Importación de datos

library(wooldridge)
data(hprice1)
head(force(hprice1),n=5) #mostrar las primeras 5 observaciones
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

1. Modelo estimado

price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + e

# Sigma matriz
library(stargazer)
model_price <- lm( formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
stargazer(model_price, title = 'Modelo estimado', type = 'text')
## 
## Modelo estimado
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                      0.002***          
##                               (0.001)          
##                                                
## sqrft                        0.123***          
##                               (0.013)          
##                                                
## bdrms                         13.853           
##                               (9.010)          
##                                                
## Constant                      -21.770          
##                              (29.475)          
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                             0.672           
## Adjusted R2                    0.661           
## Residual Std. Error      59.833 (df = 84)      
## F Statistic           57.460*** (df = 3; 84)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

2. Verifique si hay evidencia de la independencia de los regresores (no colinealidad), a través de:

  1. Indice de condición y prueba de FG

Indice de condicion

options(scipen = 999999)
Matriz_X <- model.matrix(model_price)
stargazer(head(Matriz_X, n = 6), type = "text")
## 
## =================================
##   (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1      1       6,126  2,438   4  
## 2      1       9,903  2,076   3  
## 3      1       5,200  1,374   3  
## 4      1       4,600  1,448   3  
## 5      1       6,095  2,514   4  
## 6      1       8,566  2,754   5  
## ---------------------------------
Matriz_XX <- t(Matriz_X)%*%Matriz_X
stargazer(Matriz_XX, type = "text")
## 
## ==============================================================
##             (Intercept)    lotsize         sqrft       bdrms  
## --------------------------------------------------------------
## (Intercept)     88         793,748        177,205       314   
## lotsize       793,748   16,165,159,010 1,692,290,257 2,933,767
## sqrft         177,205   1,692,290,257   385,820,561   654,755 
## bdrms           314       2,933,767       654,755      1,182  
## --------------------------------------------------------------
# Normalización
library(stargazer)
options(scipen = 99999)
Sn <- solve(diag(sqrt(diag(Matriz_XX))))
stargazer(Sn, type = "text")
## 
## ==========================
## 0.107    0      0      0  
## 0     0.00001   0      0  
## 0        0    0.0001   0  
## 0        0      0    0.029
## --------------------------
# Sigma matriz normalizada
library(stargazer)
options(scipen = 99999)
XX_normalizada <- (Sn%*%Matriz_XX)%*%Sn
stargazer(XX_normalizada,type = "text",digits = 4)
## 
## ===========================
## 1      0.6655 0.9617 0.9736
## 0.6655   1    0.6776 0.6712
## 0.9617 0.6776   1    0.9696
## 0.9736 0.6712 0.9696   1   
## ---------------------------
# Autovalores de sigma matriz normalizada
library(stargazer)
lambda<-eigen(XX_normalizada,symmetric = TRUE)
stargazer(lambda$values,type = "text")
## 
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
K<-sqrt(max(lambda$values)/min(lambda$values))
print(K)
## [1] 11.86778

Usando mctest

library(mctest)
eigprop(model_price)
## 
## Call:
## eigprop(mod = model_price)
## 
##   Eigenvalues      CI (Intercept) lotsize  sqrft  bdrms
## 1      3.4816  1.0000      0.0037  0.0278 0.0042 0.0029
## 2      0.4552  2.7656      0.0068  0.9671 0.0061 0.0051
## 3      0.0385  9.5082      0.4726  0.0051 0.8161 0.0169
## 4      0.0247 11.8678      0.5170  0.0000 0.1737 0.9750
## 
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50 
## Row 3==> sqrft, proportion 0.816079 >= 0.50 
## Row 4==> bdrms, proportion 0.975026 >= 0.50

El índice de condición es de 11.8678, por lo que existe evidencia que los regresores presentan leve multicolinealidad.

Prueba de Farrar-Glaubar

# Normalizar matriz X
library(stargazer)
Zn<-scale(Matriz_X[,-1])
stargazer(head(Zn,n=6),type = "text")
## 
## =======================
##   lotsize sqrft  bdrms 
## -----------------------
## 1 -0.284  0.735  0.513 
## 2  0.087  0.108  -0.675
## 3 -0.375  -1.108 -0.675
## 4 -0.434  -0.980 -0.675
## 5 -0.287  0.867  0.513 
## 6 -0.045  1.283  1.702 
## -----------------------
# Calcular matriz R
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R,type = "text",digits = 4)
## 
## =============================
##         lotsize sqrft  bdrms 
## -----------------------------
## lotsize    1    0.1838 0.1363
## sqrft   0.1838    1    0.5315
## bdrms   0.1363  0.5315   1   
## -----------------------------
# Determinante de R
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931
# Estadístico FG
m<-ncol(Matriz_X[,-1])
n<-nrow(Matriz_X[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
# Valor crítico
gl<-m*(m-1)/2
ValorC<-qchisq(p = 0.95,df = gl)
print(ValorC)
## [1] 7.814728

Dado que el estadístico de Farrar-Glaubar es mayor que el valor crítico, se rechaza la Ho. Por lo tanto, hay evidencia de colinealidad en los regresores.

Usando librería Psych

library(psych)
FG_test<-cortest.bartlett(Matriz_X[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
## 
## $p.value
## [1] 0.0000007065806
## 
## $df
## [1] 3
#Gráfica
library(magrittr)
library(fastGraph)
shadeDist(xshade= FG_test$chisq, ddist = "dchisq", parm1 = FG_test$df, lower.tail = FALSE, sub = paste("VC:" ,ValorC%>%round(digits = 6), "FG:" ,FG_test$chisq%>%round(digits = 6)), col = "black")

  1. Factores inflacionarios de la varianza
# Inversa de la matriz de correlación
inversa_R <- solve(R)
print(inversa_R)
##             lotsize      sqrft       bdrms
## lotsize  1.03721145 -0.1610145 -0.05582352
## sqrft   -0.16101454  1.4186543 -0.73202696
## bdrms   -0.05582352 -0.7320270  1.39666321
#VIF’s para el modelo estimado
VIFs <- diag(inversa_R)
print(VIFs)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663

Usando librería “Car”

library(car)
vifs <- vif(model_price)
print(vifs)
##  lotsize    sqrft    bdrms 
## 1.037211 1.418654 1.396663
#Gráfica
library(mctest)
mc.plot(mod = model_price,vif = 2)

Interpretación: Los Valores Inflacionarios de la Varianza de los regresores son menores que 2, existe evidencia de multicolinealidad leve.