (número de condición)",type = "text")
## 
## K (número de condición)
## ======
## 11.868
## ------

Como k(x)=<20 se considera multicolinealidad leve, no sería un problema.

Cálculo del Indice de Condición usando la librería “mctest”

library(mctest)
matriz_X<-model.matrix(modelo_estimado)
mctest(mod = modelo_estimado)
## 
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf, 
##     theil = theil, cn = cn)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test

Cálculo del Indice de Condición usando la librería “olsrr”

library(olsrr)
ols_eigen_cindex(model = modelo_estimado)
##   Eigenvalue Condition Index   intercept      lotsize       sqrft       bdrms
## 1 3.48158596        1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380        2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083        9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941       11.867781 0.516954804 0.0000308514 0.173697079 0.975025872

Prueba de Farrar-Glaubar

#Cálculo de R
Zn<-scale(mat_X[,-1])
stargazer(head(Zn,n=6),type = "text",title = "Cálculo de R")
## 
## Cálculo de R
## =======================
##   lotsize sqrft  bdrms 
## -----------------------
## 1 -0.284  0.735  0.513 
## 2  0.087  0.108  -0.675
## 3 -0.375  -1.108 -0.675
## 4 -0.434  -0.980 -0.675
## 5 -0.287  0.867  0.513 
## 6 -0.045  1.283  1.702 
## -----------------------
#Calcular la matriz R 
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R,type = "text",title = "Calcular la matriz R",digits = 4)
## 
## Calcular la matriz R
## =============================
##         lotsize sqrft  bdrms 
## -----------------------------
## lotsize    1    0.1838 0.1363
## sqrft   0.1838    1    0.5315
## bdrms   0.1363  0.5315   1   
## -----------------------------
#Calcular R
determinante_R<-det(R)
stargazer(determinante_R,type = "text",title = "R")
## 
## R
## =====
## 0.692
## -----

Aplicando la prueba Farrer Glaubar (Barlett)

m<-ncol(mat_X[,-1])
n<-nrow(mat_X[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122

Valor Critico

gl<-m*(m-1)/2
VC<-qchisq(p=0.95,df=gl)
print(VC)
## [1] 7.814728

Regla de decisión: Como chi_FG >= VC, se rechaza la Ho, por lo tanto hay evidencia de colinealidad entre los regresores

Cálculo de FG utilizando “mctest”

library(mctest)
mctest::omcdiag(mod = modelo_estimado)
## 
## Call:
## mctest::omcdiag(mod = modelo_estimado)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test
library(fastGraph)
## Warning: package 'fastGraph' was built under R version 4.2.3
alpha_sig<-0.05
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
GL<-gl
vc<-qchisq(1-alpha_sig,gl,lower.tail=TRUE)
shadeDist(chi_FG,ddist = "dchisq",
          parm1 = gl,
          lower.tail = FALSE, xmin = 0,
          sub=paste("VC:",round(VC,2),"","chi_FG:",round(chi_FG,2)))

Cálculo de FG usando “psych”

library(psych)
FG_test<-cortest.bartlett(mat_X[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
## 
## $p.value
## [1] 0.0000007065806
## 
## $df
## [1] 3

Factores Inflacionarios de la Varianza (FIV)

print(R)
##           lotsize     sqrft     bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft   0.1838422 1.0000000 0.5314736
## bdrms   0.1363256 0.5314736 1.0000000
#Inversa de la matriz de correlación R
R_inversa<-solve(R)
stargazer(R_inversa,title = "Inversa de la matriz de correlación R",type = "text")
## 
## Inversa de la matriz de correlación R
## =============================
##         lotsize sqrft  bdrms 
## -----------------------------
## lotsize  1.037  -0.161 -0.056
## sqrft   -0.161  1.419  -0.732
## bdrms   -0.056  -0.732 1.397 
## -----------------------------
#VIF`s para el modelo estimado
VIFs<-diag(R_inversa)
stargazer(VIFs,type = "text",title = "VIF`s para el modelo estimado")
## 
## VIF`s para el modelo estimado
## ===================
## lotsize sqrft bdrms
## -------------------
## 1.037   1.419 1.397
## -------------------

Cálculo de los VIF`s usando “performance”

library(performance)
VIFS<-multicollinearity(x = modelo_estimado,verbose = FALSE)
VIFS
## # Check for Multicollinearity
## 
## Low Correlation
## 
##     Term  VIF    VIF 95% CI Increased SE Tolerance Tolerance 95% CI
##  lotsize 1.04 [1.00, 11.02]         1.02      0.96     [0.09, 1.00]
##    sqrft 1.42 [1.18,  1.98]         1.19      0.70     [0.51, 0.85]
##    bdrms 1.40 [1.17,  1.95]         1.18      0.72     [0.51, 0.86]
plot(VIFS)

Cálculo de los VIF`s usando “car”

library(car)
VIFS_Car<-vif(modelo_estimado)
stargazer(VIFS_Car,title = "VIF`s usando",type = "text")
## 
## VIF`s usando
## ===================
## lotsize sqrft bdrms
## -------------------
## 1.037   1.419 1.397
## -------------------

Cálculo de los VIF`s usando “mctest”

mc.plot(mod = modelo_estimado,vif = 2)