library(AER);library(stargazer)
## Warning: package 'AER' was built under R version 4.2.3
## Zorunlu paket yükleniyor: car
## Warning: package 'car' was built under R version 4.2.3
## Zorunlu paket yükleniyor: carData
## Warning: package 'carData' was built under R version 4.2.3
## Zorunlu paket yükleniyor: lmtest
## Warning: package 'lmtest' was built under R version 4.2.3
## Zorunlu paket yükleniyor: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: sandwich
## Warning: package 'sandwich' was built under R version 4.2.3
## Zorunlu paket yükleniyor: survival
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
data(mroz, package='wooldridge')
oursamples <- subset(mroz, !is.na(wage))
with (oursamples, cov (log (wage), educ) / var (educ))
## [1] 0.1086487
with (oursamples, cov (log (wage), fatheduc)/ cov (educ, fatheduc))
## [1] 0.05917348
reg.ols <- lm (log (wage) ~ educ, data=oursamples)
reg.iv <- ivreg (log (wage) ~ educ | fatheduc, data=oursamples)
stargazer (reg.ols, reg.iv, type="text")
##
## ===================================================================
## Dependent variable:
## ------------------------------------
## log(wage)
## OLS instrumental
## variable
## (1) (2)
## -------------------------------------------------------------------
## educ 0.109*** 0.059*
## (0.014) (0.035)
##
## Constant -0.185 0.441
## (0.185) (0.446)
##
## -------------------------------------------------------------------
## Observations 428 428
## R2 0.118 0.093
## Adjusted R2 0.116 0.091
## Residual Std. Error (df = 426) 0.680 0.689
## F Statistic 56.929*** (df = 1; 426)
## ===================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library (AER); library (stargazer)
data(card, package='wooldridge')
redf<-lm (educ ~ nearc4+exper+I (exper^2) +black+smsa+south+smsa66+reg662+ reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)
ols<-lm (log (wage) ~educ+exper+I(exper^2) +black+smsa+south+smsa66+reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669, data=card)
iv <-ivreg (log (wage)~ educ+exper+I (exper^2)+black+smsa+south+smsa66+ reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669| nearc4+exper+I (exper^2) +black+smsa+south+smsa66+ reg662+reg663+reg664+reg665+reg666+reg667+reg668+reg669 , data=card)
stargazer(redf, ols, iv, type="text", keep=c("ed", "near", "exp", "bl"), keep.stat=c("n", "rsq"))
##
## =============================================
## Dependent variable:
## --------------------------------
## educ log(wage)
## OLS OLS instrumental
## variable
## (1) (2) (3)
## ---------------------------------------------
## nearc4 0.320***
## (0.088)
##
## educ 0.075*** 0.132**
## (0.003) (0.055)
##
## exper -0.413*** 0.085*** 0.108***
## (0.034) (0.007) (0.024)
##
## I(exper2) 0.001 -0.002*** -0.002***
## (0.002) (0.0003) (0.0003)
##
## black -0.936*** -0.199*** -0.147***
## (0.094) (0.018) (0.054)
##
## ---------------------------------------------
## Observations 3,010 3,010 3,010
## R2 0.477 0.300 0.238
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library (AER); library (stargazer)
data(mroz, package='wooldridge')
#restrict to non-missing wage observations
oursample <- subset(mroz, !is.na (wage))
#1st stage: reduced form
stagel <- lm (educ~exper+I(exper^2)+motheduc+fatheduc, data=oursample)
man.2SLS<-lm (log (wage)~fitted(stagel) +exper+I (exper^2), data=oursample)
#Automatic 2SLS estimation
aut.2SLS<-ivreg(log (wage)~educ+exper+I(exper^2) | motheduc+fatheduc+exper+I(exper^2), data=oursample)
#Pretty regression table
stargazer(stagel,man.2SLS,aut.2SLS, type="text",keep.stat=c("n","rsq"))
##
## =============================================
## Dependent variable:
## ------------------------------
## educ log(wage)
## OLS OLS instrumental
## variable
## (1) (2) (3)
## ---------------------------------------------
## fitted(stagel) 0.061*
## (0.033)
##
## educ 0.061*
## (0.031)
##
## exper 0.045 0.044*** 0.044***
## (0.040) (0.014) (0.013)
##
## I(exper2) -0.001 -0.001** -0.001**
## (0.001) (0.0004) (0.0004)
##
## motheduc 0.158***
## (0.036)
##
## fatheduc 0.190***
## (0.034)
##
## Constant 9.103*** 0.048 0.048
## (0.427) (0.420) (0.400)
##
## ---------------------------------------------
## Observations 428 428 428
## R2 0.211 0.050 0.136
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library (AER); library (lmtest)
data(mroz, package='wooldridge')
oursample <- subset (mroz, !is.na (wage))
stagel<-lm (educ~exper+I(exper^2) +motheduc+fatheduc, data=oursample)
stage2<-lm (log (wage)~educ+exper+I(exper^2) +resid (stagel), data=oursample)
coeftest(stage2)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04810030 0.39457526 0.1219 0.9030329
## educ 0.06139663 0.03098494 1.9815 0.0481824 *
## exper 0.04417039 0.01323945 3.3363 0.0009241 ***
## I(exper^2) -0.00089897 0.00039591 -2.2706 0.0236719 *
## resid(stagel) 0.05816661 0.03480728 1.6711 0.0954406 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1