必要パッケージの読み込み

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(foreign)
library(rms)
##  要求されたパッケージ Hmisc をロード中です 
## 
##  次のパッケージを付け加えます: 'Hmisc' 
## 
##  以下のオブジェクトは 'package:dplyr' からマスクされています:
## 
##     src, summarize
## 
##  以下のオブジェクトは 'package:base' からマスクされています:
## 
##     format.pval, units
library(tableone)
library(ggplot2)
library(gtsummary)
library(summarytools)
## Warning in system2("/usr/bin/otool", c("-L", shQuote(DSO)), stdout = TRUE):
## 命令 ''/usr/bin/otool' -L
## '/Library/Frameworks/R.framework/Resources/library/tcltk/libs//tcltk.so''
## の実行は状態 1 を持ちました
## 
##  次のパッケージを付け加えます: 'summarytools' 
## 
##  以下のオブジェクトは 'package:Hmisc' からマスクされています:
## 
##     label, label<-
## 
##  以下のオブジェクトは 'package:tibble' からマスクされています:
## 
##     view
library(skimr)
library(car)
##  要求されたパッケージ carData をロード中です 
## 
##  次のパッケージを付け加えます: 'car' 
## 
##  以下のオブジェクトは 'package:rms' からマスクされています:
## 
##     Predict, vif
## 
##  以下のオブジェクトは 'package:dplyr' からマスクされています:
## 
##     recode
## 
##  以下のオブジェクトは 'package:purrr' からマスクされています:
## 
##     some
library(naniar)
## 
##  次のパッケージを付け加えます: 'naniar' 
## 
##  以下のオブジェクトは 'package:skimr' からマスクされています:
## 
##     n_complete
library(survival)
library(survminer)
##  要求されたパッケージ ggpubr をロード中です 
## 
##  次のパッケージを付け加えます: 'survminer' 
## 
##  以下のオブジェクトは 'package:survival' からマスクされています:
## 
##     myeloma
library(mice)
## 
##  次のパッケージを付け加えます: 'mice' 
## 
##  以下のオブジェクトは 'package:stats' からマスクされています:
## 
##     filter
## 
##  以下のオブジェクトは 'package:base' からマスクされています:
## 
##     cbind, rbind

# 第一部

(1)データの読み込み

SMARTo <- read.spss("SMARTs.sav",use.value.labels=F, to.data.frame=T) 

(2) 変数の確認

列名の取得

colnames(SMARTo)
##  [1] "TEVENT"   "EVENT"    "SEX"      "AGE"      "DIABETES" "CEREBRAL"
##  [7] "CARDIAC"  "AAA"      "PERIPH"   "STENOSIS" "SYSTBP"   "DIASTBP" 
## [13] "SYSTH"    "DIASTH"   "LENGTHO"  "WEIGHTO"  "BMIO"     "CHOLO"   
## [19] "HDLO"     "LDLO"     "TRIGO"    "HOMOCO"   "GLUTO"    "CREATO"  
## [25] "IMTO"     "albumin"  "SMOKING"  "packyrs"  "alcohol"

データの確認

dfSummary(SMARTo) %>% view()
## Switching method to 'browser'
## Output file written: /var/folders/n9/tf_wmwpn3gl2t7l1cz4tqk000000gn/T//Rtmp8KYBC2/file118b621b7485.html

因子・連続変数でそれぞれ抽出

col_cont = c("TEVENT", "AGE", "SYSTBP", "DIASTBP", "SYSTH", "DIASTH","LENGTHO", "WEIGHTO", "BMIO", "CHOLO", "HDLO", "LDLO", "TRIGO", "HOMOCO", "GLUTO", "CREATO", "IMTO", "packyrs" )
col_fact = c("EVENT", "SEX", "DIABETES", "CEREBRAL", "CARDIAC","AAA", "PERIPH", "STENOSIS", "albumin", "SMOKING", "alcohol")

連続変数以外をfactor化

for (col_name in colnames(SMARTo)) {
  if (!(col_name %in% col_cont)) {
    SMARTo[[col_name]] <- as.factor(SMARTo[[col_name]])
  }
}

変換した変数の確認

 str(SMARTo)
## 'data.frame':    3873 obs. of  29 variables:
##  $ TEVENT  : num  3466 3465 3465 2445 3463 ...
##  $ EVENT   : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 2 2 2 2 ...
##  $ SEX     : Factor w/ 2 levels "1","2": 1 2 1 1 1 2 1 1 1 1 ...
##  $ AGE     : num  71 46 59 76 57 52 66 72 75 53 ...
##  $ DIABETES: Factor w/ 2 levels "0","1": 2 1 1 1 1 2 1 1 1 2 ...
##  $ CEREBRAL: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
##  $ CARDIAC : Factor w/ 2 levels "0","1": 2 1 2 2 2 1 1 2 2 1 ...
##  $ AAA     : Factor w/ 2 levels "0","1": 1 1 1 2 1 1 2 2 1 1 ...
##  $ PERIPH  : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 1 1 2 2 ...
##  $ STENOSIS: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 2 1 ...
##  $ SYSTBP  : num  185 135 149 140 177 164 166 131 175 174 ...
##  $ DIASTBP : num  86 82 97 74 96 73 70 76 68 89 ...
##  $ SYSTH   : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DIASTH  : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LENGTHO : num  1.7 1.72 1.77 1.82 1.9 1.73 1.65 1.6 1.7 1.83 ...
##  $ WEIGHTO : num  69 71 82 98 107 103 66 80 80 75 ...
##  $ BMIO    : num  23.9 24 26.2 29.6 29.6 ...
##  $ CHOLO   : num  6 4 4.9 5.3 5.2 4.6 5.8 6.1 4.4 6 ...
##  $ HDLO    : num  0.94 1.26 1.28 1 0.81 0.95 0.87 1.32 0.55 0.95 ...
##  $ LDLO    : num  4.03 2.23 3.17 3.4 NA 2.38 3.33 4.39 2.26 3.82 ...
##  $ TRIGO   : num  2.29 1.13 1.01 2.01 4.76 2.82 3.55 0.87 3.54 2.74 ...
##  $ HOMOCO  : num  NA 8.7 NA NA NA NA NA NA NA NA ...
##  $ GLUTO   : num  6.3 4.7 6.1 5 6.1 10.2 5.4 5.3 5.9 10.8 ...
##  $ CREATO  : num  95 66 93 79 91 180 81 101 157 86 ...
##  $ IMTO    : num  0.82 0.57 0.83 1.45 1.07 0.97 1.15 0.7 1.48 0.87 ...
##  $ albumin : Factor w/ 3 levels "1","2","3": 1 1 1 NA 1 3 1 2 1 1 ...
##  $ SMOKING : Factor w/ 3 levels "1","2","3": 2 1 2 2 2 2 2 2 2 2 ...
##  $ packyrs : num  22.5 0 33.3 49 53.2 54.6 72.8 28.6 16.5 29.7 ...
##  $ alcohol : Factor w/ 3 levels "1","2","3": 3 1 3 3 3 1 3 2 1 3 ...
##  - attr(*, "variable.labels")= Named chr [1:29] "FU-duur tot vasculaire complicatie (klinisch) EP (in dagen)" "Niet/wel vasculaire complicatie (klinisch) EP" "Geslacht" "Leeftijd (aantal voltooide jaren)" ...
##   ..- attr(*, "names")= chr [1:29] "TEVENT" "EVENT" "SEX" "AGE" ...

table1の作成、欠測の確認

# 順序に従って変数を並べ替え
ordered_vars <- c( "SEX","AGE","SMOKING","packyrs","alcohol","BMIO","DIABETES","SYSTH", "SYSTBP", "DIASTH","DIASTBP","CHOLO","HDLO", "LDLO","TRIGO","CEREBRAL", "CARDIAC","PERIPH","AAA","HOMOCO","GLUTO","CREATO","albumin","IMTO","STENOSIS")

CreateTableOne(vars = ordered_vars, factorVars = col_fact, data = SMARTo) -> tableone
print(tableone, missing =T , test = F, explain = T) 
##                      
##                       Overall        Missing
##   n                     3873                
##   SEX = 2 (%)            976 (25.2)   0.0   
##   AGE (mean (SD))      59.56 (10.53)  0.0   
##   SMOKING (%)                         0.6   
##      1                   693 (18.0)         
##      2                  2711 (70.5)         
##      3                   444 (11.5)         
##   packyrs (mean (SD))  22.62 (20.31)  0.5   
##   alcohol (%)                         0.6   
##      1                   751 (19.5)         
##      2                   408 (10.6)         
##      3                  2689 (69.9)         
##   BMIO (mean (SD))     26.70 (3.92)   0.1   
##   DIABETES = 1 (%)       846 (22.1)   1.0   
##   SYSTH (mean (SD))   142.16 (22.44) 38.7   
##   SYSTBP (mean (SD))  141.32 (19.97) 31.6   
##   DIASTH (mean (SD))   82.44 (11.82) 38.7   
##   DIASTBP (mean (SD))  79.70 (9.92)  31.5   
##   CHOLO (mean (SD))     5.20 (1.19)   0.5   
##   HDLO (mean (SD))      1.23 (0.38)   0.8   
##   LDLO (mean (SD))      3.14 (1.04)   5.6   
##   TRIGO (mean (SD))     1.88 (1.58)   0.7   
##   CEREBRAL = 1 (%)      1147 (29.6)   0.0   
##   CARDIAC = 1 (%)       2160 (55.8)   0.0   
##   PERIPH = 1 (%)         940 (24.3)   0.0   
##   AAA = 1 (%)            416 (10.7)   0.0   
##   HOMOCO (mean (SD))   14.06 (8.49)  12.0   
##   GLUTO (mean (SD))     6.33 (2.01)   0.5   
##   CREATO (mean (SD))   98.93 (71.84)  0.4   
##   albumin (%)                         5.3   
##      1                  2897 (79.0)         
##      2                   655 (17.9)         
##      3                   114 ( 3.1)         
##   IMTO (mean (SD))      0.94 (0.30)   2.5   
##   STENOSIS = 1 (%)       722 (19.1)   2.4

(3)連続変数間の相関を確認

# 数値でない変数を数値に変換
numeric_columns <- SMARTo %>% select_if(is.numeric)

# 相関行列を計算
cor_matrix <- cor(numeric_columns, use = "complete.obs")

print(cor_matrix)
##              TEVENT         AGE       SYSTBP     DIASTBP        SYSTH
## TEVENT   1.00000000 -0.09621686 -0.124073663 -0.08540482 -0.118609425
## AGE     -0.09621686  1.00000000  0.322483629  0.03056756  0.287855887
## SYSTBP  -0.12407366  0.32248363  1.000000000  0.66538915  0.693043358
## DIASTBP -0.08540482  0.03056756  0.665389149  1.00000000  0.453772560
## SYSTH   -0.11860943  0.28785589  0.693043358  0.45377256  1.000000000
## DIASTH  -0.11645460 -0.06241188  0.407879393  0.59846969  0.682387646
## LENGTHO -0.06556916 -0.16342672 -0.117848520  0.05318287 -0.132727232
## WEIGHTO -0.07062578 -0.14873593 -0.028946092  0.12489484 -0.062218010
## BMIO    -0.04265904 -0.05841828  0.047282864  0.10770971  0.018261561
## CHOLO    0.21624896  0.02531610  0.053907319  0.05913513  0.040930413
## HDLO    -0.12145385  0.08914296  0.121026719  0.06153852  0.096577221
## LDLO     0.25368317  0.01710164  0.005088533  0.02258706 -0.001755867
## TRIGO    0.05766716 -0.07383878  0.021414176  0.05298330  0.028277456
## HOMOCO  -0.13709856  0.22498490  0.151598418  0.11432454  0.139759179
## GLUTO   -0.06960593  0.09869500  0.163560817  0.06324568  0.117465055
## CREATO  -0.18533132  0.01515817  0.051364794  0.04572938  0.066649039
## IMTO    -0.16476002  0.35679129  0.247167551  0.04215499  0.294147750
## packyrs -0.05072402  0.06033905  0.019387670  0.01313393  0.025128836
##                DIASTH       LENGTHO     WEIGHTO        BMIO       CHOLO
## TEVENT  -0.1164546013 -0.0655691571 -0.07062578 -0.04265904  0.21624896
## AGE     -0.0624118801 -0.1634267169 -0.14873593 -0.05841828  0.02531610
## SYSTBP   0.4078793927 -0.1178485199 -0.02894609  0.04728286  0.05390732
## DIASTBP  0.5984696898  0.0531828658  0.12489484  0.10770971  0.05913513
## SYSTH    0.6823876455 -0.1327272320 -0.06221801  0.01826156  0.04093041
## DIASTH   1.0000000000 -0.0004257752  0.08531124  0.09966158  0.06619315
## LENGTHO -0.0004257752  1.0000000000  0.53924294 -0.08074846 -0.11708765
## WEIGHTO  0.0853112362  0.5392429400  1.00000000  0.79077170 -0.10409484
## BMIO     0.0996615800 -0.0807484551  0.79077170  1.00000000 -0.04258839
## CHOLO    0.0661931506 -0.1170876453 -0.10409484 -0.04258839  1.00000000
## HDLO     0.0685558504 -0.1628020661 -0.28559689 -0.21811418  0.12001085
## LDLO     0.0349872181 -0.0715197551 -0.05995716 -0.02168964  0.93517797
## TRIGO    0.0286337053  0.0273645225  0.17643647  0.18081853  0.22270781
## HOMOCO   0.0902599256 -0.0168522129 -0.04416554 -0.03608708 -0.02677297
## GLUTO   -0.0145215489 -0.0353456174  0.14595640  0.19938905 -0.05340739
## CREATO   0.0581366534  0.0167923121 -0.07376534 -0.09443189 -0.13030079
## IMTO     0.0361263322 -0.0048271355  0.05650168  0.06909276 -0.01250730
## packyrs -0.0079079188  0.0992097141  0.14176022  0.09303720  0.03929526
##                HDLO         LDLO       TRIGO      HOMOCO       GLUTO
## TEVENT  -0.12145385  0.253683172  0.05766716 -0.13709856 -0.06960593
## AGE      0.08914296  0.017101638 -0.07383878  0.22498490  0.09869500
## SYSTBP   0.12102672  0.005088533  0.02141418  0.15159842  0.16356082
## DIASTBP  0.06153852  0.022587059  0.05298330  0.11432454  0.06324568
## SYSTH    0.09657722 -0.001755867  0.02827746  0.13975918  0.11746505
## DIASTH   0.06855585  0.034987218  0.02863371  0.09025993 -0.01452155
## LENGTHO -0.16280207 -0.071519755  0.02736452 -0.01685221 -0.03534562
## WEIGHTO -0.28559689 -0.059957161  0.17643647 -0.04416554  0.14595640
## BMIO    -0.21811418 -0.021689640  0.18081853 -0.03608708  0.19938905
## CHOLO    0.12001085  0.935177970  0.22270781 -0.02677297 -0.05340739
## HDLO     1.00000000 -0.108230834 -0.42475364 -0.01685660 -0.11417457
## LDLO    -0.10823083  1.000000000  0.07134857 -0.02821454 -0.06780419
## TRIGO   -0.42475364  0.071348569  1.00000000  0.02003178  0.16899594
## HOMOCO  -0.01685660 -0.028214536  0.02003178  1.00000000 -0.01772754
## GLUTO   -0.11417457 -0.067804189  0.16899594 -0.01772754  1.00000000
## CREATO  -0.04418908 -0.123857562  0.01031394  0.32058758 -0.01568331
## IMTO    -0.05783082 -0.010416064  0.05848692  0.10733135  0.14021851
## packyrs -0.03854332  0.020599456  0.10970250  0.05874190  0.04580722
##              CREATO         IMTO      packyrs
## TEVENT  -0.18533132 -0.164760015 -0.050724018
## AGE      0.01515817  0.356791288  0.060339050
## SYSTBP   0.05136479  0.247167551  0.019387670
## DIASTBP  0.04572938  0.042154988  0.013133932
## SYSTH    0.06664904  0.294147750  0.025128836
## DIASTH   0.05813665  0.036126332 -0.007907919
## LENGTHO  0.01679231 -0.004827135  0.099209714
## WEIGHTO -0.07376534  0.056501678  0.141760223
## BMIO    -0.09443189  0.069092759  0.093037203
## CHOLO   -0.13030079 -0.012507298  0.039295257
## HDLO    -0.04418908 -0.057830822 -0.038543323
## LDLO    -0.12385756 -0.010416064  0.020599456
## TRIGO    0.01031394  0.058486917  0.109702503
## HOMOCO   0.32058758  0.107331346  0.058741903
## GLUTO   -0.01568331  0.140218506  0.045807218
## CREATO   1.00000000  0.029616593 -0.054998042
## IMTO     0.02961659  1.000000000  0.130013708
## packyrs -0.05499804  0.130013708  1.000000000

血圧は収縮相手動と収縮期自動 の相関係数は0.7未満であり、明らかな相関ありとまではいえない。 他の変数では体重とBMIの相関は0.8程度と高い相関あり。どちらかの投入がよさそう。 総コレステロールとLDLに関しも相関係数0.9超とかなり高いためこちらもどちらかの投入とすべき。

(4) 欠測パターンの確認

推奨

#Hmiscパッケージ naclus関数が便利です 
na.patterns <- naclus(SMARTo) 
plot(na.patterns, ylab="Fraction of NAs in common") 

naplot(na.patterns, which=c('na per var')) 

naplot(na.patterns, which=c('na per obs')) 

vis_miss(SMARTo,cluster = T)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## ℹ Please use `gather()` instead.
## ℹ The deprecated feature was likely used in the visdat package.
##   Please report the issue at <]8;;https://github.com/ropensci/visdat/issueshttps://github.com/ropensci/visdat/issues]8;;>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

gg_miss_var(SMARTo,show_pct = T)
## Warning: The `guide` argument in `scale_*()` cannot be `FALSE`. This was deprecated in
## ggplot2 3.3.4.
## ℹ Please use "none" instead.
## ℹ The deprecated feature was likely used in the naniar package.
##   Please report the issue at <]8;;https://github.com/njtierney/naniar/issueshttps://github.com/njtierney/naniar/issues]8;;>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

明らかな意図的な欠測とはいえずMARでよさそう。

第2部(Cox比例ハザードモデルによる予測モデルの構築と検証)

(1) TEVENT(観察時間)の情報を用いて、ヒストグラム、総追跡人年、追跡期間の平均と中央値と求めましょう。

# ヒストグラムの作成
hist(SMARTo$TEVENT, main="Histogram of TEVENT", xlab="TEVENT", col="lightblue", border="black")

# 総追跡人年の計算
total_person_years <- sum(SMARTo$TEVENT) / 365.25
cat("Total person-years:", total_person_years, "\n")
## Total person-years: 14530.62
# 追跡期間の平均および中央値の計算
mean_follow_up <- mean(SMARTo$TEVENT) / 365.25
median_follow_up <- median(SMARTo$TEVENT) / 365.25
cat("Mean follow-up period:", mean_follow_up, "years\n")
## Mean follow-up period: 3.751773 years
cat("Median follow-up period:", median_follow_up, "years\n")
## Median follow-up period: 3.321013 years

(2) EVENTとTEVENTの情報から、カプランマイヤーカーブを描きましょう。追跡期間を無視した累積罹患率とカプランマイヤー法による累積罹患率を比べる。

# EVENT変数を数値型に変換
SMARTo$EVENT <- as.numeric(as.character(SMARTo$EVENT))

# カプランマイヤー法の適用
fit1 <- survfit(Surv(TEVENT,EVENT) ~ 1, data = SMARTo) 
summary(fit1) 
## Call: survfit(formula = Surv(TEVENT, EVENT) ~ 1, data = SMARTo)
## 
##    time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     0.1   3873       2    0.999 0.000365        0.999        1.000
##     1.0   3871       9    0.997 0.000855        0.995        0.999
##     2.0   3857       2    0.997 0.000930        0.995        0.998
##     3.0   3853       3    0.996 0.001031        0.994        0.998
##     4.0   3850       1    0.996 0.001063        0.994        0.998
##    12.0   3843       1    0.995 0.001094        0.993        0.997
##    16.0   3835       2    0.995 0.001153        0.993        0.997
##    20.0   3833       2    0.994 0.001209        0.992        0.997
##    21.0   3829       1    0.994 0.001237        0.992        0.996
##    27.0   3817       1    0.994 0.001264        0.991        0.996
##    29.0   3810       1    0.994 0.001290        0.991        0.996
##    31.0   3805       1    0.993 0.001316        0.991        0.996
##    32.0   3804       1    0.993 0.001341        0.990        0.996
##    37.0   3798       1    0.993 0.001366        0.990        0.995
##    40.0   3796       3    0.992 0.001438        0.989        0.995
##    49.0   3777       1    0.992 0.001461        0.989        0.995
##    52.0   3765       1    0.991 0.001485        0.989        0.994
##    54.0   3764       1    0.991 0.001507        0.988        0.994
##    56.0   3760       1    0.991 0.001530        0.988        0.994
##    58.0   3752       1    0.991 0.001552        0.988        0.994
##    59.0   3747       1    0.990 0.001574        0.987        0.993
##    60.0   3745       1    0.990 0.001596        0.987        0.993
##    65.0   3744       1    0.990 0.001617        0.987        0.993
##    69.0   3743       1    0.990 0.001638        0.986        0.993
##    73.0   3730       1    0.989 0.001659        0.986        0.993
##    75.0   3729       1    0.989 0.001680        0.986        0.992
##    77.0   3726       1    0.989 0.001700        0.985        0.992
##    86.0   3708       1    0.989 0.001720        0.985        0.992
##    87.0   3705       1    0.988 0.001740        0.985        0.992
##    92.0   3701       2    0.988 0.001780        0.984        0.991
##    94.0   3697       1    0.987 0.001799        0.984        0.991
##    96.0   3696       1    0.987 0.001819        0.984        0.991
##    97.0   3692       3    0.986 0.001875        0.983        0.990
##   102.0   3675       1    0.986 0.001894        0.982        0.990
##   104.0   3674       1    0.986 0.001912        0.982        0.990
##   105.0   3671       3    0.985 0.001966        0.981        0.989
##   106.0   3667       1    0.985 0.001984        0.981        0.989
##   113.0   3659       2    0.984 0.002019        0.980        0.988
##   114.0   3655       1    0.984 0.002037        0.980        0.988
##   115.0   3653       2    0.983 0.002071        0.979        0.987
##   118.0   3651       1    0.983 0.002088        0.979        0.987
##   119.0   3645       1    0.983 0.002104        0.979        0.987
##   120.0   3643       1    0.983 0.002121        0.978        0.987
##   125.0   3636       1    0.982 0.002138        0.978        0.987
##   126.0   3634       1    0.982 0.002154        0.978        0.986
##   128.0   3627       2    0.982 0.002187        0.977        0.986
##   132.0   3622       1    0.981 0.002203        0.977        0.986
##   133.0   3619       1    0.981 0.002219        0.977        0.985
##   138.0   3609       1    0.981 0.002235        0.976        0.985
##   142.0   3599       1    0.980 0.002251        0.976        0.985
##   144.0   3597       1    0.980 0.002266        0.976        0.985
##   146.0   3596       1    0.980 0.002282        0.975        0.984
##   150.0   3585       1    0.980 0.002298        0.975        0.984
##   151.0   3584       1    0.979 0.002313        0.975        0.984
##   162.0   3569       1    0.979 0.002329        0.975        0.984
##   167.0   3563       1    0.979 0.002344        0.974        0.983
##   168.0   3559       2    0.978 0.002375        0.974        0.983
##   170.0   3552       1    0.978 0.002390        0.973        0.983
##   172.0   3547       1    0.978 0.002406        0.973        0.982
##   177.0   3534       1    0.977 0.002421        0.973        0.982
##   178.0   3532       1    0.977 0.002436        0.972        0.982
##   181.0   3531       1    0.977 0.002451        0.972        0.982
##   182.0   3529       1    0.977 0.002466        0.972        0.981
##   183.0   3527       2    0.976 0.002495        0.971        0.981
##   185.0   3519       1    0.976 0.002510        0.971        0.981
##   190.0   3512       2    0.975 0.002539        0.970        0.980
##   191.0   3507       1    0.975 0.002554        0.970        0.980
##   194.0   3502       2    0.974 0.002582        0.969        0.979
##   196.0   3495       1    0.974 0.002597        0.969        0.979
##   199.0   3484       1    0.974 0.002611        0.969        0.979
##   203.0   3480       1    0.974 0.002625        0.968        0.979
##   205.0   3476       1    0.973 0.002639        0.968        0.978
##   214.0   3461       2    0.973 0.002667        0.967        0.978
##   215.0   3459       1    0.972 0.002681        0.967        0.978
##   217.0   3456       1    0.972 0.002695        0.967        0.977
##   220.0   3447       1    0.972 0.002709        0.967        0.977
##   230.0   3438       2    0.971 0.002737        0.966        0.977
##   232.0   3431       1    0.971 0.002751        0.966        0.976
##   236.0   3421       2    0.970 0.002778        0.965        0.976
##   237.0   3418       1    0.970 0.002792        0.965        0.976
##   245.0   3404       1    0.970 0.002806        0.964        0.975
##   248.0   3397       1    0.970 0.002819        0.964        0.975
##   249.0   3395       1    0.969 0.002833        0.964        0.975
##   253.0   3389       1    0.969 0.002847        0.963        0.975
##   254.0   3385       1    0.969 0.002860        0.963        0.974
##   256.0   3383       1    0.968 0.002874        0.963        0.974
##   259.0   3382       2    0.968 0.002900        0.962        0.974
##   261.0   3375       1    0.968 0.002913        0.962        0.973
##   268.0   3364       1    0.967 0.002927        0.962        0.973
##   277.0   3343       1    0.967 0.002940        0.961        0.973
##   279.0   3341       1    0.967 0.002954        0.961        0.973
##   281.0   3334       1    0.966 0.002967        0.961        0.972
##   285.0   3327       1    0.966 0.002980        0.960        0.972
##   291.0   3318       1    0.966 0.002993        0.960        0.972
##   294.0   3313       3    0.965 0.003033        0.959        0.971
##   295.0   3306       1    0.965 0.003046        0.959        0.971
##   296.0   3303       1    0.964 0.003059        0.958        0.970
##   299.0   3298       1    0.964 0.003072        0.958        0.970
##   300.0   3297       1    0.964 0.003085        0.958        0.970
##   309.0   3279       1    0.964 0.003098        0.957        0.970
##   315.0   3267       1    0.963 0.003111        0.957        0.969
##   322.0   3255       1    0.963 0.003124        0.957        0.969
##   333.0   3233       1    0.963 0.003137        0.956        0.969
##   336.0   3229       1    0.962 0.003151        0.956        0.969
##   337.0   3225       1    0.962 0.003164        0.956        0.968
##   345.0   3215       1    0.962 0.003177        0.956        0.968
##   357.0   3199       2    0.961 0.003203        0.955        0.967
##   359.0   3190       1    0.961 0.003216        0.955        0.967
##   360.0   3187       1    0.961 0.003229        0.954        0.967
##   363.0   3186       2    0.960 0.003255        0.954        0.966
##   366.0   3174       1    0.960 0.003268        0.953        0.966
##   367.0   3172       1    0.959 0.003281        0.953        0.966
##   369.0   3171       1    0.959 0.003294        0.953        0.965
##   372.0   3164       1    0.959 0.003307        0.952        0.965
##   374.0   3158       1    0.958 0.003320        0.952        0.965
##   379.0   3149       1    0.958 0.003333        0.952        0.965
##   380.0   3144       1    0.958 0.003346        0.951        0.964
##   385.0   3137       2    0.957 0.003371        0.951        0.964
##   391.0   3133       1    0.957 0.003384        0.950        0.964
##   401.0   3119       1    0.957 0.003397        0.950        0.963
##   413.0   3103       1    0.956 0.003410        0.950        0.963
##   421.0   3089       1    0.956 0.003423        0.949        0.963
##   428.0   3088       1    0.956 0.003435        0.949        0.962
##   435.0   3080       1    0.955 0.003448        0.949        0.962
##   447.0   3062       3    0.954 0.003487        0.948        0.961
##   452.0   3057       1    0.954 0.003500        0.947        0.961
##   453.0   3056       1    0.954 0.003513        0.947        0.961
##   454.0   3055       1    0.953 0.003525        0.947        0.960
##   456.0   3047       1    0.953 0.003538        0.946        0.960
##   461.0   3040       1    0.953 0.003551        0.946        0.960
##   462.0   3038       1    0.953 0.003563        0.946        0.960
##   465.0   3033       1    0.952 0.003576        0.945        0.959
##   471.0   3027       1    0.952 0.003589        0.945        0.959
##   475.0   3023       1    0.952 0.003601        0.945        0.959
##   481.0   3007       1    0.951 0.003614        0.944        0.958
##   484.0   3003       1    0.951 0.003627        0.944        0.958
##   487.0   2997       1    0.951 0.003639        0.944        0.958
##   498.0   2982       1    0.950 0.003652        0.943        0.957
##   501.0   2978       1    0.950 0.003665        0.943        0.957
##   503.0   2975       1    0.950 0.003677        0.942        0.957
##   504.0   2973       1    0.949 0.003690        0.942        0.957
##   515.0   2961       1    0.949 0.003703        0.942        0.956
##   516.0   2960       1    0.949 0.003715        0.941        0.956
##   522.0   2949       1    0.948 0.003728        0.941        0.956
##   523.0   2948       1    0.948 0.003740        0.941        0.955
##   525.0   2944       1    0.948 0.003753        0.940        0.955
##   538.0   2932       1    0.947 0.003766        0.940        0.955
##   553.0   2908       1    0.947 0.003778        0.940        0.955
##   558.0   2901       1    0.947 0.003791        0.939        0.954
##   559.0   2900       1    0.946 0.003804        0.939        0.954
##   568.0   2878       1    0.946 0.003817        0.939        0.954
##   570.0   2871       1    0.946 0.003830        0.938        0.953
##   576.0   2862       1    0.945 0.003842        0.938        0.953
##   579.0   2858       1    0.945 0.003855        0.938        0.953
##   586.0   2851       1    0.945 0.003868        0.937        0.952
##   587.0   2850       1    0.944 0.003881        0.937        0.952
##   588.0   2848       1    0.944 0.003894        0.937        0.952
##   589.0   2847       1    0.944 0.003907        0.936        0.951
##   603.0   2831       1    0.943 0.003919        0.936        0.951
##   606.0   2827       1    0.943 0.003932        0.935        0.951
##   609.0   2822       1    0.943 0.003945        0.935        0.951
##   619.0   2801       1    0.942 0.003958        0.935        0.950
##   663.0   2740       1    0.942 0.003971        0.934        0.950
##   676.0   2724       1    0.942 0.003985        0.934        0.950
##   683.0   2708       1    0.941 0.003999        0.934        0.949
##   687.0   2703       2    0.941 0.004026        0.933        0.949
##   689.0   2700       1    0.940 0.004039        0.932        0.948
##   691.0   2699       1    0.940 0.004053        0.932        0.948
##   698.0   2689       1    0.940 0.004066        0.932        0.948
##   702.0   2683       1    0.939 0.004080        0.931        0.947
##   712.0   2667       1    0.939 0.004094        0.931        0.947
##   717.0   2664       1    0.939 0.004107        0.931        0.947
##   738.0   2630       1    0.938 0.004121        0.930        0.946
##   752.0   2609       1    0.938 0.004135        0.930        0.946
##   757.0   2600       2    0.937 0.004163        0.929        0.945
##   763.0   2589       1    0.937 0.004178        0.929        0.945
##   765.0   2583       1    0.936 0.004192        0.928        0.945
##   766.0   2581       1    0.936 0.004206        0.928        0.944
##   768.0   2580       1    0.936 0.004220        0.927        0.944
##   770.0   2575       1    0.935 0.004234        0.927        0.944
##   780.0   2548       2    0.935 0.004262        0.926        0.943
##   781.0   2546       1    0.934 0.004276        0.926        0.943
##   782.0   2544       1    0.934 0.004290        0.926        0.942
##   784.0   2538       1    0.934 0.004304        0.925        0.942
##   788.0   2531       1    0.933 0.004318        0.925        0.942
##   810.0   2512       1    0.933 0.004333        0.924        0.941
##   823.0   2489       1    0.932 0.004347        0.924        0.941
##   826.0   2480       1    0.932 0.004361        0.924        0.941
##   832.0   2471       1    0.932 0.004376        0.923        0.940
##   841.0   2463       1    0.931 0.004391        0.923        0.940
##   847.0   2457       1    0.931 0.004405        0.922        0.940
##   851.0   2447       1    0.931 0.004420        0.922        0.939
##   852.0   2446       1    0.930 0.004434        0.921        0.939
##   856.0   2441       1    0.930 0.004449        0.921        0.939
##   858.0   2438       1    0.929 0.004463        0.921        0.938
##   863.0   2428       1    0.929 0.004478        0.920        0.938
##   873.0   2421       1    0.929 0.004492        0.920        0.937
##   888.0   2397       1    0.928 0.004507        0.919        0.937
##   913.0   2364       1    0.928 0.004522        0.919        0.937
##   914.0   2363       1    0.927 0.004537        0.919        0.936
##   939.0   2324       1    0.927 0.004553        0.918        0.936
##   947.0   2307       1    0.927 0.004569        0.918        0.936
##   949.0   2306       1    0.926 0.004584        0.917        0.935
##   950.0   2305       1    0.926 0.004600        0.917        0.935
##   952.0   2304       1    0.925 0.004615        0.916        0.935
##   958.0   2294       2    0.925 0.004647        0.916        0.934
##   966.0   2285       1    0.924 0.004662        0.915        0.933
##   972.0   2279       1    0.924 0.004678        0.915        0.933
##   973.0   2278       1    0.923 0.004693        0.914        0.933
##   981.0   2273       2    0.923 0.004724        0.913        0.932
##   982.0   2269       2    0.922 0.004755        0.913        0.931
##   984.0   2263       1    0.921 0.004770        0.912        0.931
##   991.0   2247       1    0.921 0.004786        0.912        0.930
##   994.0   2243       1    0.921 0.004801        0.911        0.930
##  1002.0   2231       1    0.920 0.004817        0.911        0.930
##  1006.0   2225       1    0.920 0.004832        0.910        0.929
##  1009.0   2223       1    0.919 0.004848        0.910        0.929
##  1021.0   2204       1    0.919 0.004863        0.909        0.928
##  1022.0   2199       1    0.918 0.004879        0.909        0.928
##  1035.0   2182       1    0.918 0.004895        0.909        0.928
##  1037.0   2177       1    0.918 0.004911        0.908        0.927
##  1042.0   2171       1    0.917 0.004927        0.908        0.927
##  1045.0   2164       1    0.917 0.004943        0.907        0.927
##  1047.0   2162       1    0.916 0.004958        0.907        0.926
##  1056.0   2149       1    0.916 0.004974        0.906        0.926
##  1069.0   2136       1    0.916 0.004991        0.906        0.925
##  1079.0   2124       1    0.915 0.005007        0.905        0.925
##  1080.0   2122       1    0.915 0.005023        0.905        0.925
##  1081.0   2117       1    0.914 0.005039        0.904        0.924
##  1084.0   2115       1    0.914 0.005055        0.904        0.924
##  1099.0   2098       1    0.913 0.005072        0.903        0.923
##  1102.0   2092       1    0.913 0.005088        0.903        0.923
##  1106.0   2085       1    0.912 0.005104        0.903        0.923
##  1119.0   2067       1    0.912 0.005121        0.902        0.922
##  1121.0   2064       1    0.912 0.005137        0.902        0.922
##  1123.0   2058       1    0.911 0.005154        0.901        0.921
##  1136.0   2046       1    0.911 0.005171        0.901        0.921
##  1161.0   2012       1    0.910 0.005188        0.900        0.920
##  1165.0   2009       1    0.910 0.005205        0.900        0.920
##  1170.0   1997       1    0.909 0.005222        0.899        0.920
##  1173.0   1993       1    0.909 0.005240        0.899        0.919
##  1178.0   1987       1    0.908 0.005257        0.898        0.919
##  1179.0   1985       1    0.908 0.005274        0.898        0.918
##  1183.0   1980       1    0.908 0.005291        0.897        0.918
##  1185.0   1976       1    0.907 0.005309        0.897        0.918
##  1200.0   1957       1    0.907 0.005326        0.896        0.917
##  1203.0   1955       1    0.906 0.005344        0.896        0.917
##  1204.0   1952       1    0.906 0.005361        0.895        0.916
##  1207.0   1944       1    0.905 0.005378        0.895        0.916
##  1216.0   1934       1    0.905 0.005396        0.894        0.915
##  1222.0   1919       1    0.904 0.005414        0.894        0.915
##  1227.0   1908       1    0.904 0.005432        0.893        0.914
##  1244.0   1893       1    0.903 0.005450        0.893        0.914
##  1253.0   1881       1    0.903 0.005468        0.892        0.914
##  1258.0   1875       1    0.902 0.005486        0.892        0.913
##  1263.0   1867       1    0.902 0.005504        0.891        0.913
##  1267.0   1863       1    0.901 0.005523        0.891        0.912
##  1274.0   1859       1    0.901 0.005541        0.890        0.912
##  1297.0   1830       1    0.900 0.005560        0.890        0.911
##  1301.0   1825       1    0.900 0.005579        0.889        0.911
##  1315.0   1807       1    0.899 0.005598        0.889        0.910
##  1317.0   1804       1    0.899 0.005617        0.888        0.910
##  1319.0   1800       2    0.898 0.005655        0.887        0.909
##  1327.0   1792       1    0.897 0.005674        0.886        0.909
##  1361.0   1765       1    0.897 0.005693        0.886        0.908
##  1386.0   1741       1    0.896 0.005713        0.885        0.908
##  1414.0   1713       1    0.896 0.005734        0.885        0.907
##  1421.0   1703       1    0.895 0.005754        0.884        0.907
##  1425.0   1699       1    0.895 0.005775        0.884        0.906
##  1427.0   1696       1    0.894 0.005796        0.883        0.906
##  1431.0   1693       1    0.894 0.005816        0.882        0.905
##  1436.0   1689       1    0.893 0.005837        0.882        0.905
##  1437.0   1688       2    0.892 0.005878        0.881        0.904
##  1442.0   1683       1    0.892 0.005898        0.880        0.903
##  1446.0   1677       1    0.891 0.005919        0.880        0.903
##  1447.0   1676       1    0.891 0.005939        0.879        0.902
##  1451.0   1667       1    0.890 0.005959        0.878        0.902
##  1466.0   1653       2    0.889 0.006001        0.877        0.901
##  1472.0   1646       1    0.888 0.006021        0.877        0.900
##  1481.0   1638       1    0.888 0.006042        0.876        0.900
##  1488.0   1628       1    0.887 0.006063        0.876        0.899
##  1491.0   1625       1    0.887 0.006084        0.875        0.899
##  1495.0   1619       1    0.886 0.006104        0.874        0.898
##  1506.0   1611       1    0.886 0.006125        0.874        0.898
##  1512.0   1603       1    0.885 0.006146        0.873        0.897
##  1513.0   1598       1    0.885 0.006167        0.873        0.897
##  1520.0   1593       1    0.884 0.006189        0.872        0.896
##  1522.0   1592       1    0.883 0.006210        0.871        0.896
##  1523.0   1590       1    0.883 0.006230        0.871        0.895
##  1533.0   1587       1    0.882 0.006251        0.870        0.895
##  1541.0   1581       1    0.882 0.006272        0.870        0.894
##  1547.0   1574       1    0.881 0.006293        0.869        0.894
##  1556.0   1564       1    0.881 0.006314        0.868        0.893
##  1558.0   1558       1    0.880 0.006336        0.868        0.893
##  1562.0   1555       1    0.880 0.006357        0.867        0.892
##  1567.0   1547       1    0.879 0.006378        0.867        0.892
##  1569.0   1543       1    0.878 0.006399        0.866        0.891
##  1571.0   1540       1    0.878 0.006420        0.865        0.891
##  1590.0   1520       1    0.877 0.006442        0.865        0.890
##  1593.0   1514       2    0.876 0.006486        0.863        0.889
##  1595.0   1510       1    0.876 0.006507        0.863        0.888
##  1634.0   1464       1    0.875 0.006530        0.862        0.888
##  1635.0   1462       2    0.874 0.006576        0.861        0.887
##  1638.0   1455       1    0.873 0.006599        0.860        0.886
##  1647.0   1444       1    0.873 0.006622        0.860        0.886
##  1649.0   1441       1    0.872 0.006645        0.859        0.885
##  1651.0   1439       1    0.871 0.006668        0.858        0.884
##  1666.0   1423       1    0.871 0.006691        0.858        0.884
##  1669.0   1418       1    0.870 0.006714        0.857        0.883
##  1677.0   1409       1    0.869 0.006738        0.856        0.883
##  1682.0   1404       1    0.869 0.006762        0.856        0.882
##  1688.0   1396       1    0.868 0.006785        0.855        0.882
##  1695.0   1390       1    0.868 0.006809        0.854        0.881
##  1701.0   1385       1    0.867 0.006833        0.854        0.880
##  1735.0   1357       1    0.866 0.006858        0.853        0.880
##  1747.0   1346       1    0.866 0.006883        0.852        0.879
##  1751.0   1343       1    0.865 0.006908        0.852        0.879
##  1755.0   1337       1    0.864 0.006933        0.851        0.878
##  1779.0   1321       1    0.864 0.006958        0.850        0.877
##  1782.0   1319       1    0.863 0.006984        0.850        0.877
##  1797.0   1316       1    0.862 0.007009        0.849        0.876
##  1798.0   1315       1    0.862 0.007035        0.848        0.876
##  1801.0   1314       1    0.861 0.007060        0.847        0.875
##  1804.0   1312       1    0.860 0.007085        0.847        0.874
##  1811.0   1304       1    0.860 0.007110        0.846        0.874
##  1822.0   1296       1    0.859 0.007135        0.845        0.873
##  1826.0   1293       1    0.858 0.007161        0.845        0.873
##  1833.0   1290       1    0.858 0.007186        0.844        0.872
##  1866.0   1255       1    0.857 0.007213        0.843        0.871
##  1873.0   1244       1    0.856 0.007240        0.842        0.871
##  1877.0   1239       1    0.856 0.007267        0.842        0.870
##  1879.0   1234       1    0.855 0.007294        0.841        0.869
##  1915.0   1209       1    0.854 0.007322        0.840        0.869
##  1924.0   1196       1    0.854 0.007351        0.839        0.868
##  1927.0   1192       1    0.853 0.007380        0.839        0.868
##  1970.0   1146       1    0.852 0.007411        0.838        0.867
##  1973.0   1145       1    0.851 0.007441        0.837        0.866
##  1981.0   1136       1    0.851 0.007472        0.836        0.865
##  1982.0   1135       1    0.850 0.007503        0.835        0.865
##  1986.0   1130       1    0.849 0.007534        0.835        0.864
##  1991.0   1124       1    0.848 0.007565        0.834        0.863
##  2005.0   1108       1    0.848 0.007597        0.833        0.863
##  2009.0   1106       1    0.847 0.007629        0.832        0.862
##  2033.0   1077       1    0.846 0.007662        0.831        0.861
##  2045.0   1071       1    0.845 0.007696        0.830        0.861
##  2051.0   1063       1    0.845 0.007729        0.830        0.860
##  2053.0   1058       1    0.844 0.007763        0.829        0.859
##  2080.0   1037       1    0.843 0.007798        0.828        0.858
##  2083.0   1036       1    0.842 0.007833        0.827        0.858
##  2084.0   1035       1    0.841 0.007868        0.826        0.857
##  2114.0   1014       2    0.840 0.007939        0.824        0.855
##  2118.0   1006       1    0.839 0.007975        0.823        0.855
##  2142.0    987       1    0.838 0.008012        0.822        0.854
##  2152.0    982       1    0.837 0.008049        0.821        0.853
##  2165.0    969       1    0.836 0.008087        0.821        0.852
##  2178.0    953       2    0.834 0.008165        0.819        0.851
##  2194.0    933       1    0.834 0.008205        0.818        0.850
##  2208.0    916       1    0.833 0.008246        0.817        0.849
##  2214.0    910       1    0.832 0.008288        0.816        0.848
##  2224.0    899       1    0.831 0.008330        0.815        0.847
##  2239.0    889       1    0.830 0.008373        0.814        0.846
##  2257.0    871       1    0.829 0.008417        0.813        0.846
##  2266.0    868       1    0.828 0.008462        0.812        0.845
##  2269.0    864       1    0.827 0.008506        0.811        0.844
##  2288.0    839       1    0.826 0.008553        0.809        0.843
##  2305.0    816       1    0.825 0.008602        0.808        0.842
##  2321.0    799       1    0.824 0.008653        0.807        0.841
##  2330.0    788       1    0.823 0.008705        0.806        0.840
##  2334.0    781       1    0.822 0.008757        0.805        0.839
##  2342.0    776       1    0.821 0.008810        0.804        0.838
##  2378.0    735       1    0.820 0.008868        0.803        0.837
##  2387.0    729       1    0.819 0.008927        0.801        0.836
##  2413.0    708       2    0.816 0.009051        0.799        0.834
##  2429.0    688       1    0.815 0.009115        0.797        0.833
##  2445.0    668       1    0.814 0.009182        0.796        0.832
##  2447.0    665       1    0.813 0.009250        0.795        0.831
##  2449.0    664       1    0.811 0.009317        0.793        0.830
##  2455.0    658       1    0.810 0.009384        0.792        0.829
##  2470.0    646       1    0.809 0.009453        0.791        0.828
##  2486.0    633       1    0.808 0.009524        0.789        0.827
##  2530.0    591       1    0.806 0.009605        0.788        0.825
##  2551.0    568       1    0.805 0.009692        0.786        0.824
##  2554.0    566       1    0.803 0.009779        0.785        0.823
##  2555.0    564       1    0.802 0.009865        0.783        0.822
##  2581.0    537       1    0.801 0.009959        0.781        0.820
##  2582.0    536       1    0.799 0.010052        0.780        0.819
##  2623.0    499       1    0.797 0.010158        0.778        0.818
##  2633.0    492       1    0.796 0.010266        0.776        0.816
##  2636.0    489       1    0.794 0.010373        0.774        0.815
##  2662.0    468       1    0.792 0.010489        0.772        0.813
##  2676.0    453       1    0.791 0.010611        0.770        0.812
##  2686.0    446       1    0.789 0.010734        0.768        0.810
##  2718.0    416       1    0.787 0.010875        0.766        0.809
##  2790.0    367       1    0.785 0.011055        0.764        0.807
##  2813.0    344       1    0.783 0.011255        0.761        0.805
##  2848.0    300       1    0.780 0.011516        0.758        0.803
##  2849.0    297       1    0.777 0.011773        0.755        0.801
##  2861.0    285       1    0.775 0.012044        0.751        0.799
##  2875.0    263       1    0.772 0.012353        0.748        0.796
##  3011.0    204       1    0.768 0.012859        0.743        0.794
##  3017.0    198       1    0.764 0.013366        0.738        0.791
##  3020.0    193       1    0.760 0.013870        0.733        0.788
##  3085.0    167       1    0.756 0.014515        0.728        0.785
##  3109.0    152       1    0.751 0.015247        0.721        0.781
##  3131.0    140       1    0.745 0.016053        0.714        0.777
##  3244.0     85       1    0.736 0.018101        0.702        0.773
##  3282.0     65       1    0.725 0.021072        0.685        0.768
# カプランマイヤーカーブの描画
ggsurvplot(fit1, data = SMARTo, pval = TRUE) 
## Warning in .pvalue(fit, data = data, method = method, pval = pval, pval.coord = pval.coord, : There are no survival curves to be compared. 
##  This is a null model.

# 追跡期間を無視した累積罹患率の計算
cumulative_incidence_ignored <- sum(SMARTo$EVENT) / length(SMARTo$EVENT)
cat("Cumulative incidence (ignoring follow-up time):", cumulative_incidence_ignored, "\n")
## Cumulative incidence (ignoring follow-up time): 0.118771
# カプランマイヤー法による累積罹患率の計算
km_cumulative_incidence <- 1 - fit1$surv[which.min(abs(fit1$time - max(SMARTo$TEVENT)))]
cat("Cumulative incidence (Kaplan-Meier method):", km_cumulative_incidence, "\n")
## Cumulative incidence (Kaplan-Meier method): 0.2748606

(3) 次に性別毎のカプランマイヤーカーブを描きましょう。

fit2 <- survfit(Surv(TEVENT,EVENT) ~ SEX, data = SMARTo) 
summary(fit2) 
## Call: survfit(formula = Surv(TEVENT, EVENT) ~ SEX, data = SMARTo)
## 
##                 SEX=1 
##    time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##     0.1   2897       2    0.999 0.000488        0.998        1.000
##     1.0   2895       9    0.996 0.001143        0.994        0.998
##     2.0   2882       2    0.996 0.001242        0.993        0.998
##     3.0   2879       2    0.995 0.001334        0.992        0.997
##    12.0   2873       1    0.994 0.001378        0.992        0.997
##    16.0   2868       1    0.994 0.001420        0.991        0.997
##    20.0   2867       2    0.993 0.001501        0.990        0.996
##    29.0   2851       1    0.993 0.001541        0.990        0.996
##    31.0   2847       1    0.993 0.001579        0.990        0.996
##    32.0   2846       1    0.992 0.001617        0.989        0.996
##    37.0   2841       1    0.992 0.001654        0.989        0.995
##    40.0   2839       2    0.991 0.001725        0.988        0.995
##    52.0   2815       1    0.991 0.001760        0.988        0.994
##    54.0   2814       1    0.991 0.001794        0.987        0.994
##    56.0   2810       1    0.990 0.001828        0.987        0.994
##    59.0   2800       1    0.990 0.001861        0.986        0.994
##    65.0   2798       1    0.990 0.001893        0.986        0.993
##    69.0   2797       1    0.989 0.001926        0.985        0.993
##    73.0   2787       1    0.989 0.001957        0.985        0.993
##    75.0   2786       1    0.989 0.001989        0.985        0.992
##    77.0   2784       1    0.988 0.002019        0.984        0.992
##    86.0   2769       1    0.988 0.002050        0.984        0.992
##    87.0   2767       1    0.987 0.002080        0.983        0.992
##    92.0   2763       2    0.987 0.002139        0.983        0.991
##    96.0   2760       1    0.986 0.002168        0.982        0.991
##    97.0   2757       3    0.985 0.002252        0.981        0.990
##   102.0   2742       1    0.985 0.002280        0.980        0.989
##   104.0   2741       1    0.985 0.002307        0.980        0.989
##   105.0   2739       2    0.984 0.002361        0.979        0.988
##   106.0   2736       1    0.983 0.002387        0.979        0.988
##   113.0   2729       2    0.983 0.002439        0.978        0.988
##   114.0   2726       1    0.982 0.002465        0.978        0.987
##   115.0   2724       2    0.982 0.002515        0.977        0.987
##   119.0   2718       1    0.981 0.002540        0.976        0.986
##   120.0   2717       1    0.981 0.002565        0.976        0.986
##   125.0   2712       1    0.981 0.002589        0.976        0.986
##   126.0   2710       1    0.980 0.002614        0.975        0.985
##   128.0   2705       2    0.980 0.002661        0.974        0.985
##   132.0   2700       1    0.979 0.002685        0.974        0.984
##   138.0   2690       1    0.979 0.002709        0.974        0.984
##   142.0   2683       1    0.978 0.002732        0.973        0.984
##   144.0   2681       1    0.978 0.002755        0.973        0.983
##   150.0   2674       1    0.978 0.002778        0.972        0.983
##   151.0   2673       1    0.977 0.002801        0.972        0.983
##   162.0   2664       1    0.977 0.002824        0.971        0.983
##   168.0   2658       2    0.976 0.002870        0.971        0.982
##   170.0   2653       1    0.976 0.002892        0.970        0.982
##   172.0   2649       1    0.975 0.002914        0.970        0.981
##   177.0   2640       1    0.975 0.002936        0.969        0.981
##   178.0   2638       1    0.975 0.002958        0.969        0.981
##   181.0   2637       1    0.974 0.002980        0.969        0.980
##   182.0   2635       1    0.974 0.003002        0.968        0.980
##   183.0   2633       2    0.973 0.003045        0.967        0.979
##   185.0   2626       1    0.973 0.003066        0.967        0.979
##   190.0   2623       2    0.972 0.003109        0.966        0.978
##   191.0   2619       1    0.972 0.003129        0.966        0.978
##   194.0   2616       2    0.971 0.003171        0.965        0.977
##   203.0   2600       1    0.971 0.003192        0.964        0.977
##   205.0   2597       1    0.970 0.003212        0.964        0.977
##   214.0   2585       1    0.970 0.003233        0.964        0.976
##   215.0   2584       1    0.970 0.003253        0.963        0.976
##   220.0   2577       1    0.969 0.003274        0.963        0.976
##   230.0   2570       2    0.968 0.003314        0.962        0.975
##   232.0   2567       1    0.968 0.003334        0.962        0.975
##   236.0   2557       1    0.968 0.003354        0.961        0.974
##   245.0   2546       1    0.967 0.003375        0.961        0.974
##   248.0   2541       1    0.967 0.003395        0.960        0.974
##   253.0   2536       1    0.967 0.003415        0.960        0.973
##   256.0   2534       1    0.966 0.003435        0.959        0.973
##   261.0   2531       1    0.966 0.003454        0.959        0.973
##   268.0   2520       1    0.965 0.003474        0.959        0.972
##   277.0   2502       1    0.965 0.003494        0.958        0.972
##   281.0   2496       1    0.965 0.003514        0.958        0.972
##   285.0   2492       1    0.964 0.003534        0.957        0.971
##   291.0   2485       1    0.964 0.003554        0.957        0.971
##   294.0   2480       2    0.963 0.003593        0.956        0.970
##   295.0   2475       1    0.963 0.003613        0.956        0.970
##   296.0   2474       1    0.962 0.003632        0.955        0.969
##   300.0   2470       1    0.962 0.003652        0.955        0.969
##   309.0   2459       1    0.961 0.003671        0.954        0.969
##   315.0   2451       1    0.961 0.003690        0.954        0.968
##   322.0   2444       1    0.961 0.003710        0.953        0.968
##   333.0   2427       1    0.960 0.003729        0.953        0.968
##   336.0   2424       1    0.960 0.003749        0.953        0.967
##   337.0   2421       1    0.960 0.003768        0.952        0.967
##   345.0   2413       1    0.959 0.003787        0.952        0.967
##   357.0   2398       2    0.958 0.003826        0.951        0.966
##   363.0   2390       2    0.958 0.003865        0.950        0.965
##   366.0   2379       1    0.957 0.003884        0.950        0.965
##   367.0   2377       1    0.957 0.003903        0.949        0.964
##   369.0   2376       1    0.956 0.003922        0.949        0.964
##   372.0   2373       1    0.956 0.003941        0.948        0.964
##   374.0   2367       1    0.956 0.003960        0.948        0.963
##   379.0   2361       1    0.955 0.003979        0.947        0.963
##   380.0   2357       1    0.955 0.003998        0.947        0.963
##   385.0   2351       2    0.954 0.004036        0.946        0.962
##   391.0   2347       1    0.953 0.004055        0.946        0.961
##   401.0   2335       1    0.953 0.004073        0.945        0.961
##   421.0   2313       1    0.953 0.004092        0.945        0.961
##   428.0   2312       1    0.952 0.004111        0.944        0.960
##   435.0   2307       1    0.952 0.004130        0.944        0.960
##   447.0   2294       3    0.951 0.004187        0.942        0.959
##   452.0   2290       1    0.950 0.004205        0.942        0.958
##   454.0   2289       1    0.950 0.004224        0.942        0.958
##   456.0   2283       1    0.949 0.004243        0.941        0.958
##   462.0   2277       1    0.949 0.004261        0.941        0.957
##   471.0   2270       1    0.949 0.004280        0.940        0.957
##   475.0   2267       1    0.948 0.004298        0.940        0.957
##   484.0   2257       1    0.948 0.004317        0.939        0.956
##   487.0   2253       1    0.947 0.004335        0.939        0.956
##   498.0   2245       1    0.947 0.004354        0.938        0.955
##   501.0   2242       1    0.946 0.004372        0.938        0.955
##   503.0   2241       1    0.946 0.004391        0.937        0.955
##   504.0   2239       1    0.946 0.004409        0.937        0.954
##   515.0   2230       1    0.945 0.004428        0.936        0.954
##   516.0   2229       1    0.945 0.004446        0.936        0.953
##   522.0   2220       1    0.944 0.004464        0.936        0.953
##   523.0   2219       1    0.944 0.004482        0.935        0.953
##   525.0   2216       1    0.943 0.004501        0.935        0.952
##   553.0   2192       1    0.943 0.004519        0.934        0.952
##   558.0   2186       1    0.943 0.004537        0.934        0.952
##   559.0   2185       1    0.942 0.004556        0.933        0.951
##   576.0   2157       1    0.942 0.004575        0.933        0.951
##   586.0   2150       1    0.941 0.004593        0.932        0.950
##   587.0   2149       1    0.941 0.004612        0.932        0.950
##   588.0   2147       1    0.940 0.004631        0.931        0.950
##   603.0   2135       1    0.940 0.004650        0.931        0.949
##   606.0   2131       1    0.940 0.004668        0.930        0.949
##   609.0   2127       1    0.939 0.004687        0.930        0.948
##   619.0   2111       1    0.939 0.004706        0.929        0.948
##   663.0   2072       1    0.938 0.004725        0.929        0.947
##   687.0   2046       2    0.937 0.004765        0.928        0.947
##   689.0   2043       1    0.937 0.004785        0.927        0.946
##   691.0   2042       1    0.936 0.004804        0.927        0.946
##   698.0   2035       1    0.936 0.004824        0.926        0.945
##   712.0   2018       1    0.935 0.004844        0.926        0.945
##   717.0   2016       1    0.935 0.004863        0.925        0.945
##   738.0   1991       1    0.934 0.004884        0.925        0.944
##   752.0   1979       1    0.934 0.004904        0.924        0.944
##   757.0   1971       2    0.933 0.004944        0.923        0.943
##   763.0   1964       1    0.933 0.004965        0.923        0.942
##   765.0   1958       1    0.932 0.004985        0.922        0.942
##   766.0   1956       1    0.932 0.005005        0.922        0.941
##   768.0   1955       1    0.931 0.005025        0.921        0.941
##   770.0   1952       1    0.931 0.005045        0.921        0.941
##   780.0   1931       2    0.930 0.005086        0.920        0.940
##   781.0   1929       1    0.929 0.005106        0.919        0.939
##   782.0   1928       1    0.929 0.005126        0.919        0.939
##   784.0   1923       1    0.928 0.005146        0.918        0.938
##   810.0   1905       1    0.928 0.005166        0.918        0.938
##   823.0   1887       1    0.927 0.005187        0.917        0.938
##   826.0   1881       1    0.927 0.005208        0.917        0.937
##   832.0   1872       1    0.926 0.005228        0.916        0.937
##   841.0   1865       1    0.926 0.005249        0.916        0.936
##   851.0   1854       1    0.925 0.005270        0.915        0.936
##   852.0   1853       1    0.925 0.005291        0.914        0.935
##   863.0   1842       1    0.924 0.005312        0.914        0.935
##   873.0   1836       1    0.924 0.005333        0.913        0.934
##   888.0   1821       1    0.923 0.005354        0.913        0.934
##   914.0   1799       1    0.923 0.005375        0.912        0.933
##   947.0   1759       1    0.922 0.005398        0.912        0.933
##   949.0   1758       1    0.922 0.005420        0.911        0.932
##   950.0   1757       1    0.921 0.005442        0.911        0.932
##   952.0   1756       1    0.921 0.005464        0.910        0.931
##   958.0   1748       2    0.920 0.005509        0.909        0.930
##   966.0   1742       1    0.919 0.005531        0.908        0.930
##   972.0   1738       1    0.919 0.005553        0.908        0.930
##   981.0   1733       2    0.918 0.005597        0.907        0.929
##   982.0   1730       2    0.916 0.005640        0.905        0.928
##   984.0   1724       1    0.916 0.005662        0.905        0.927
##   991.0   1708       1    0.915 0.005684        0.904        0.927
##  1006.0   1694       1    0.915 0.005706        0.904        0.926
##  1009.0   1692       1    0.914 0.005729        0.903        0.926
##  1021.0   1676       1    0.914 0.005751        0.903        0.925
##  1035.0   1660       1    0.913 0.005774        0.902        0.925
##  1037.0   1656       1    0.913 0.005797        0.901        0.924
##  1042.0   1650       1    0.912 0.005819        0.901        0.924
##  1045.0   1645       1    0.912 0.005842        0.900        0.923
##  1047.0   1643       1    0.911 0.005865        0.900        0.923
##  1069.0   1625       1    0.910 0.005888        0.899        0.922
##  1079.0   1616       1    0.910 0.005911        0.898        0.922
##  1080.0   1614       1    0.909 0.005935        0.898        0.921
##  1084.0   1609       1    0.909 0.005958        0.897        0.920
##  1099.0   1596       1    0.908 0.005981        0.897        0.920
##  1102.0   1592       1    0.908 0.006005        0.896        0.919
##  1119.0   1576       1    0.907 0.006028        0.895        0.919
##  1121.0   1575       1    0.906 0.006052        0.895        0.918
##  1123.0   1572       1    0.906 0.006075        0.894        0.918
##  1136.0   1561       1    0.905 0.006099        0.893        0.917
##  1161.0   1532       1    0.905 0.006124        0.893        0.917
##  1170.0   1521       1    0.904 0.006149        0.892        0.916
##  1173.0   1518       1    0.904 0.006173        0.891        0.916
##  1179.0   1511       1    0.903 0.006198        0.891        0.915
##  1183.0   1506       1    0.902 0.006223        0.890        0.915
##  1185.0   1502       1    0.902 0.006248        0.890        0.914
##  1200.0   1486       1    0.901 0.006273        0.889        0.913
##  1203.0   1485       1    0.900 0.006298        0.888        0.913
##  1204.0   1482       1    0.900 0.006323        0.888        0.912
##  1207.0   1476       1    0.899 0.006348        0.887        0.912
##  1216.0   1467       1    0.899 0.006373        0.886        0.911
##  1222.0   1453       1    0.898 0.006399        0.886        0.911
##  1227.0   1445       1    0.897 0.006424        0.885        0.910
##  1244.0   1433       1    0.897 0.006450        0.884        0.910
##  1253.0   1424       1    0.896 0.006477        0.884        0.909
##  1258.0   1422       1    0.896 0.006503        0.883        0.908
##  1263.0   1414       1    0.895 0.006529        0.882        0.908
##  1267.0   1411       1    0.894 0.006555        0.882        0.907
##  1274.0   1408       1    0.894 0.006581        0.881        0.907
##  1297.0   1385       1    0.893 0.006608        0.880        0.906
##  1301.0   1380       1    0.892 0.006635        0.879        0.905
##  1317.0   1365       1    0.892 0.006662        0.879        0.905
##  1319.0   1361       1    0.891 0.006689        0.878        0.904
##  1327.0   1357       1    0.890 0.006716        0.877        0.904
##  1386.0   1319       1    0.890 0.006745        0.877        0.903
##  1414.0   1294       1    0.889 0.006775        0.876        0.902
##  1421.0   1285       1    0.888 0.006805        0.875        0.902
##  1427.0   1281       1    0.888 0.006835        0.874        0.901
##  1431.0   1279       1    0.887 0.006864        0.874        0.900
##  1436.0   1275       1    0.886 0.006894        0.873        0.900
##  1446.0   1270       1    0.886 0.006924        0.872        0.899
##  1447.0   1269       1    0.885 0.006954        0.871        0.899
##  1451.0   1261       1    0.884 0.006983        0.871        0.898
##  1472.0   1246       1    0.883 0.007014        0.870        0.897
##  1481.0   1241       1    0.883 0.007044        0.869        0.897
##  1488.0   1236       1    0.882 0.007075        0.868        0.896
##  1495.0   1229       1    0.881 0.007105        0.867        0.895
##  1506.0   1223       1    0.881 0.007136        0.867        0.895
##  1512.0   1217       1    0.880 0.007166        0.866        0.894
##  1513.0   1213       1    0.879 0.007197        0.865        0.893
##  1520.0   1208       1    0.878 0.007228        0.864        0.893
##  1522.0   1207       1    0.878 0.007258        0.864        0.892
##  1523.0   1205       1    0.877 0.007289        0.863        0.891
##  1533.0   1202       1    0.876 0.007319        0.862        0.891
##  1547.0   1190       1    0.875 0.007350        0.861        0.890
##  1556.0   1180       1    0.875 0.007381        0.860        0.889
##  1558.0   1175       1    0.874 0.007412        0.860        0.889
##  1567.0   1168       1    0.873 0.007444        0.859        0.888
##  1569.0   1164       1    0.872 0.007475        0.858        0.887
##  1571.0   1161       1    0.872 0.007506        0.857        0.887
##  1590.0   1144       1    0.871 0.007538        0.856        0.886
##  1593.0   1139       2    0.869 0.007602        0.855        0.884
##  1595.0   1135       1    0.869 0.007634        0.854        0.884
##  1634.0   1097       1    0.868 0.007668        0.853        0.883
##  1635.0   1095       1    0.867 0.007702        0.852        0.882
##  1638.0   1090       1    0.866 0.007736        0.851        0.882
##  1647.0   1081       1    0.865 0.007770        0.850        0.881
##  1649.0   1079       1    0.865 0.007804        0.850        0.880
##  1651.0   1077       1    0.864 0.007838        0.849        0.879
##  1669.0   1060       1    0.863 0.007873        0.848        0.879
##  1677.0   1053       1    0.862 0.007908        0.847        0.878
##  1682.0   1049       1    0.861 0.007943        0.846        0.877
##  1695.0   1037       1    0.861 0.007979        0.845        0.876
##  1701.0   1032       1    0.860 0.008014        0.844        0.876
##  1735.0   1009       1    0.859 0.008052        0.843        0.875
##  1747.0    999       1    0.858 0.008089        0.842        0.874
##  1755.0    992       1    0.857 0.008127        0.841        0.873
##  1779.0    979       1    0.856 0.008166        0.840        0.872
##  1782.0    977       1    0.855 0.008205        0.840        0.872
##  1798.0    974       1    0.855 0.008243        0.839        0.871
##  1801.0    973       1    0.854 0.008281        0.838        0.870
##  1804.0    972       1    0.853 0.008319        0.837        0.869
##  1811.0    968       1    0.852 0.008357        0.836        0.868
##  1822.0    961       1    0.851 0.008395        0.835        0.868
##  1826.0    958       1    0.850 0.008433        0.834        0.867
##  1833.0    955       1    0.849 0.008471        0.833        0.866
##  1866.0    929       1    0.848 0.008511        0.832        0.865
##  1873.0    919       1    0.847 0.008552        0.831        0.864
##  1877.0    914       1    0.846 0.008593        0.830        0.864
##  1924.0    883       1    0.846 0.008636        0.829        0.863
##  1927.0    879       1    0.845 0.008680        0.828        0.862
##  1970.0    851       1    0.844 0.008726        0.827        0.861
##  1973.0    850       1    0.843 0.008772        0.826        0.860
##  1981.0    842       1    0.842 0.008819        0.824        0.859
##  1982.0    841       1    0.841 0.008865        0.823        0.858
##  1986.0    837       1    0.840 0.008911        0.822        0.857
##  2005.0    818       1    0.839 0.008959        0.821        0.856
##  2009.0    816       1    0.838 0.009007        0.820        0.855
##  2033.0    793       1    0.836 0.009057        0.819        0.854
##  2045.0    788       1    0.835 0.009108        0.818        0.853
##  2080.0    765       1    0.834 0.009161        0.817        0.852
##  2083.0    764       1    0.833 0.009214        0.815        0.851
##  2084.0    763       1    0.832 0.009266        0.814        0.850
##  2114.0    745       2    0.830 0.009375        0.812        0.848
##  2118.0    739       1    0.829 0.009429        0.811        0.847
##  2142.0    724       1    0.828 0.009486        0.809        0.846
##  2165.0    711       1    0.826 0.009543        0.808        0.845
##  2178.0    702       2    0.824 0.009660        0.805        0.843
##  2194.0    687       1    0.823 0.009721        0.804        0.842
##  2208.0    673       1    0.822 0.009783        0.803        0.841
##  2214.0    668       1    0.820 0.009845        0.801        0.840
##  2239.0    652       1    0.819 0.009910        0.800        0.839
##  2257.0    641       1    0.818 0.009977        0.799        0.838
##  2266.0    639       1    0.817 0.010043        0.797        0.837
##  2288.0    617       1    0.815 0.010113        0.796        0.835
##  2305.0    597       1    0.814 0.010188        0.794        0.834
##  2321.0    581       1    0.813 0.010267        0.793        0.833
##  2330.0    573       1    0.811 0.010346        0.791        0.832
##  2334.0    567       1    0.810 0.010426        0.790        0.830
##  2342.0    563       1    0.808 0.010507        0.788        0.829
##  2378.0    530       1    0.807 0.010597        0.786        0.828
##  2387.0    528       1    0.805 0.010686        0.785        0.826
##  2413.0    516       1    0.804 0.010779        0.783        0.825
##  2429.0    503       1    0.802 0.010875        0.781        0.824
##  2445.0    486       1    0.800 0.010977        0.779        0.822
##  2447.0    483       1    0.799 0.011079        0.777        0.821
##  2449.0    482       1    0.797 0.011179        0.775        0.819
##  2455.0    476       1    0.795 0.011281        0.774        0.818
##  2470.0    467       1    0.794 0.011384        0.772        0.816
##  2486.0    456       1    0.792 0.011492        0.770        0.815
##  2551.0    407       1    0.790 0.011627        0.768        0.813
##  2554.0    405       1    0.788 0.011761        0.765        0.811
##  2555.0    404       1    0.786 0.011892        0.763        0.810
##  2581.0    380       1    0.784 0.012040        0.761        0.808
##  2582.0    379       1    0.782 0.012184        0.758        0.806
##  2623.0    355       1    0.780 0.012348        0.756        0.804
##  2633.0    349       1    0.778 0.012513        0.753        0.802
##  2636.0    346       1    0.775 0.012677        0.751        0.801
##  2662.0    331       1    0.773 0.012853        0.748        0.799
##  2676.0    321       1    0.771 0.013037        0.745        0.797
##  2686.0    315       1    0.768 0.013223        0.743        0.794
##  2718.0    293       1    0.765 0.013435        0.740        0.792
##  2790.0    255       1    0.762 0.013713        0.736        0.790
##  2813.0    239       1    0.759 0.014022        0.732        0.787
##  2848.0    204       1    0.756 0.014439        0.728        0.784
##  2849.0    202       1    0.752 0.014844        0.723        0.781
##  2861.0    195       1    0.748 0.015261        0.719        0.778
##  2875.0    178       1    0.744 0.015743        0.714        0.775
##  3011.0    137       1    0.738 0.016538        0.707        0.771
##  3017.0    131       1    0.733 0.017345        0.699        0.768
##  3085.0    111       1    0.726 0.018402        0.691        0.763
##  3109.0    101       1    0.719 0.019574        0.682        0.758
##  3131.0     90       1    0.711 0.020923        0.671        0.753
##  3244.0     52       1    0.697 0.024585        0.651        0.747
##  3282.0     37       1    0.678 0.030294        0.622        0.740
## 
##                 SEX=2 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     3    974       1    0.999 0.00103        0.997        1.000
##     4    973       1    0.998 0.00145        0.995        1.000
##    16    967       1    0.997 0.00178        0.993        1.000
##    21    966       1    0.996 0.00205        0.992        1.000
##    27    962       1    0.995 0.00230        0.990        0.999
##    40    957       1    0.994 0.00252        0.989        0.999
##    49    953       1    0.993 0.00272        0.987        0.998
##    58    949       1    0.992 0.00292        0.986        0.997
##    60    947       1    0.991 0.00310        0.985        0.997
##    94    937       1    0.990 0.00327        0.983        0.996
##   105    932       1    0.989 0.00343        0.982        0.995
##   118    929       1    0.987 0.00359        0.980        0.995
##   133    922       1    0.986 0.00374        0.979        0.994
##   146    916       1    0.985 0.00389        0.978        0.993
##   167    902       1    0.984 0.00404        0.976        0.992
##   196    885       1    0.983 0.00418        0.975        0.991
##   199    881       1    0.982 0.00432        0.974        0.991
##   214    876       1    0.981 0.00446        0.972        0.990
##   217    874       1    0.980 0.00460        0.971        0.989
##   236    864       1    0.979 0.00473        0.969        0.988
##   237    863       1    0.978 0.00486        0.968        0.987
##   249    856       1    0.976 0.00498        0.967        0.986
##   254    851       1    0.975 0.00511        0.965        0.985
##   259    849       2    0.973 0.00535        0.962        0.983
##   279    841       1    0.972 0.00547        0.961        0.983
##   294    833       1    0.971 0.00558        0.960        0.982
##   299    828       1    0.969 0.00570        0.958        0.981
##   359    798       1    0.968 0.00582        0.957        0.980
##   360    797       1    0.967 0.00594        0.955        0.979
##   413    780       1    0.966 0.00606        0.954        0.978
##   453    767       1    0.964 0.00618        0.952        0.977
##   461    762       1    0.963 0.00630        0.951        0.976
##   465    760       1    0.962 0.00642        0.949        0.975
##   481    747       1    0.961 0.00654        0.948        0.974
##   538    723       1    0.959 0.00666        0.946        0.972
##   568    709       1    0.958 0.00679        0.945        0.971
##   570    708       1    0.957 0.00691        0.943        0.970
##   579    705       1    0.955 0.00703        0.942        0.969
##   589    701       1    0.954 0.00715        0.940        0.968
##   676    663       1    0.952 0.00729        0.938        0.967
##   683    659       1    0.951 0.00742        0.937        0.966
##   702    652       1    0.950 0.00755        0.935        0.964
##   788    613       1    0.948 0.00769        0.933        0.963
##   847    596       1    0.946 0.00784        0.931        0.962
##   856    591       1    0.945 0.00799        0.929        0.961
##   858    590       1    0.943 0.00814        0.927        0.959
##   913    565       1    0.942 0.00829        0.925        0.958
##   939    553       1    0.940 0.00845        0.923        0.957
##   973    541       1    0.938 0.00861        0.921        0.955
##   994    538       1    0.936 0.00877        0.919        0.954
##  1002    534       1    0.935 0.00893        0.917        0.952
##  1022    527       1    0.933 0.00908        0.915        0.951
##  1056    514       1    0.931 0.00925        0.913        0.949
##  1081    507       1    0.929 0.00941        0.911        0.948
##  1106    498       1    0.927 0.00957        0.909        0.946
##  1165    480       1    0.925 0.00975        0.907        0.945
##  1178    475       1    0.923 0.00992        0.904        0.943
##  1315    441       1    0.921 0.01011        0.902        0.941
##  1319    439       1    0.919 0.01031        0.899        0.940
##  1361    429       1    0.917 0.01050        0.897        0.938
##  1425    417       1    0.915 0.01071        0.894        0.936
##  1437    414       2    0.911 0.01110        0.889        0.933
##  1442    411       1    0.908 0.01129        0.886        0.931
##  1466    403       2    0.904 0.01168        0.881        0.927
##  1491    392       1    0.901 0.01187        0.879        0.925
##  1541    385       1    0.899 0.01207        0.876        0.923
##  1562    383       1    0.897 0.01227        0.873        0.921
##  1635    367       1    0.894 0.01247        0.870        0.919
##  1666    359       1    0.892 0.01269        0.867        0.917
##  1688    355       1    0.889 0.01290        0.864        0.915
##  1751    346       1    0.887 0.01311        0.861        0.913
##  1797    342       1    0.884 0.01333        0.858        0.911
##  1879    325       1    0.881 0.01356        0.855        0.908
##  1915    319       1    0.879 0.01380        0.852        0.906
##  1991    293       1    0.876 0.01407        0.849        0.904
##  2051    282       1    0.873 0.01436        0.845        0.901
##  2053    279       1    0.869 0.01465        0.841        0.899
##  2152    262       1    0.866 0.01496        0.837        0.896
##  2224    238       1    0.863 0.01534        0.833        0.893
##  2269    227       1    0.859 0.01573        0.828        0.890
##  2413    192       1    0.854 0.01627        0.823        0.887
##  2530    168       1    0.849 0.01695        0.817        0.883
##  3020     66       1    0.836 0.02102        0.796        0.879
ggsurvplot(fit2, data = SMARTo, pval = TRUE) 

(4) いくつかの変数を使ってCoxモデルを当てはめてみましょう。

# 生存時間とイベント変数の設定
time <- SMARTo$TEVENT
event <- SMARTo$EVENT

# Coxモデルの適用
cox_model <- coxph(Surv(time, event) ~ AGE + SEX + DIABETES + CEREBRAL + CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol, data = SMARTo)

# 結果の表示
summary(cox_model)
## Call:
## coxph(formula = Surv(time, event) ~ AGE + SEX + DIABETES + CEREBRAL + 
##     CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol, 
##     data = SMARTo)
## 
##   n= 3536, number of events= 410 
##    ( 337 個の観測値が欠損のため削除されました )
## 
##                coef exp(coef)  se(coef)      z Pr(>|z|)    
## AGE        0.038227  1.038967  0.005845  6.540 6.16e-11 ***
## SEX2      -0.270955  0.762651  0.135828 -1.995 0.046060 *  
## DIABETES1  0.148905  1.160562  0.115844  1.285 0.198658    
## CEREBRAL1  0.336125  1.399514  0.133759  2.513 0.011974 *  
## CARDIAC1   0.315171  1.370493  0.114633  2.749 0.005971 ** 
## AAA1       0.761805  2.142140  0.127411  5.979 2.24e-09 ***
## PERIPH1    0.402679  1.495827  0.120085  3.353 0.000799 ***
## STENOSIS1  0.274760  1.316215  0.123019  2.233 0.025517 *  
## albumin2   0.426650  1.532116  0.119977  3.556 0.000376 ***
## albumin3   0.827608  2.287840  0.201406  4.109 3.97e-05 ***
## SMOKING2   0.098133  1.103110  0.148475  0.661 0.508652    
## SMOKING3  -0.020667  0.979546  0.260873 -0.079 0.936857    
## alcohol2  -0.074567  0.928146  0.178415 -0.418 0.675992    
## alcohol3  -0.153965  0.857302  0.126613 -1.216 0.223973    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## AGE          1.0390     0.9625    1.0271    1.0509
## SEX2         0.7627     1.3112    0.5844    0.9953
## DIABETES1    1.1606     0.8617    0.9248    1.4564
## CEREBRAL1    1.3995     0.7145    1.0768    1.8190
## CARDIAC1     1.3705     0.7297    1.0947    1.7157
## AAA1         2.1421     0.4668    1.6688    2.7498
## PERIPH1      1.4958     0.6685    1.1821    1.8928
## STENOSIS1    1.3162     0.7598    1.0342    1.6751
## albumin2     1.5321     0.6527    1.2111    1.9383
## albumin3     2.2878     0.4371    1.5417    3.3952
## SMOKING2     1.1031     0.9065    0.8246    1.4757
## SMOKING3     0.9795     1.0209    0.5874    1.6334
## alcohol2     0.9281     1.0774    0.6543    1.3167
## alcohol3     0.8573     1.1665    0.6689    1.0988
## 
## Concordance= 0.673  (se = 0.015 )
## Likelihood ratio test= 198.9  on 14 df,   p=<2e-16
## Wald test            = 210.2  on 14 df,   p=<2e-16
## Score (logrank) test = 229.4  on 14 df,   p=<2e-16

(5) Cox比例ハザード性が成り立っているか検討しましょう。

# Schoenfeld残差による比例ハザード性の評価
cox_zph_result <- cox.zph(cox_model)

# 結果の表示
print(cox_zph_result)
##           chisq df       p
## AGE       6.133  1 0.01327
## SEX       1.950  1 0.16260
## DIABETES  0.163  1 0.68636
## CEREBRAL  2.173  1 0.14044
## CARDIAC   1.139  1 0.28588
## AAA       1.059  1 0.30340
## PERIPH    0.364  1 0.54650
## STENOSIS  2.005  1 0.15677
## albumin   1.574  2 0.45521
## SMOKING  14.375  2 0.00076
## alcohol   0.124  2 0.93994
## GLOBAL   30.719 14 0.00607
# グラフの描画
plot(cox_zph_result)

AGE:0.01327、GLOBAL 0.00607のP値は0.05未満ちなっおり、比例ハザード性は満たしておらず、モデルを修正する必要がある。

第3部(欠測値の処理)

1) 多重代入を行ってみましょう。

imp <- mice(SMARTo, 
            m=5, #mは代入の結果として作成するデータセットの数
            maxit =5, #maxitは反復回数
            method="pmm",
            seed = 10) 
## 
##  iter imp variable
##   1   1  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   1   2  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   1   3  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   1   4  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   1   5  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   2   1  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   2   2  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   2   3  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   2   4  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   2   5  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   3   1  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   3   2  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   3   3  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   3   4  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   3   5  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   4   1  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   4   2  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   4   3  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   4   4  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   4   5  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   5   1  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   5   2  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   5   3  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   5   4  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol
##   5   5  DIABETES  STENOSIS  SYSTBP  DIASTBP  SYSTH  DIASTH  LENGTHO  WEIGHTO  BMIO  CHOLO  HDLO  LDLO  TRIGO  HOMOCO  GLUTO  CREATO  IMTO  albumin  SMOKING  packyrs  alcohol

2)多重代入後の確認

plot(imp) 

全然収束していない。本来ならばデータセットも繰り返し数ももっと増やす必要がある。

3) 多重代入後の一つのデータを抜き出してCox比例ハザードモデルを実施しましょう

# 欠損データを補完したデータセットの選択
completed_data_1 <- complete(imp, action = 1) # action=は選択するデータセットのインデックス、なしでも良い。

# Coxモデルの適用
cox_model_1 <- coxph(Surv(time, event) ~ AGE + SEX + DIABETES + CEREBRAL + CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol, data = completed_data_1)

# 結果の表示
summary(cox_model_1)
## Call:
## coxph(formula = Surv(time, event) ~ AGE + SEX + DIABETES + CEREBRAL + 
##     CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol, 
##     data = completed_data_1)
## 
##   n= 3873, number of events= 460 
## 
##                coef exp(coef)  se(coef)      z Pr(>|z|)    
## AGE        0.035542  1.036181  0.005465  6.504 7.85e-11 ***
## SEX2      -0.269115  0.764055  0.128674 -2.091 0.036488 *  
## DIABETES1  0.133679  1.143025  0.108546  1.232 0.218123    
## CEREBRAL1  0.320773  1.378193  0.125316  2.560 0.010476 *  
## CARDIAC1   0.346760  1.414477  0.107349  3.230 0.001237 ** 
## AAA1       0.743864  2.104049  0.120658  6.165 7.05e-10 ***
## PERIPH1    0.396019  1.485897  0.111756  3.544 0.000395 ***
## STENOSIS1  0.266689  1.305634  0.115853  2.302 0.021338 *  
## albumin2   0.374186  1.453808  0.115003  3.254 0.001139 ** 
## albumin3   0.969153  2.635711  0.171922  5.637 1.73e-08 ***
## SMOKING2   0.165891  1.180444  0.144321  1.149 0.250367    
## SMOKING3   0.136513  1.146270  0.234319  0.583 0.560166    
## alcohol2  -0.109945  0.895883  0.164703 -0.668 0.504429    
## alcohol3  -0.204890  0.814737  0.119253 -1.718 0.085777 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##           exp(coef) exp(-coef) lower .95 upper .95
## AGE          1.0362     0.9651    1.0251    1.0473
## SEX2         0.7641     1.3088    0.5937    0.9832
## DIABETES1    1.1430     0.8749    0.9240    1.4140
## CEREBRAL1    1.3782     0.7256    1.0781    1.7619
## CARDIAC1     1.4145     0.7070    1.1461    1.7457
## AAA1         2.1040     0.4753    1.6609    2.6654
## PERIPH1      1.4859     0.6730    1.1936    1.8498
## STENOSIS1    1.3056     0.7659    1.0404    1.6385
## albumin2     1.4538     0.6878    1.1604    1.8214
## albumin3     2.6357     0.3794    1.8817    3.6918
## SMOKING2     1.1804     0.8471    0.8896    1.5664
## SMOKING3     1.1463     0.8724    0.7242    1.8144
## alcohol2     0.8959     1.1162    0.6487    1.2372
## alcohol3     0.8147     1.2274    0.6449    1.0293
## 
## Concordance= 0.671  (se = 0.014 )
## Likelihood ratio test= 222  on 14 df,   p=<2e-16
## Wald test            = 242.4  on 14 df,   p=<2e-16
## Score (logrank) test = 265.2  on 14 df,   p=<2e-16

4)多重代入後のデータでCox比例ハザードモデルを実施しましょう

# Coxモデルを適用
fit_cox <- with(imp, coxph(Surv(time, event) ~ AGE + SEX + DIABETES + CEREBRAL + CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol))

# 結果の統合
pooled_cox <- pool(fit_cox)

# 統合された結果の表示
summary(pooled_cox)
##         term    estimate   std.error  statistic       df      p.value
## 1        AGE  0.03508699 0.005477038  6.4061983 438.2317 3.853947e-10
## 2       SEX2 -0.27225432 0.128942928 -2.1114327 442.3421 3.529544e-02
## 3  DIABETES1  0.14347841 0.108937630  1.3170693 431.2924 1.885147e-01
## 4  CEREBRAL1  0.30730375 0.125722066  2.4443104 438.9877 1.490542e-02
## 5   CARDIAC1  0.34537038 0.107481918  3.2132882 441.3350 1.408405e-03
## 6       AAA1  0.75150346 0.120778031  6.2221868 442.1694 1.138535e-09
## 7    PERIPH1  0.38932596 0.112582571  3.4581371 431.0070 5.980072e-04
## 8  STENOSIS1  0.28987828 0.116928423  2.4791087 413.2017 1.356914e-02
## 9   albumin2  0.40209433 0.119466853  3.3657397 235.6706 8.911847e-04
## 10  albumin3  0.99617496 0.173905299  5.7282611 415.8420 1.948732e-08
## 11  SMOKING2  0.14182277 0.144273444  0.9830137 432.4422 3.261503e-01
## 12  SMOKING3  0.13541559 0.235214707  0.5757105 414.6890 5.651231e-01
## 13  alcohol2 -0.13726578 0.168529840 -0.8144895 381.0519 4.158733e-01
## 14  alcohol3 -0.20638068 0.119771386 -1.7231218 433.1676 8.558015e-02

5)多重代入後のデータを用いて非線形性の確認をしましょう。

# Coxモデルを適用
fit_cox_2 <- with(imp, coxph(Surv(time, event) ~ rcs(AGE, 4) + SEX + DIABETES + CEREBRAL + CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol))

# 結果の統合
pooled_cox <- pool(fit_cox_2)

# 統合された結果の表示
summary(pooled_cox)
##                term     estimate  std.error  statistic       df      p.value
## 1    rcs(AGE, 4)AGE -0.004106661 0.01944091 -0.2112382 441.7535 8.327989e-01
## 2   rcs(AGE, 4)AGE'  0.026854069 0.04311759  0.6228100 441.3274 5.337310e-01
## 3  rcs(AGE, 4)AGE''  0.069850293 0.19111601  0.3654863 441.2783 7.149235e-01
## 4              SEX2 -0.276805325 0.12942862 -2.1386717 440.3773 3.301179e-02
## 5         DIABETES1  0.160534399 0.10924554  1.4694824 431.2922 1.424310e-01
## 6         CEREBRAL1  0.302208839 0.12580824  2.4021386 436.9119 1.671600e-02
## 7          CARDIAC1  0.375494244 0.10772459  3.4856874 438.8555 5.402765e-04
## 8              AAA1  0.754137449 0.12198256  6.1823384 440.1384 1.442413e-09
## 9           PERIPH1  0.383963219 0.11291560  3.4004444 428.4621 7.358385e-04
## 10        STENOSIS1  0.314203811 0.11760689  2.6716445 407.8190 7.850416e-03
## 11         albumin2  0.384462042 0.12017252  3.1992510 225.8254 1.575653e-03
## 12         albumin3  0.976526774 0.17440301  5.5992541 416.2574 3.915152e-08
## 13         SMOKING2  0.189211818 0.14512377  1.3037962 429.8109 1.930009e-01
## 14         SMOKING3  0.164228519 0.23549313  0.6973814 414.7491 4.859549e-01
## 15         alcohol2 -0.116750376 0.16858447 -0.6925334 378.8071 4.890267e-01
## 16         alcohol3 -0.196730771 0.12004852 -1.6387604 431.4978 1.019921e-01
# 非線形性の確認
#options(datadist='distribution')
#distribution <- datadist(SMARTo)

# 統合された結果を用いてPredictプロットを作成
#plot(Predict(pooled_cox, AGE))
# フォーミュラを設定
formula_cox <- Surv(time, event) ~ rcs(AGE, 4) + SEX + DIABETES + CEREBRAL + CARDIAC + AAA + PERIPH + STENOSIS + albumin + SMOKING + alcohol

# fit.mult.impute を使用して Cox モデルを適用
fit_cox_mult_impute <- fit.mult.impute(formula_cox, fitter=coxph, xtrans=imp, data=SMARTo) # x=TRUE, y=TRUE, surv=TRUEこれがあると回らない。
## 
## Variance Inflation Factors Due to Imputation:
## 
##   rcs(AGE, 4)AGE  rcs(AGE, 4)AGE' rcs(AGE, 4)AGE''             SEX2 
##             1.00             1.00             1.00             1.00 
##        DIABETES1        CEREBRAL1         CARDIAC1             AAA1 
##             1.01             1.01             1.00             1.00 
##          PERIPH1        STENOSIS1         albumin2         albumin3 
##             1.01             1.02             1.10             1.02 
##         SMOKING2         SMOKING3         alcohol2         alcohol3 
##             1.01             1.02             1.04             1.01 
## 
## Rate of Missing Information:
## 
##   rcs(AGE, 4)AGE  rcs(AGE, 4)AGE' rcs(AGE, 4)AGE''             SEX2 
##             0.00             0.00             0.00             0.00 
##        DIABETES1        CEREBRAL1         CARDIAC1             AAA1 
##             0.01             0.01             0.00             0.00 
##          PERIPH1        STENOSIS1         albumin2         albumin3 
##             0.01             0.02             0.09             0.02 
##         SMOKING2         SMOKING3         alcohol2         alcohol3 
##             0.01             0.02             0.03             0.01 
## 
## d.f. for t-distribution for Tests of Single Coefficients:
## 
##   rcs(AGE, 4)AGE  rcs(AGE, 4)AGE' rcs(AGE, 4)AGE''             SEX2 
##      13022402.50       2191760.70       1939788.36        501139.38 
##        DIABETES1        CEREBRAL1         CARDIAC1             AAA1 
##         32433.37         89420.04        179859.11        402576.94 
##          PERIPH1        STENOSIS1         albumin2         albumin3 
##         23874.31          7367.97           513.65         10525.76 
##         SMOKING2         SMOKING3         alcohol2         alcohol3 
##         27365.25          9797.55          3369.69         33273.50 
## 
## The following fit components were averaged over the 5 model fits:
## 
##   linear.predictors means
# 統合された結果を用いて Predict プロットを作成
#plot(Predict(fit_cox_mult_impute, AGE))

ここの plotからどうしてもエラーになる。x=TRUE, y=TRUE, surv=TRUEこれがあっても回らない。どうすればよいのか。。。