Seja o modelo \(Y_i=\beta+\beta_2 X_i+\varepsilon_i\), então se obtém \(\varepsilon_i=Y_i-\beta_0-\beta_1X_i\). No métodos dos mínimos quadrados ordinários deve-se minimizar a soma de quadrados dos erros dada por \(Z=\displaystyle\sum_{i=1}^n \varepsilon_i^2=\displaystyle\sum_{i=1}^n(Y_i-\beta_0-\beta_1 X_i)^2\). Para atingir esse objetivo deve-se encontrar as derivadas parciais em relação a cada um dos paramêtros da regressão e que são dadas por, \[\begin{eqnarray*} \dfrac{\partial Z}{\partial \beta_0}&=&-2\displaystyle\sum_{i=1}^n(Y_i-\beta_0-\beta_1X_i) \\ \dfrac{\partial Z}{\partial \beta_1}&=&-2\displaystyle\sum_{i=1}^n(Y_i-\beta_0-\beta_1 X_i)X_i \end{eqnarray*}\] Agora deve-se igualar as derivadas acima a zero para encontrar os respectivos valores de mínimo: \[\begin{eqnarray*} \dfrac{\partial Z}{\partial \beta_0}&=&0\\ -2\displaystyle\sum_{i=1}^n(Y_i-\hat{\beta_0}-\hat{\beta_1} X_i)&=&0 \\ \displaystyle\sum_{i=1}^n(Y_i-\hat{\beta_0}-\hat{\beta_1} X_i)&=&0 \\ \displaystyle\sum_{i=1}^n Y_i-\hat{\beta_0} n-\displaystyle\sum_{i=1}^n \hat{\beta_1} X_i &=&0 \\ -\hat{\beta_0} n&=& \displaystyle\sum_{i=1}^n \hat{\beta_1} X_i-\displaystyle\sum_{i=1}^n Y_i \\ \hat{\beta_0} n&=&-\displaystyle\sum_{i=1}^n \hat{\beta_1} X_i+\displaystyle\sum_{i=1}^n Y_i \\ \hat{\beta_0}&=&-\bar{X}\hat{\beta_1}+\bar{Y} \\ \hat{\beta_0}&=&\bar{Y}-\bar{X}\hat{\beta_1} \end{eqnarray*}\] E, \[\begin{eqnarray*} \dfrac{\partial Z}{\partial \beta_1}&=&0 \\ -2\displaystyle\sum_{i=1}^n(Y_i-\hat{\beta_0}-\hat{\beta_1} X_i)X_i &=& 0 \\ \displaystyle\sum_{i=1}^n(Y_i-\hat{\beta_0}-\hat{\beta_1} X_i)X_i &=& 0 \\ \displaystyle\sum_{i=1}^n (X_iY_i-\hat{\beta_0}X_i-\hat{\beta_1} X_i^2) &=& 0 \\ -\hat{\beta_1} \displaystyle\sum_{i=1}^n X_i^2-\hat{\beta_0}\displaystyle\sum_{i=1}^n X_i &=&-\hat{\beta_1} \displaystyle\sum_{i=1}^n X_i^2 \\ -\hat{\beta_1} \displaystyle\sum_{i=1}^n X_i^2+\left(\dfrac{\hat{\beta_1}}{n}\displaystyle \sum_{i=1}^n X_i-\dfrac{1}{n}\displaystyle \sum_{i=1}^n Y_i\right)\displaystyle\sum_{i=1}^n X_i &=& -\displaystyle\sum_{i=1}^n X_iY_i\\ -\hat{\beta_1} \displaystyle\sum_{i=1}^n X_i^2+\dfrac{\hat{\beta_1}}{n}\left(\sum_{i=1}^n X_i\right)^2-\dfrac{1}{n}\displaystyle \sum_{i=1}^n X_i\displaystyle\sum_{i=1}^n Y_i &=& - \displaystyle\sum_{i=1}^n X_iY_i \\ \hat{\beta_1}\left(\dfrac{1}{n}\left(\displaystyle\sum_{i=1}^nX_i\right)^2-\sum_{i=1}^n X_i^2 \right) &=&\dfrac{1}{n}\displaystyle\sum_{i=1}^n X_i\sum_{i=1}^nY_i - \displaystyle\sum_{i=1}^n X_iY_i \\ \hat{\beta_1}&=&\dfrac{\displaystyle\sum_{i=1}^n X_iY_i-\dfrac{1}{n}\displaystyle\sum_{i=1}^n X_i\sum_{i=1}^nY_i}{\displaystyle\sum_{i=1}^n X_i^2-\dfrac{1}{n}\left(\displaystyle\sum_{i=1}^nX_i\right)^2} \end{eqnarray*}\]
Repare que \(S_{XY}=\displaystyle\sum_{i=1}^n X_iY_i-\dfrac{1}{n}\displaystyle\sum_{i=1}^n X_i\sum_{i=1}^nY_i\) e \(S_{XX}=\displaystyle\sum_{i=1}^n X_i^2-\dfrac{1}{n}\left(\displaystyle\sum_{i=1}^nX_i\right)^2\), logo \(\hat{\beta_1}=\dfrac{S_{XY}}{S_{XX}}\). Portanto, o modelo de regressão linear simples ajustado é dado por \(\hat{y_i}=\hat{\beta_0}+\hat{\beta}_1X_1\).
Os estimadores dados pelo método dos mínimos quadrados ordinários tem a importante propriedade de não tendenciosidade. Ou seja, \(E(\hat{\beta}_1)=\beta_1\) e \(E(\hat{\beta}_0)=\beta_0\). Seja \(a_i=\dfrac{(X_i-\bar{X})}{S_{XX}}\), então \(\hat{\beta}_1=\dfrac{S_{XY}}{S_{XX}}=\displaystyle \sum_{i=1}^n a_iY_i\). Assim, \[\begin{eqnarray*} E(\hat{\beta}_1)=E\left(\displaystyle \sum_{i=1}^n a_iY_i\right)=\displaystyle \sum_{i=1}^n a_iE(Y_i)=\displaystyle \sum_{i=1}^n a_i(\beta_0+\beta_1X_i)=\beta_0 \displaystyle \sum_{i=1}^n a_i+\beta_1 \displaystyle \sum_{i=1}^n a_iX_i \end{eqnarray*}\]
Repare que \(\displaystyle \sum_{i=1}^n a_i=\dfrac{\displaystyle \sum_{i=1}^n (X_i-\bar{X})}{S_{XX}}=0\) e \[\begin{eqnarray*} \displaystyle \sum_{i=1}^n a_iX_i&=&\dfrac{\displaystyle \sum_{i=1}^n (X_i-\bar{X})X_i}{S_{XX}}=\dfrac{\displaystyle \sum_{i=1}^n X_i^2-\bar{X}\displaystyle \sum_{i=1}^nX_i}{S_{XX}} \\ &=& \dfrac{\displaystyle \sum_{i=1}^n X_i^2-\dfrac{1}{n}\left(\displaystyle \sum_{i=1}^nX_i\right)^2}{S_{XX}} =\dfrac{S_{XX}}{S_{XX}}=1. \end{eqnarray*}\] Retornando a \(E(\hat{\beta}_1)\): \[\begin{eqnarray*} E(\hat{\beta}_1)=\beta_0 \displaystyle \sum_{i=1}^n a_i+\beta_1 \displaystyle \sum_{i=1}^na_iX_i=0+\beta_1 \cdot 1 =\beta_1 \end{eqnarray*}\]
Para \(E(\hat{\beta}_0)\) tem-se que: \[\begin{eqnarray*} E(\hat{\beta}_0)&=&E(\bar{Y}-\hat{\beta}_1\bar{X})=E(\bar{Y})-\bar{X}E(\hat{\beta}_1)=\dfrac{1}{n}E\left(\displaystyle\sum_{i=1}^n Y_i\right)-\bar{X}\beta_1\\ &=&\dfrac{1}{n}\displaystyle\sum_{i=1}^n E(Y_i)-\bar{X}\beta_1= \dfrac{1}{n}\displaystyle\sum_{i=1}^n(\beta_0+\beta_1 X_i)-\bar{X}\beta_1=\dfrac{1}{n}\cdot n \beta_0+\beta_1 \bar{X}-\bar{X}\beta_1=\beta_0 \end{eqnarray*}\]
Assim, está vericado que \(\hat{\beta}_0\) e \(\hat{\beta}_1\) são estimadores não viesados. Vamos agora estudar as variâncias de cada um dos estimadores: \[\begin{eqnarray*} V(\hat{\beta}_1)&=&V(\displaystyle \sum_{i=1}^n a_i Y_i)=\displaystyle \sum_{i=1}^n a_i^2 V(Y_i)=\displaystyle \sum_{i=1}^n a_i^2 \sigma^2 \\ &=& \sigma^2 \displaystyle \sum_{i=1}^n a_i^2 =\sigma^2 \displaystyle \sum_{i=1}^n a_i^2 =\sigma^2 \dfrac{(X_i-\bar{X})^2}{S^2_{XX}}=\dfrac{\sigma^2 \cdot S_{XX}}{S^2_{XX}}=\dfrac{\sigma^2}{S_{XX}} \\ V(\hat{\beta}_0)&=&V(\bar{Y}-\hat{\beta}_1\bar{X})=V(\bar{Y})+\bar{X}^2V(\hat{\beta}_1)-2\bar{X}COV(\bar{Y},\hat{\beta_1})=\dfrac{\sigma^2}{n}+\dfrac{\bar{X}\sigma^2}{S_{XX}}-2\bar{X}COV(\bar{Y},\hat{\beta}_1) \end{eqnarray*}\] Em que, \[\begin{eqnarray*} COV(\bar{Y},\hat{\beta}_1)&=&COV\left(\dfrac{1}{n}\displaystyle \sum_{i=1}^n Y_i,\dfrac{S_{XY}}{S_{XX}}\right)=\dfrac{1}{n}COV\left(\dfrac{1}{n}\displaystyle \sum_{i=1}^n Y_i,\dfrac{\sum_{i=1}^n Y_i(X_i-\bar{X})}{S_{XX}}\right)\\ &=&\dfrac{1}{nS_{XX}}COV\left(\sum_{i=1}^n Y_i, \sum_{i=1}^n Y_i (X_i-\bar{X})\right)=\dfrac{\sum_{i=1}^n(X_i-\bar{X})}{nS_{XX}}COV(Y_i,Y_i)=0 \end{eqnarray*}\] Logo, \[\begin{eqnarray*} V(\hat{\beta}_0)&=&\dfrac{\sigma^2}{n}+\dfrac{\bar{X}\sigma^2}{S_{XX}}-2\bar{X}COV(\bar{Y},\hat{\beta}_1)=\dfrac{\sigma^2}{n}+\dfrac{\bar{X}\sigma^2}{S_{XX}}=\sigma^2\left(\dfrac{1}{n}+\dfrac{\bar{X}^2}{S_{XX}} \right). \end{eqnarray*}\]
Um importante estimador utilizado para inferência dos parâmetros \(\beta_0\) e \(\beta_1\) é o \(\hat{\sigma}^2=\dfrac{SS_E}{GL(SS_E)}\) em que \(SS_E=\displaystyle \sum_{i=1}^n e_i^2\). Repare que:
\[\begin{eqnarray*} SS_E &=& \displaystyle\sum_{i=1}^n e_i^2=\displaystyle\sum_{i=1}^n(Y_i-\hat{Y}_i)^2 \\ &=& \displaystyle\sum_{i=1}^n (Y_i-2Y_i\hat{Y}_i+\hat{Y}_i^2)= \displaystyle\sum_{i=1}^nY^2_i-2\displaystyle\sum_{i=1}^nY_i\hat{Y}_i+\displaystyle\sum_{i=1}^n \hat{Y}^2_i \end{eqnarray*}\]
Em que, \[\begin{eqnarray*} \displaystyle \sum_{i=1}^n Y_i\hat{Y}_i&=&\displaystyle \sum_{i=1}^n Y_i(\hat{\beta}_0+\hat{\beta}_1X_i)=\displaystyle \sum_{i=1}^n Y_i(\bar{Y}-\hat{\beta}_1\bar{X}+\hat{\beta}_1X_i)=\displaystyle \sum_{i=1}^n Y_i[\bar{Y}+\hat{\beta}_1(X_i-\bar{X})]\\&=& \displaystyle \sum_{i=1}^n Y_i \bar{Y}+\hat{\beta}_1Y_i(X_i-\bar{X})=\bar{Y}\sum_{i=1}^n Y_i+\hat{\beta}_1\sum_{i=1}^n Y_i(X_i-\bar{X}) \\ &=& \bar{Y}n\bar{Y}+\hat{\beta}_1S_{XY}=n\bar{Y}^2+\hat{\beta}_1S_{XY} \end{eqnarray*}\] E que, \[\begin{eqnarray*} \displaystyle \sum_{i=1}^n \hat{Y}_i^2&=&\displaystyle \sum_{i=1}^n (\hat{\beta}_0+\hat{\beta}_1X_i)^2=\displaystyle \sum_{i=1}^n (\hat{\beta}_0^2+2\hat{\beta}_0\hat{\beta}_1X_i+\hat{\beta}^2_1X_i^2) \\ &=& \displaystyle \sum_{i=1}^n (\bar{Y}-\hat{\beta}_1\bar{X})^2+2(\bar{Y}-\hat{\beta}_1\bar{X})\hat{\beta}_1X_i+\hat{\beta}_1^2X_i^2 \\ &=& \displaystyle \sum_{i=1}^n \bar{Y}^2-2\hat{\beta}_1\bar{Y}\bar{X}+\hat{\beta}_1^2\bar{X}^2+2\bar{Y}\hat{\beta}_1X_i-2\hat{\beta}_1^2X_i\bar{X}+\hat{\beta}_1^2X_i^2 \\ &=& \displaystyle \sum_{i=1}^n \bar{Y}^2 +2\hat{\beta}_1\bar{Y}(X_i-\bar{X})+\hat{\beta}_1^2(\bar{X}^2-2X_i\bar{X}+X_i^2) \\ &=&\displaystyle \sum_{i=1}^n \bar{Y}^2+2\bar{Y}\hat{\beta}_1(X_i-\bar{X})+\hat{\beta}_1^2(X_i-\bar{X})^2 \\ &=& \displaystyle \sum_{i=1}^n\bar{Y}^2 +2\bar{Y}\hat{\beta}_1 \displaystyle \sum_{i=1}^n(X_i-\bar{X}) +\hat{\beta}_1 \displaystyle \sum_{i=1}^n(X_i-\bar{X})^2=n\bar{Y}^2+0+\hat{\beta}_1^2S_{XX}\\ &=&n\bar{Y}^2+\hat{\beta}_1^2S_{XX} \end{eqnarray*}\]
Retornando a \(SS_E\):
\[\begin{eqnarray*} SS_E &=& \displaystyle\sum_{i=1}^nY^2_i-2\displaystyle\sum_{i=1}^nY_i\hat{Y}_i+\displaystyle\sum_{i=1}^n \hat{Y}^2_i = \displaystyle\sum_{i=1}^nY^2_i-2(n\bar{Y}^2+\hat{\beta}_1S_{XY})+n\bar{Y}^2+\hat{\beta}_1^2S_{XX} \\ &=& \displaystyle\sum_{i=1}^nY^2_i-2n\bar{Y}^2-2\hat{\beta}_1S_{XY}+n\bar{Y}^2+\hat{\beta}_1^2S_{XX} \\ &=& \displaystyle\sum_{i=1}^nY^2_i-n\bar{Y}^2-\hat{\beta}_1(2S_{XY}-\hat{\beta}_1S_{XX}) \\ &=& S_{YY}-\hat{\beta_1}(2S_{XY}-S_{XY})=S_{YY}-\hat{\beta}_1S_{XY} \end{eqnarray*}\]
Repare que \(SQ_{Regressão}=\hat{\beta}_1S_{XY}\). Além disso tem se que para obter \(\hat{Y}_i\) utilizou a estimativa dos parâmetros \(\hat{\beta}_0\) e \(\hat{\beta}_1\). Portanto a soma de quadrados dos erros tem \(n-2\) graus de liberdade. Logo, \(\hat{\sigma}^2=\dfrac{SS_E}{n-2}\) é um estimador não viesado de \(\sigma^2\).
| Ano | 93 | 94 | 95 | 97 | 98 | 99 |
|---|---|---|---|---|---|---|
| Preço | 6.3 | 7.0 | 8.2 | 9.0 | 10.5 | 12 |
Pede-se:
Pelo software R obtém:
## x y
## 1 93 6.3
## 2 94 7.0
## 3 95 8.2
## 4 97 9.0
## 5 98 10.5
## 6 99 12.0
##
## Call:
## lm(formula = y ~ x, data = dados)
##
## Residuals:
## 1 2 3 4 5 6
## 0.13452 -0.05476 0.25595 -0.72262 -0.11190 0.49881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -76.53810 8.46372 -9.043 0.000828 ***
## x 0.88929 0.08814 10.089 0.000543 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4664 on 4 degrees of freedom
## Multiple R-squared: 0.9622, Adjusted R-squared: 0.9527
## F-statistic: 101.8 on 1 and 4 DF, p-value: 0.000543
Para cada aumento em uma unidade na variável independente \(X\) espera-se um aumento médio em \(0,8892\) na variável dependente \(Y\).
O percentual do valor da variância observada nos preços, representado pelo da variância dos preços estimados, ou explicado pela regressão nos valores do ano de fabricação, é igual à \(96,22\%\).
Qual é o preço médio de uma motocicleta ano 1992?
O valor da estimativa a partir do modelo de regressão linear simples ajustado é de \(\hat{Y}_i=-76,5381+0,8892\cdot 92 =5,2683\), porém trata-se de uma extrapolação e não tem interpretação prática.
O valor do resíduo para o ano de 1997 é dada por:
\[\begin{eqnarray*} \hat{\varepsilon}_i=Y_i-\hat{Y}_i=9-(-76,5381+97\cdot 0,8892)=-0,7143 \end{eqnarray*}\]
Considere o conjunto de dados marketing do pacote datarium em que apresenta os valores gastos em publicidade no Facebook, Youtube e jornal com o respectivo valor de venda alcançado em milhares de dólares.
## Warning: package 'datarium' was built under R version 4.1.3
## youtube facebook newspaper sales
## 1 276.12 45.36 83.04 26.52
## 2 53.40 47.16 54.12 12.48
## 3 20.64 55.08 83.16 11.16
## 4 181.80 49.56 70.20 22.20
## 5 216.96 12.96 70.08 15.48
## 6 10.44 58.68 90.00 8.64
O modelo de regressão linear múltipla da variável sales em função dos valores gastos em publicidade no Facebook, Youtube e jornal é dado por:
##
## Call:
## lm(formula = sales ~ youtube + facebook + newspaper, data = marketing)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.5932 -1.0690 0.2902 1.4272 3.3951
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.526667 0.374290 9.422 <2e-16 ***
## youtube 0.045765 0.001395 32.809 <2e-16 ***
## facebook 0.188530 0.008611 21.893 <2e-16 ***
## newspaper -0.001037 0.005871 -0.177 0.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.023 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
Repare que o valor de \(R^2(\%)\) e \(R^2_{adj}(\%)\) indicam um bom ajuste do modelo de regressão linear múltipla. Mas o teste t aponta que \(\beta_3=0\). Portanto, pode-se reajustar o modelo desconsiderando a variável independente valor gasto em publicidade em jornal. Logo,
##
## Call:
## lm(formula = sales ~ youtube + facebook, data = marketing)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.5572 -1.0502 0.2906 1.4049 3.3994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.50532 0.35339 9.919 <2e-16 ***
## youtube 0.04575 0.00139 32.909 <2e-16 ***
## facebook 0.18799 0.00804 23.382 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 197 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
## F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16