Importing the dataset
dataset = read.csv('C:/RClass/Position_Salaries.csv')
dataset = dataset[2:3]
Splitting the dataset into the Training set and Test set
# install.packages('caTools')
# library(caTools)
# set.seed(2023)
# split = sample.split(dataset$Salary, SplitRatio = 0.8)
# training_set = subset(dataset, split == TRUE)
# test_set = subset(dataset, split == FALSE)
Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
Fitting Linear Regression to the dataset
lin_reg = lm(formula = Salary ~.,
data = dataset)
summary(lin_reg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -170818 -129720 -40379 65856 386545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -195333 124790 -1.565 0.15615
## Level 80879 20112 4.021 0.00383 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182700 on 8 degrees of freedom
## Multiple R-squared: 0.669, Adjusted R-squared: 0.6277
## F-statistic: 16.17 on 1 and 8 DF, p-value: 0.003833
Fitting Polynomial Regression to the dataset
dataset$Level2 = dataset$Level^2
dataset$Level3 = dataset$Level^3
dataset$Level4 = dataset$Level^4
poly_reg = lm(formula = Salary~.,
data = dataset)
summary(poly_reg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## -8357 18240 1358 -14633 -11725 6725 15997 10006 -28695 11084
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 184166.7 67768.0 2.718 0.04189 *
## Level -211002.3 76382.2 -2.762 0.03972 *
## Level2 94765.4 26454.2 3.582 0.01584 *
## Level3 -15463.3 3535.0 -4.374 0.00719 **
## Level4 890.2 159.8 5.570 0.00257 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20510 on 5 degrees of freedom
## Multiple R-squared: 0.9974, Adjusted R-squared: 0.9953
## F-statistic: 478.1 on 4 and 5 DF, p-value: 1.213e-06
Visualizing the Linear Regression results
# install.packages('ggplot2')
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.3
ggplot() +
geom_point(aes(x=dataset$Level, y=dataset$Salary), color='red') +
geom_line(aes(x=dataset$Level, y=predict(lin_reg, newdata=dataset)), color='blue') +
ggtitle('Truth or Bluff (Linear Regression)') +
xlab('Level') + ylab('Salary')

Visualizing the Polynomial Regression results
ggplot() +
geom_point(aes(x=dataset$Level, y=dataset$Salary), color='red') +
geom_line(aes(x=dataset$Level, y=predict(poly_reg, newdata=dataset)), color='blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') + ylab('Salary')

Predicting a new result with Linear Regression
y_pred = predict(lin_reg, data.frame(Level=6.5))
y_pred
## 1
## 330378.8
Predicting a new result with Polynomial Regression
y_pred = predict(poly_reg, data.frame(Level=6.5,
Level2=6.5^2,
Level3=6.5^3,
Level4=6.5^4))
y_pred
## 1
## 158862.5
Visualising the Regression Model results (for higher resolution and
smoother curve)
library(ggplot2)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(poly_reg,
newdata = data.frame(Level = x_grid,
Level2 = x_grid^2,
Level3 = x_grid^3,
Level4 = x_grid^4))),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
