library(pacman); p_load(readxl, tidyr, dplyr, tidyverse, psych, ggplot2, cowplot, sandwich, lmtest, ggcorrplot, lavaan, semPlot, lavaanPlot)

HCReg <- function(Formula, Data, HC = "HC5"){
  require(sandwich); require(lmtest)
  BaseModel <- lm(Formula, Data)
  VC <- vcovHC(BaseModel, type = HC)
  coeftest_results <- coeftest(BaseModel, vcov = VC)
  model_summary <- summary(BaseModel)
  r_squared <- model_summary$r.squared
  adj_r_squared <- model_summary$adj.r.squared
  Output <- list(
    coeftest_results = coeftest_results,
    r_squared = r_squared,
    adj_r_squared = adj_r_squared)
  return(Output)}

data <- read_xlsx("SESIncludedData.xlsx")

data$MSZMT_total <- rowSums(data[,62:101]) #MARS Total Score

Transformed <- data %>% gather(Subtest, Score, dpv_tajek:dpv_praktik)

data %>%
  summarise_all(list(mean = mean, N = ~sum(!is.na(.)), sd = sd))
## Warning: There was 1 warning in `summarise()`.
## ℹ In argument: `SES_mean = (function (x, ...) ...`.
## Caused by warning in `mean.default()`:
## ! argument is not numeric or logical: returning NA

Rationale

The Diszkalkulia Pedagogiai Vizsgalata or DPV is a dyscalculia diagnosis tool used in Hungary. It features 14 subtests which amount to parcels of different numbers of items, in addition to one sumscore for the whole battery (dpv_ossz). Dyscalculia is defined as abnormally low mathematical ability for a person’s chronological age and level of intellectual functioning. Despite this, the DPV may be a measure of general intelligence, and this can be assessed by determining the latent correlation with the g factor from a gold-standard intelligence assessment like the WISC.

DPV Test Details

  1. Tajek, quality assessment. Binary/boolean indicating if a person has the correct bodily left-right orientation, the correct examiner left-right orientation, understands relations and left-right orientation on a plane, understands relational vocabulary in tenses in time, and relations in time, and understands relationships between numbers and understands relational grammar in numbers.

2.1. Szaml, counting in 10,000s. Five-point scale earned based on a participant’s ability to correctly name numbers, ability to count correctly in ones, tenths, and hundredths in ascending and descending order, ability to correctly place ones, tenths, and hundredths in ascending and descending order, ability to identify numbering rule mistakes for ones, tenths, and hundredths in ascending and descending order, and whether the participant stuttered or slowed their tempo by ones, tenths, or hundredths when going between numbers, in both ascending and descending order.

2.2. Szameml, number memory. Binary/boolean indicating if a person’s number memory appears weak per the examiner’s qualitative judgment. This scale is binary.

2.3. Szamegyz, number name-digit matching in the range of 100,000. Six-point scale earned based on a participant’s ability to avoid making errors when reading and writing five-digit numbers, and to avoid using zero as a placeholder when describing numbers or reading out their digits.

2.4. Rel, quantitative relations between numerical neighbors in the range of 10,000. Four-point scale earned based on a participant’s ability to correctly verbally and visually interpret manufactured quantitative relations, identify the content of a relational signal, and determine whether the neighbors of a given number are correct.

2.5. Helyiert, designation of a local value in the 10,000 range.

3.1. Potlas, substitution, decomposition, addition, and subtraction in numbers of 10 and 20, following arithmetic rules. One hundred-point scale with which points are earned by indicating correct understandings of operations, use of equipment, ability to mathematically abstract, to count in tens, and to switch between different operations without error.

3.2. Muvel, addition and subtraction in 100s, 1000s, analogies, and approximate calculation. Forty-three-point scale with which points are earned by indicating correct readings of specific actions, identifying operation signals and performing with them, properly using devices, correctly interpreting counts, verbally executing operations, performing approximate calculations like rounding and estimating, and avoiding disorientation when switching between operations.

3.3. Szorzoszt, multiplication and inclusion. Nine-point scale with which points are earned by interpreting operations correctly, and interpreting the relationship between multiplication and inclusion correctly.

3.4. Irasbeli, written actions. Thirty-eight-point scale with which points are earned by correctly recording what written operations are, reading them out, identifying operation signals correctly, processing written transactions involving operations, using devices correctly, properly interpreting placeholders during operations, properly interpreting the concept of the remainder, retaining the remainder, obtaining a correct answer, and switching to different operations correctly.

  1. Szoveg, text tasks. 27-point scale with which points are earned by properly state mathematical questions and do so without tools or taking additional actions due to errors.

  2. Logszab, mathematical-logical rules. Nine-point scale with which points are earned by correctly interpreting the terms decreasing and increasing, and by understanding and sticking to defined rules which are used to solve a question that the participant is also scored on.

  3. Muvsorr, higher level mathematical concepts and the order of operations. Twenty-two-point scale with which points are earned by correctly interpreting fractions, reading and writing fractions, performing operations with fractions, relating decimal numbers to fractiosn, reading and writing decimal fractions, identifying operation signals with fractions, understanding when operations are wrong with fractions, processing written transactions with fractions, using devices with fractions, understanding placeholders with decimal fractions, retaining remainders with fractions, switching operations when appropriate, and interpreting negative numbers tied to specific examples like debt and thermometers correctly.

  4. Praktik, practical knowledge. Binary/boolean qualitatively assessing a participant’s ability to identify units of measurement, recall conversion numbers when converting between them, select appropriate operations during unit conversions, and interpret the concepts of districts and areas correctly.

Analyses

Variable Distributions

OrdNames <- list(
  "dpv_helyiert" = "Helyiert",
  "dpv_irasbeli" = "Irasbeli", 
  "dpv_logszab"  = "Logszab", 
  "dpv_muvel"    = "Muvel", 
  "dpv_muvsorr"  = "Muvsorr", 
  "dpv_potlas"   = "Potlas", 
  "dpv_praktik"  = "Praktik", 
  "dpv_rel"      = "Rel", 
  "dpv_szamegyz" = "Szamegyz", 
  "dpv_szameml"  = "Szameml", 
  "dpv_szaml"    = "Szaml", 
  "dpv_szorzoszt"= "Szorzoszt", 
  "dpv_szoveg"   = "Szoveg", 
  "dpv_tajek"    = "Tajek")

TestLabeler <- function(variable, value){
  return(OrdNames[value])}

p <- ggplot(Transformed) + 
  geom_histogram(aes(Score, color = Subtest, fill = Subtest), alpha = .5, binwidth = 1) + 
  ggplot2::theme_bw() + 
  theme(legend.position = "none") + 
  facet_wrap(~ Subtest, scales = "free",
             labeller = TestLabeler) + 
  labs(
    x = NULL,
    y = NULL)

  ggdraw(p) + draw_label(x = .76, y = .15, "Subtests of the DPV")

Correlations

First, some particulars of interest

cor(data$dpv_ossz, data$WISC_TtlQ)        #DPV Total Score - FSIQ
## [1] 0.6235342
cor(data$dpv_ossz, data$osztalyzat)       #DPV Total Score - Grades
## [1] 0.4969822
cor(data$dpv_ossz, data$MSZMT_total)      #DPV Total - MARS Total
## [1] -0.6455582
cor(data$dpv_ossz, as.numeric(data$SES))  #DPV Total - SES
## [1] 0.4469441
cor(data$WISC_TtlQ, data$osztalyzat)      #FSIQ - Grades
## [1] 0.7212848
cor(data$WISC_TtlQ, data$MSZMT_total)     #FSIQ - MARS Total
## [1] -0.5050968
cor(data$WISC_TtlQ, as.numeric(data$SES)) #FSIQ - SES
## [1] 0.7824917

and now, the DPV correlation matrix:

VarNames <- list("Tajek", "Szaml", "Szameml", "Szamegyz", "Rel", "Helyiert", "Potlas", "Muvel", "Szorzoszt", "Irasbeli", "Szoveg", "Logszab", "Muvsorr", "Praktik")

ggcorrplot(round(cor(data[42:55]), 4),
           hc.order = T, 
           type = "lower",
           outline.col = "white",
           ggtheme = ggplot2::theme_bw(),
           show.legend = F,
           lab = T,
           title = "DPV Subtest Intercorrelations",
           colors = c("orangered", "gold", "steelblue"),
           show.diag = F) +
  theme(
    plot.title = element_text(hjust = .5)) +
  scale_y_discrete(labels = VarNames) +
  scale_x_discrete(labels = VarNames)

And now with the WAIS

VarNames <- list("Tajek", "Szaml", "Szameml", "Szamegyz", "Rel", "Helyiert", "Potlas", "Muvel", "Szorzoszt", "Irasbeli", "Szoveg", "Logszab", "Muvsorr", "Praktik", "Szokincs", "Altmegert", "Mozaik", "Kepifog", "Matrix", "Szamterj", "Betuszam", "Kodolas", "Szimbol")

ggcorrplot(round(cor(data[c(42:55, 15, 17, 19, 23, 25, 27, 31, 33, 37, 39)]), 4),
           hc.order = F, 
           type = "lower",
           outline.col = "white",
           ggtheme = ggplot2::theme_bw(),
           show.legend = F,
           lab = T,
           title = "DPV and WISC Subtest Intercorrelations",
           colors = c("orangered", "gold", "steelblue"),
           show.diag = F) +
  theme(
    plot.title = element_text(hjust = .5)) +
  scale_y_discrete(labels = VarNames) +
  scale_x_discrete(labels = VarNames)

EFA

There is no available theoretical factor structure for the DPV, so exploratory results follow. Since the DPV is supposed to measure one thing, a single-factor structure will be defaulted to unless another can be found. Results from both will be presented regardless.

fa.parallel(data[42:55])

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
fa.parallel(sqrt(data[42:55]))

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
print(fa(data[42:55], nfactors = 2), cut = .3, sort = T)
## Loading required namespace: GPArotation
## Factor Analysis using method =  minres
## Call: fa(r = data[42:55], nfactors = 2)
## Standardized loadings (pattern matrix) based upon correlation matrix
##               item  MR1   MR2   h2   u2 com
## dpv_praktik     14 0.90       0.59 0.41 1.1
## dpv_muvsorr     13 0.88       0.68 0.32 1.0
## dpv_szorzoszt    9 0.84       0.77 0.23 1.0
## dpv_muvel        8 0.71       0.82 0.18 1.3
## dpv_logszab     12 0.68       0.77 0.23 1.3
## dpv_szoveg      11 0.59  0.35 0.74 0.26 1.6
## dpv_irasbeli    10 0.56       0.42 0.58 1.1
## dpv_szamegyz     4 0.50  0.42 0.71 0.29 1.9
## dpv_potlas       7 0.46  0.36 0.57 0.43 1.9
## dpv_szameml      3 0.44       0.23 0.77 1.0
## dpv_szaml        2       0.85 0.75 0.25 1.0
## dpv_helyiert     6       0.63 0.41 0.59 1.0
## dpv_rel          5       0.61 0.47 0.53 1.1
## dpv_tajek        1       0.55 0.45 0.55 1.2
## 
##                        MR1  MR2
## SS loadings           5.29 3.09
## Proportion Var        0.38 0.22
## Cumulative Var        0.38 0.60
## Proportion Explained  0.63 0.37
## Cumulative Proportion 0.63 1.00
## 
##  With factor correlations of 
##      MR1  MR2
## MR1 1.00 0.66
## MR2 0.66 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  11.63 with Chi Square of  1110.67
## The degrees of freedom for the model are 64  and the objective function was  2.03 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  102 with the empirical chi square  53.42  with prob <  0.82 
## The total number of observations was  102  with Likelihood Chi Square =  191.38  with prob <  1.3e-14 
## 
## Tucker Lewis Index of factoring reliability =  0.82
## RMSEA index =  0.139  and the 90 % confidence intervals are  0.118 0.163
## BIC =  -104.62
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    MR1  MR2
## Correlation of (regression) scores with factors   0.97 0.94
## Multiple R square of scores with factors          0.94 0.89
## Minimum correlation of possible factor scores     0.89 0.78
print(fa(data[42:55], nfactors = 3), cut = .3, sort = T)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
## Factor Analysis using method =  minres
## Call: fa(r = data[42:55], nfactors = 3)
## Standardized loadings (pattern matrix) based upon correlation matrix
##               item   MR1   MR3   MR2   h2       u2 com
## dpv_muvsorr     13  0.89             0.67  0.32571 1.0
## dpv_szorzoszt    9  0.86             0.78  0.21982 1.0
## dpv_praktik     14  0.86             0.60  0.39933 1.1
## dpv_muvel        8  0.75             0.84  0.15858 1.2
## dpv_logszab     12  0.67             0.76  0.23610 1.3
## dpv_szoveg      11  0.60             0.74  0.26015 1.5
## dpv_irasbeli    10  0.56             0.48  0.52124 1.7
## dpv_szamegyz     4  0.55             0.72  0.28451 1.7
## dpv_potlas       7  0.48             0.56  0.43552 1.7
## dpv_szameml      3  0.44             0.23  0.76578 1.1
## dpv_szaml        2        0.89       0.82  0.17701 1.0
## dpv_tajek        1        0.71       0.55  0.44662 1.1
## dpv_helyiert     6        0.51       0.39  0.61362 1.2
## dpv_rel          5              0.96 1.00 -0.00037 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           5.29 2.41 1.45
## Proportion Var        0.38 0.17 0.10
## Cumulative Var        0.38 0.55 0.65
## Proportion Explained  0.58 0.26 0.16
## Cumulative Proportion 0.58 0.84 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.65 0.44
## MR3 0.65 1.00 0.49
## MR2 0.44 0.49 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  11.63 with Chi Square of  1110.67
## The degrees of freedom for the model are 52  and the objective function was  1.56 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  102 with the empirical chi square  33.62  with prob <  0.98 
## The total number of observations was  102  with Likelihood Chi Square =  146.04  with prob <  7.3e-11 
## 
## Tucker Lewis Index of factoring reliability =  0.835
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.108 0.16
## BIC =  -94.46
## Fit based upon off diagonal values = 0.99
print(fa(data[42:55], nfactors = 4), cut = .3, sort = T)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Factor Analysis using method =  minres
## Call: fa(r = data[42:55], nfactors = 4)
## Standardized loadings (pattern matrix) based upon correlation matrix
##               item   MR1   MR2   MR4   MR3   h2     u2 com
## dpv_praktik     14  0.89                   0.76 0.2398 1.1
## dpv_muvsorr     13  0.59                   0.67 0.3345 1.6
## dpv_logszab     12  0.55        0.30       0.80 0.1969 2.0
## dpv_szoveg      11  0.41  0.32             0.75 0.2476 2.8
## dpv_szameml      3  0.38                   0.25 0.7505 1.4
## dpv_rel          5        0.83             0.73 0.2737 1.1
## dpv_szamegyz     4        0.58             0.76 0.2378 1.6
## dpv_muvel        8  0.41  0.52             0.85 0.1502 2.1
## dpv_potlas       7                         0.56 0.4392 3.6
## dpv_tajek        1              0.78       0.67 0.3347 1.1
## dpv_szaml        2              0.68       0.76 0.2392 1.4
## dpv_helyiert     6              0.39       0.39 0.6065 2.5
## dpv_irasbeli    10                    1.01 1.00 0.0034 1.0
## dpv_szorzoszt    9  0.39  0.39        0.41 0.81 0.1888 3.1
## 
##                        MR1  MR2  MR4  MR3
## SS loadings           2.97 2.76 2.11 1.91
## Proportion Var        0.21 0.20 0.15 0.14
## Cumulative Var        0.21 0.41 0.56 0.70
## Proportion Explained  0.30 0.28 0.22 0.20
## Cumulative Proportion 0.30 0.59 0.80 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR4  MR3
## MR1 1.00 0.47 0.44 0.54
## MR2 0.47 1.00 0.52 0.39
## MR4 0.44 0.52 1.00 0.43
## MR3 0.54 0.39 0.43 1.00
## 
## Mean item complexity =  1.9
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  11.63 with Chi Square of  1110.67
## The degrees of freedom for the model are 41  and the objective function was  1.07 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  102 with the empirical chi square  18.39  with prob <  1 
## The total number of observations was  102  with Likelihood Chi Square =  99.03  with prob <  1e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.87
## RMSEA index =  0.117  and the 90 % confidence intervals are  0.089 0.148
## BIC =  -90.6
## Fit based upon off diagonal values = 1

The 4-factor models fit best, but none of these look good at all.

ModBi4 <- '
g =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik

F1 =~ dpv_muvsorr + dpv_praktik
F2 =~ dpv_rel + dpv_irasbeli
F3 =~ dpv_szaml + dpv_tajek'

ModGF4 <- '
F1 =~ dpv_praktik + dpv_muvsorr + dpv_logszab + dpv_szoveg + dpv_szameml + dpv_muvel + dpv_szorzoszt
F2 =~ dpv_szoveg + dpv_rel + dpv_szamegyz + dpv_muvel + dpv_szorzoszt
F3 =~ dpv_logszab + dpv_tajek + dpv_szaml + dpv_helyiert
F4 =~ dpv_irasbeli + dpv_szorzoszt

dpv_szamegyz ~~ 0*dpv_szamegyz
dpv_szorzoszt ~~ 0*dpv_szorzoszt'

FitBi4 <- cfa(ModBi4, std.lv = T, meanstructure = T, orthogonal = T, data, estimator = "DWLS", ordered = c("dpv_szaml", "dpv_szamegyz", "dpv_rel", "dpv_potlas", "dpv_muvel", "dpv_szorzoszt", "dpv_irasbeli", "dpv_szoveg", "dpv_logszab", "dpv_muvsorr"), check.gradient = F, control=list(rel.tol=1e-4))
## Warning in lav_data_full(data = data, group = group, cluster = cluster, :
## lavaan WARNING: some ordered categorical variable(s) have more than 12 levels:
## dpv_potlas dpv_muvel dpv_szoveg
## Warning in muthen1984(Data = X[[g]], wt = WT[[g]], ov.names = ov.names[[g]], :
## lavaan WARNING: trouble constructing W matrix; used generalized inverse for A11
## submatrix
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
FitGF4 <- cfa(ModGF4, std.lv = T, meanstructure = T, orthogonal = F, data, estimator = "DWLS", ordered = c("dpv_szaml", "dpv_szamegyz", "dpv_rel", "dpv_potlas", "dpv_muvel", "dpv_szorzoszt", "dpv_irasbeli", "dpv_szoveg", "dpv_logszab", "dpv_muvsorr"), check.gradient = F, control=list(rel.tol=1e-4))
## Warning in lav_data_full(data = data, group = group, cluster = cluster, :
## lavaan WARNING: some ordered categorical variable(s) have more than 12 levels:
## dpv_szoveg dpv_muvel
## Warning in muthen1984(Data = X[[g]], wt = WT[[g]], ov.names = ov.names[[g]], :
## lavaan WARNING: trouble constructing W matrix; used generalized inverse for A11
## submatrix
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
summary(FitBi4, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 50 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       120
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                68.690
##   Degrees of freedom                                71
##   P-value (Chi-square)                           0.556
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9338.384
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.054
##   P-value H_0: RMSEA <= 0.050                    0.926
##   P-value H_0: RMSEA >= 0.080                    0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g =~                                                                  
##     dpv_tajek         0.160       NA                      0.160    0.497
##     dpv_szaml         0.848       NA                      0.848    0.848
##     dpv_szameml       0.306       NA                      0.306    0.617
##     dpv_szamegyz      0.885       NA                      0.885    0.885
##     dpv_rel           0.761       NA                      0.761    0.761
##     dpv_helyiert      0.129       NA                      0.129    0.434
##     dpv_potlas        0.814       NA                      0.814    0.814
##     dpv_muvel         0.933       NA                      0.933    0.933
##     dpv_szorzoszt     0.935       NA                      0.935    0.935
##     dpv_irasbeli      0.853       NA                      0.853    0.853
##     dpv_szoveg        0.894       NA                      0.894    0.894
##     dpv_logszab       0.920       NA                      0.920    0.920
##     dpv_muvsorr       0.876       NA                      0.876    0.876
##     dpv_praktik       0.255       NA                      0.255    0.621
##   F1 =~                                                                 
##     dpv_muvsorr       0.702       NA                      0.702    0.702
##     dpv_praktik       0.089       NA                      0.089    0.216
##   F2 =~                                                                 
##     dpv_rel           0.864       NA                      0.864    0.864
##     dpv_irasbeli     -0.173       NA                     -0.173   -0.173
##   F3 =~                                                                 
##     dpv_szaml         0.711       NA                      0.711    0.711
##     dpv_tajek         0.066       NA                      0.066    0.206
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     F1                0.000                               0.000    0.000
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
##   F1 ~~                                                                 
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
##   F2 ~~                                                                 
##     F3                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_tajek         0.882       NA                      0.882    2.738
##    .dpv_szaml         0.000                               0.000    0.000
##    .dpv_szameml       0.559       NA                      0.559    1.125
##    .dpv_szamegyz      0.000                               0.000    0.000
##    .dpv_rel           0.000                               0.000    0.000
##    .dpv_helyiert      0.902       NA                      0.902    3.034
##    .dpv_potlas        0.000                               0.000    0.000
##    .dpv_muvel         0.000                               0.000    0.000
##    .dpv_szorzoszt     0.000                               0.000    0.000
##    .dpv_irasbeli      0.000                               0.000    0.000
##    .dpv_szoveg        0.000                               0.000    0.000
##    .dpv_logszab       0.000                               0.000    0.000
##    .dpv_muvsorr       0.000                               0.000    0.000
##    .dpv_praktik       0.784       NA                      0.784    1.906
##     g                 0.000                               0.000    0.000
##     F1                0.000                               0.000    0.000
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_szaml|t1     -2.334       NA                     -2.334   -2.334
##     dpv_szaml|t2     -1.565       NA                     -1.565   -1.565
##     dpv_szaml|t3     -1.293       NA                     -1.293   -1.293
##     dpv_szamgyz|t1   -2.334       NA                     -2.334   -2.334
##     dpv_szamgyz|t2   -2.062       NA                     -2.062   -2.062
##     dpv_szamgyz|t3   -1.565       NA                     -1.565   -1.565
##     dpv_szamgyz|t4   -1.238       NA                     -1.238   -1.238
##     dpv_szamgyz|t5   -0.967       NA                     -0.967   -0.967
##     dpv_rel|t1       -2.062       NA                     -2.062   -2.062
##     dpv_rel|t2       -1.093       NA                     -1.093   -1.093
##     dpv_potlas|t1    -2.334       NA                     -2.334   -2.334
##     dpv_potlas|t2    -2.062       NA                     -2.062   -2.062
##     dpv_potlas|t3    -1.890       NA                     -1.890   -1.890
##     dpv_potlas|t4    -1.760       NA                     -1.760   -1.760
##     dpv_potlas|t5    -1.654       NA                     -1.654   -1.654
##     dpv_potlas|t6    -1.565       NA                     -1.565   -1.565
##     dpv_potlas|t7    -1.416       NA                     -1.416   -1.416
##     dpv_potlas|t8    -1.352       NA                     -1.352   -1.352
##     dpv_potlas|t9    -1.187       NA                     -1.187   -1.187
##     dpv_potlas|t10   -1.093       NA                     -1.093   -1.093
##     dpv_potlas|t11   -1.049       NA                     -1.049   -1.049
##     dpv_potlas|t12   -1.007       NA                     -1.007   -1.007
##     dpv_potlas|t13   -0.929       NA                     -0.929   -0.929
##     dpv_potlas|t14   -0.892       NA                     -0.892   -0.892
##     dpv_potlas|t15   -0.821       NA                     -0.821   -0.821
##     dpv_potlas|t16   -0.754       NA                     -0.754   -0.754
##     dpv_potlas|t17   -0.690       NA                     -0.690   -0.690
##     dpv_potlas|t18   -0.659       NA                     -0.659   -0.659
##     dpv_muvel|t1     -2.334       NA                     -2.334   -2.334
##     dpv_muvel|t2     -2.062       NA                     -2.062   -2.062
##     dpv_muvel|t3     -1.890       NA                     -1.890   -1.890
##     dpv_muvel|t4     -1.760       NA                     -1.760   -1.760
##     dpv_muvel|t5     -1.654       NA                     -1.654   -1.654
##     dpv_muvel|t6     -1.416       NA                     -1.416   -1.416
##     dpv_muvel|t7     -1.293       NA                     -1.293   -1.293
##     dpv_muvel|t8     -1.238       NA                     -1.238   -1.238
##     dpv_muvel|t9     -1.139       NA                     -1.139   -1.139
##     dpv_muvel|t10    -0.967       NA                     -0.967   -0.967
##     dpv_muvel|t11    -0.929       NA                     -0.929   -0.929
##     dpv_muvel|t12    -0.856       NA                     -0.856   -0.856
##     dpv_muvel|t13    -0.690       NA                     -0.690   -0.690
##     dpv_muvel|t14    -0.377       NA                     -0.377   -0.377
##     dpv_muvel|t15    -0.325       NA                     -0.325   -0.325
##     dpv_muvel|t16    -0.299       NA                     -0.299   -0.299
##     dpv_szrzszt|t1   -1.890       NA                     -1.890   -1.890
##     dpv_szrzszt|t2   -1.760       NA                     -1.760   -1.760
##     dpv_szrzszt|t3   -1.486       NA                     -1.486   -1.486
##     dpv_szrzszt|t4   -1.352       NA                     -1.352   -1.352
##     dpv_szrzszt|t5   -1.187       NA                     -1.187   -1.187
##     dpv_szrzszt|t6   -1.007       NA                     -1.007   -1.007
##     dpv_szrzszt|t7   -0.754       NA                     -0.754   -0.754
##     dpv_irasbel|t1   -2.334       NA                     -2.334   -2.334
##     dpv_irasbel|t2   -2.062       NA                     -2.062   -2.062
##     dpv_irasbel|t3   -1.890       NA                     -1.890   -1.890
##     dpv_irasbel|t4   -1.486       NA                     -1.486   -1.486
##     dpv_irasbel|t5   -1.238       NA                     -1.238   -1.238
##     dpv_irasbel|t6   -1.187       NA                     -1.187   -1.187
##     dpv_irasbel|t7   -1.139       NA                     -1.139   -1.139
##     dpv_irasbel|t8   -0.967       NA                     -0.967   -0.967
##     dpv_szoveg|t1    -2.334       NA                     -2.334   -2.334
##     dpv_szoveg|t2    -2.062       NA                     -2.062   -2.062
##     dpv_szoveg|t3    -1.890       NA                     -1.890   -1.890
##     dpv_szoveg|t4    -1.760       NA                     -1.760   -1.760
##     dpv_szoveg|t5    -1.654       NA                     -1.654   -1.654
##     dpv_szoveg|t6    -1.565       NA                     -1.565   -1.565
##     dpv_szoveg|t7    -1.486       NA                     -1.486   -1.486
##     dpv_szoveg|t8    -1.352       NA                     -1.352   -1.352
##     dpv_szoveg|t9    -1.293       NA                     -1.293   -1.293
##     dpv_szoveg|t10   -1.238       NA                     -1.238   -1.238
##     dpv_szoveg|t11   -1.139       NA                     -1.139   -1.139
##     dpv_szoveg|t12   -1.093       NA                     -1.093   -1.093
##     dpv_szoveg|t13   -1.007       NA                     -1.007   -1.007
##     dpv_szoveg|t14   -0.929       NA                     -0.929   -0.929
##     dpv_szoveg|t15   -0.787       NA                     -0.787   -0.787
##     dpv_logszab|t1   -2.334       NA                     -2.334   -2.334
##     dpv_logszab|t2   -2.062       NA                     -2.062   -2.062
##     dpv_logszab|t3   -1.565       NA                     -1.565   -1.565
##     dpv_logszab|t4   -1.293       NA                     -1.293   -1.293
##     dpv_logszab|t5   -1.139       NA                     -1.139   -1.139
##     dpv_logszab|t6   -0.821       NA                     -0.821   -0.821
##     dpv_logszab|t7   -0.690       NA                     -0.690   -0.690
##     dpv_muvsorr|t1   -2.334       NA                     -2.334   -2.334
##     dpv_muvsorr|t2   -2.062       NA                     -2.062   -2.062
##     dpv_muvsorr|t3   -1.890       NA                     -1.890   -1.890
##     dpv_muvsorr|t4   -1.654       NA                     -1.654   -1.654
##     dpv_muvsorr|t5   -1.486       NA                     -1.486   -1.486
##     dpv_muvsorr|t6   -1.416       NA                     -1.416   -1.416
##     dpv_muvsorr|t7   -1.352       NA                     -1.352   -1.352
##     dpv_muvsorr|t8   -1.187       NA                     -1.187   -1.187
##     dpv_muvsorr|t9   -1.093       NA                     -1.093   -1.093
##     dpv_muvsrr|t10   -1.007       NA                     -1.007   -1.007
##     dpv_muvsrr|t11   -0.967       NA                     -0.967   -0.967
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_tajek         0.074       NA                      0.074    0.710
##    .dpv_szaml        -0.225                              -0.225   -0.225
##    .dpv_szameml       0.153       NA                      0.153    0.619
##    .dpv_szamegyz      0.216                               0.216    0.216
##    .dpv_rel          -0.325                              -0.325   -0.325
##    .dpv_helyiert      0.072       NA                      0.072    0.812
##    .dpv_potlas        0.338                               0.338    0.338
##    .dpv_muvel         0.130                               0.130    0.130
##    .dpv_szorzoszt     0.125                               0.125    0.125
##    .dpv_irasbeli      0.242                               0.242    0.242
##    .dpv_szoveg        0.201                               0.201    0.201
##    .dpv_logszab       0.153                               0.153    0.153
##    .dpv_muvsorr      -0.260                              -0.260   -0.260
##    .dpv_praktik       0.096       NA                      0.096    0.568
##     g                 1.000                               1.000    1.000
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_szaml         1.000                               1.000    1.000
##     dpv_szamegyz      1.000                               1.000    1.000
##     dpv_rel           1.000                               1.000    1.000
##     dpv_potlas        1.000                               1.000    1.000
##     dpv_muvel         1.000                               1.000    1.000
##     dpv_szorzoszt     1.000                               1.000    1.000
##     dpv_irasbeli      1.000                               1.000    1.000
##     dpv_szoveg        1.000                               1.000    1.000
##     dpv_logszab       1.000                               1.000    1.000
##     dpv_muvsorr       1.000                               1.000    1.000
summary(FitGF4, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 80 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       106
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                35.729
##   Degrees of freedom                                54
##   P-value (Chi-square)                           0.974
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7819.135
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.003
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                    0.999
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.053
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     dpv_praktik       0.268    0.012   22.486    0.000    0.268    0.651
##     dpv_muvsorr       0.903    0.024   36.956    0.000    0.903    0.903
##     dpv_logszab       0.645    0.155    4.153    0.000    0.645    0.645
##     dpv_szoveg        0.088    0.485    0.181    0.856    0.088    0.088
##     dpv_szameml       0.312    0.016   19.562    0.000    0.312    0.629
##     dpv_muvel         1.839    0.945    1.945    0.052    1.839    1.839
##     dpv_szorzoszt     1.722    6.452    0.267    0.790    1.722    1.722
##   F2 =~                                                                 
##     dpv_szoveg        0.820    0.483    1.700    0.089    0.820    0.820
##     dpv_rel           0.752    0.034   22.365    0.000    0.752    0.752
##     dpv_szamegyz      0.903    0.031   28.796    0.000    0.903    0.903
##     dpv_muvel        -0.910    0.948   -0.959    0.337   -0.910   -0.910
##     dpv_szorzoszt    -0.909    1.802   -0.505    0.614   -0.909   -0.909
##   F3 =~                                                                 
##     dpv_logszab       0.332    0.178    1.867    0.062    0.332    0.332
##     dpv_tajek         0.193    0.011   17.110    0.000    0.193    0.598
##     dpv_szaml         0.976    0.052   18.827    0.000    0.976    0.976
##     dpv_helyiert      0.147    0.010   14.493    0.000    0.147    0.495
##   F4 =~                                                                 
##     dpv_irasbeli      1.348   41.162    0.033    0.974    1.348    1.348
##     dpv_szorzoszt     0.140    9.017    0.016    0.988    0.140    0.140
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                0.975    0.028   34.365    0.000    0.975    0.975
##     F3                0.809    0.061   13.333    0.000    0.809    0.809
##     F4                0.598   18.250    0.033    0.974    0.598    0.598
##   F2 ~~                                                                 
##     F3                0.907    0.064   14.253    0.000    0.907    0.907
##     F4                0.585   17.870    0.033    0.974    0.585    0.585
##   F3 ~~                                                                 
##     F4                0.501   15.287    0.033    0.974    0.501    0.501
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_praktik       0.784    0.011   73.298    0.000    0.784    1.907
##    .dpv_muvsorr       0.000                               0.000    0.000
##    .dpv_logszab       0.000                               0.000    0.000
##    .dpv_szoveg        0.000                               0.000    0.000
##    .dpv_szameml       0.559    0.047   11.955    0.000    0.559    1.125
##    .dpv_muvel         0.000                               0.000    0.000
##    .dpv_szorzoszt     0.000                               0.000    0.000
##    .dpv_rel           0.000                               0.000    0.000
##    .dpv_szamegyz      0.000                               0.000    0.000
##    .dpv_tajek         0.882    0.002  400.922    0.000    0.882    2.739
##    .dpv_szaml         0.000                               0.000    0.000
##    .dpv_helyiert      0.902    0.001  660.347    0.000    0.902    3.033
##    .dpv_irasbeli      0.000                               0.000    0.000
##     F1                0.000                               0.000    0.000
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
##     F4                0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_muvsorr|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_muvsorr|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_muvsorr|t3   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_muvsorr|t4   -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_muvsorr|t5   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_muvsorr|t6   -1.416    0.183   -7.750    0.000   -1.416   -1.416
##     dpv_muvsorr|t7   -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_muvsorr|t8   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_muvsorr|t9   -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_muvsrr|t10   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_muvsrr|t11   -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_logszab|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_logszab|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_logszab|t3   -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_logszab|t4   -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_logszab|t5   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_logszab|t6   -0.821    0.141   -5.811    0.000   -0.821   -0.821
##     dpv_logszab|t7   -0.690    0.136   -5.069    0.000   -0.690   -0.690
##     dpv_szoveg|t1    -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szoveg|t2    -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_szoveg|t3    -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_szoveg|t4    -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_szoveg|t5    -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_szoveg|t6    -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szoveg|t7    -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_szoveg|t8    -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_szoveg|t9    -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_szoveg|t10   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_szoveg|t11   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_szoveg|t12   -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_szoveg|t13   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_szoveg|t14   -0.929    0.146   -6.346    0.000   -0.929   -0.929
##     dpv_szoveg|t15   -0.787    0.140   -5.628    0.000   -0.787   -0.787
##     dpv_muvel|t1     -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_muvel|t2     -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_muvel|t3     -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_muvel|t4     -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_muvel|t5     -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_muvel|t6     -1.416    0.183   -7.750    0.000   -1.416   -1.416
##     dpv_muvel|t7     -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_muvel|t8     -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_muvel|t9     -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_muvel|t10    -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_muvel|t11    -0.929    0.146   -6.346    0.000   -0.929   -0.929
##     dpv_muvel|t12    -0.856    0.143   -5.992    0.000   -0.856   -0.856
##     dpv_muvel|t13    -0.690    0.136   -5.069    0.000   -0.690   -0.690
##     dpv_muvel|t14    -0.377    0.128   -2.949    0.003   -0.377   -0.377
##     dpv_muvel|t15    -0.325    0.127   -2.557    0.011   -0.325   -0.325
##     dpv_muvel|t16    -0.299    0.127   -2.361    0.018   -0.299   -0.299
##     dpv_szrzszt|t1   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_szrzszt|t2   -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_szrzszt|t3   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_szrzszt|t4   -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_szrzszt|t5   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_szrzszt|t6   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_szrzszt|t7   -0.754    0.138   -5.443    0.000   -0.754   -0.754
##     dpv_rel|t1       -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_rel|t2       -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_szamgyz|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szamgyz|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_szamgyz|t3   -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szamgyz|t4   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_szamgyz|t5   -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_szaml|t1     -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szaml|t2     -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szaml|t3     -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_irasbel|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_irasbel|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_irasbel|t3   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_irasbel|t4   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_irasbel|t5   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_irasbel|t6   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_irasbel|t7   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_irasbel|t8   -0.967    0.148   -6.518    0.000   -0.967   -0.967
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_szamegyz      0.184                               0.184    0.184
##    .dpv_szorzoszt     0.103                               0.103    0.103
##    .dpv_praktik       0.097    0.019    5.105    0.000    0.097    0.576
##    .dpv_muvsorr       0.185                               0.185    0.185
##    .dpv_logszab       0.128                               0.128    0.128
##    .dpv_szoveg        0.179                               0.179    0.179
##    .dpv_szameml       0.149    0.015    9.950    0.000    0.149    0.604
##    .dpv_muvel         0.055                               0.055    0.055
##    .dpv_rel           0.434                               0.434    0.434
##    .dpv_tajek         0.067    0.009    7.248    0.000    0.067    0.642
##    .dpv_szaml         0.048                               0.048    0.048
##    .dpv_helyiert      0.067    0.007    9.683    0.000    0.067    0.755
##    .dpv_irasbeli     -0.818                              -0.818   -0.818
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##     F4                1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_muvsorr       1.000                               1.000    1.000
##     dpv_logszab       1.000                               1.000    1.000
##     dpv_szoveg        1.000                               1.000    1.000
##     dpv_muvel         1.000                               1.000    1.000
##     dpv_szorzoszt     1.000                               1.000    1.000
##     dpv_rel           1.000                               1.000    1.000
##     dpv_szamegyz      1.000                               1.000    1.000
##     dpv_szaml         1.000                               1.000    1.000
##     dpv_irasbeli      1.000                               1.000    1.000

Both fail to converge and simpler models aren’t much better. A single-factor model will be used.

CFAs

WISC first, using the theoretical model that was desired in its construction.

ModWISC <- '
wm =~ betuszam_ertek + szamterj_ertek
vc =~ szokincs_ertek + kozjel_ertek + altmegert_ertek
ps =~ kodolas_ertek + szimbol_ertek
pr =~ kepifog_ertek + mozaik_ertek + matrix_ertek
g =~ wm + vc + ps + pr'

FitWISC <- cfa(ModWISC, std.lv = T, meanstructure = T, data)

summary(FitWISC, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        34
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                36.401
##   Degrees of freedom                                31
##   P-value (Chi-square)                           0.232
## 
## Model Test Baseline Model:
## 
##   Test statistic                               629.440
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991
##   Tucker-Lewis Index (TLI)                       0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2042.468
##   Loglikelihood unrestricted model (H1)      -2024.267
##                                                       
##   Akaike (AIC)                                4152.935
##   Bayesian (BIC)                              4242.184
##   Sample-size adjusted Bayesian (SABIC)       4134.791
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.088
##   P-value H_0: RMSEA <= 0.050                    0.573
##   P-value H_0: RMSEA >= 0.080                    0.097
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.048
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   wm =~                                                                 
##     betuszam_ertek    0.898    0.200    4.491    0.000    2.029    0.873
##     szamterj_ertek    1.048    0.234    4.479    0.000    2.367    0.880
##   vc =~                                                                 
##     szokincs_ertek    1.204    0.164    7.339    0.000    1.834    0.802
##     kozjel_ertek      1.158    0.157    7.366    0.000    1.765    0.806
##     altmegert_ertk    1.328    0.174    7.644    0.000    2.023    0.850
##   ps =~                                                                 
##     kodolas_ertek     1.690    0.405    4.174    0.000    2.681    0.959
##     szimbol_ertek     0.600    0.125    4.807    0.000    0.952    0.514
##   pr =~                                                                 
##     kepifog_ertek     1.140    0.164    6.937    0.000    1.945    0.806
##     mozaik_ertek      1.344    0.182    7.384    0.000    2.294    0.912
##     matrix_ertek      1.271    0.182    6.971    0.000    2.168    0.812
##   g =~                                                                  
##     wm                2.026    0.545    3.717    0.000    0.897    0.897
##     vc                1.149    0.222    5.171    0.000    0.754    0.754
##     ps                1.231    0.340    3.620    0.000    0.776    0.776
##     pr                1.382    0.268    5.159    0.000    0.810    0.810
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .betuszam_ertek   10.951    0.230   47.596    0.000   10.951    4.713
##    .szamterj_ertek    9.176    0.266   34.435    0.000    9.176    3.410
##    .szokincs_ertek   12.461    0.226   55.035    0.000   12.461    5.449
##    .kozjel_ertek     12.706    0.217   58.597    0.000   12.706    5.802
##    .altmegert_ertk   11.235    0.236   47.653    0.000   11.235    4.718
##    .kodolas_ertek    10.451    0.277   37.754    0.000   10.451    3.738
##    .szimbol_ertek    11.275    0.183   61.443    0.000   11.275    6.084
##    .kepifog_ertek    12.078    0.239   50.576    0.000   12.078    5.008
##    .mozaik_ertek     10.588    0.249   42.535    0.000   10.588    4.212
##    .matrix_ertek     10.196    0.265   38.543    0.000   10.196    3.816
##    .wm                0.000                               0.000    0.000
##    .vc                0.000                               0.000    0.000
##    .ps                0.000                               0.000    0.000
##    .pr                0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .betuszam_ertek    1.284    0.326    3.941    0.000    1.284    0.238
##    .szamterj_ertek    1.639    0.435    3.765    0.000    1.639    0.226
##    .szokincs_ertek    1.864    0.357    5.220    0.000    1.864    0.357
##    .kozjel_ertek      1.682    0.325    5.167    0.000    1.682    0.351
##    .altmegert_ertk    1.577    0.360    4.382    0.000    1.577    0.278
##    .kodolas_ertek     0.627    1.267    0.495    0.620    0.627    0.080
##    .szimbol_ertek     2.528    0.388    6.512    0.000    2.528    0.736
##    .kepifog_ertek     2.035    0.360    5.645    0.000    2.035    0.350
##    .mozaik_ertek      1.059    0.317    3.344    0.001    1.059    0.168
##    .matrix_ertek      2.437    0.437    5.581    0.000    2.437    0.341
##    .wm                1.000                               0.196    0.196
##    .vc                1.000                               0.431    0.431
##    .ps                1.000                               0.397    0.397
##    .pr                1.000                               0.344    0.344
##     g                 1.000                               1.000    1.000

DPV next, single-factor, as suggested might work by the parallel analysis, however poor that appeared.

ModDPV <- '
dpv =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik'

FitDPV <- sem(ModDPV, std.lv = T, meanstructure = T, data, estimator = "DWLS", ordered = c("dpv_szaml", "dpv_szamegyz", "dpv_rel", "dpv_potlas", "dpv_muvel", "dpv_szorzoszt", "dpv_irasbeli", "dpv_szoveg", "dpv_logszab", "dpv_muvsorr"))

summary(FitDPV, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 45 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       114
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                79.354
##   Degrees of freedom                                77
##   P-value (Chi-square)                           0.405
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9338.384
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.017
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.060
##   P-value H_0: RMSEA <= 0.050                    0.873
##   P-value H_0: RMSEA >= 0.080                    0.002
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   dpv =~                                                                
##     dpv_tajek         0.165    0.008   20.929    0.000    0.165    0.512
##     dpv_szaml         0.860    0.029   29.559    0.000    0.860    0.860
##     dpv_szameml       0.306    0.014   21.206    0.000    0.306    0.616
##     dpv_szamegyz      0.883    0.024   36.173    0.000    0.883    0.883
##     dpv_rel           0.750    0.029   25.521    0.000    0.750    0.750
##     dpv_helyiert      0.129    0.007   17.285    0.000    0.129    0.433
##     dpv_potlas        0.813    0.021   37.836    0.000    0.813    0.813
##     dpv_muvel         0.932    0.018   50.612    0.000    0.932    0.932
##     dpv_szorzoszt     0.934    0.020   45.752    0.000    0.934    0.934
##     dpv_irasbeli      0.843    0.028   30.428    0.000    0.843    0.843
##     dpv_szoveg        0.893    0.020   44.386    0.000    0.893    0.893
##     dpv_logszab       0.917    0.022   41.781    0.000    0.917    0.917
##     dpv_muvsorr       0.888    0.022   39.582    0.000    0.888    0.888
##     dpv_praktik       0.266    0.011   24.006    0.000    0.266    0.647
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_tajek         0.882    0.002  400.922    0.000    0.882    2.739
##    .dpv_szaml         0.000                               0.000    0.000
##    .dpv_szameml       0.559    0.047   11.955    0.000    0.559    1.125
##    .dpv_szamegyz      0.000                               0.000    0.000
##    .dpv_rel           0.000                               0.000    0.000
##    .dpv_helyiert      0.902    0.001  660.347    0.000    0.902    3.033
##    .dpv_potlas        0.000                               0.000    0.000
##    .dpv_muvel         0.000                               0.000    0.000
##    .dpv_szorzoszt     0.000                               0.000    0.000
##    .dpv_irasbeli      0.000                               0.000    0.000
##    .dpv_szoveg        0.000                               0.000    0.000
##    .dpv_logszab       0.000                               0.000    0.000
##    .dpv_muvsorr       0.000                               0.000    0.000
##    .dpv_praktik       0.784    0.011   73.298    0.000    0.784    1.907
##     dpv               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_szaml|t1     -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szaml|t2     -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szaml|t3     -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_szamgyz|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szamgyz|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_szamgyz|t3   -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szamgyz|t4   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_szamgyz|t5   -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_rel|t1       -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_rel|t2       -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_potlas|t1    -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_potlas|t2    -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_potlas|t3    -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_potlas|t4    -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_potlas|t5    -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_potlas|t6    -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_potlas|t7    -1.416    0.183   -7.750    0.000   -1.416   -1.416
##     dpv_potlas|t8    -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_potlas|t9    -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_potlas|t10   -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_potlas|t11   -1.049    0.153   -6.850    0.000   -1.049   -1.049
##     dpv_potlas|t12   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_potlas|t13   -0.929    0.146   -6.346    0.000   -0.929   -0.929
##     dpv_potlas|t14   -0.892    0.145   -6.170    0.000   -0.892   -0.892
##     dpv_potlas|t15   -0.821    0.141   -5.811    0.000   -0.821   -0.821
##     dpv_potlas|t16   -0.754    0.138   -5.443    0.000   -0.754   -0.754
##     dpv_potlas|t17   -0.690    0.136   -5.069    0.000   -0.690   -0.690
##     dpv_potlas|t18   -0.659    0.135   -4.880    0.000   -0.659   -0.659
##     dpv_muvel|t1     -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_muvel|t2     -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_muvel|t3     -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_muvel|t4     -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_muvel|t5     -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_muvel|t6     -1.416    0.183   -7.750    0.000   -1.416   -1.416
##     dpv_muvel|t7     -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_muvel|t8     -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_muvel|t9     -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_muvel|t10    -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_muvel|t11    -0.929    0.146   -6.346    0.000   -0.929   -0.929
##     dpv_muvel|t12    -0.856    0.143   -5.992    0.000   -0.856   -0.856
##     dpv_muvel|t13    -0.690    0.136   -5.069    0.000   -0.690   -0.690
##     dpv_muvel|t14    -0.377    0.128   -2.949    0.003   -0.377   -0.377
##     dpv_muvel|t15    -0.325    0.127   -2.557    0.011   -0.325   -0.325
##     dpv_muvel|t16    -0.299    0.127   -2.361    0.018   -0.299   -0.299
##     dpv_szrzszt|t1   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_szrzszt|t2   -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_szrzszt|t3   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_szrzszt|t4   -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_szrzszt|t5   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_szrzszt|t6   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_szrzszt|t7   -0.754    0.138   -5.443    0.000   -0.754   -0.754
##     dpv_irasbel|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_irasbel|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_irasbel|t3   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_irasbel|t4   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_irasbel|t5   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_irasbel|t6   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_irasbel|t7   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_irasbel|t8   -0.967    0.148   -6.518    0.000   -0.967   -0.967
##     dpv_szoveg|t1    -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_szoveg|t2    -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_szoveg|t3    -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_szoveg|t4    -1.760    0.228   -7.726    0.000   -1.760   -1.760
##     dpv_szoveg|t5    -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_szoveg|t6    -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_szoveg|t7    -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_szoveg|t8    -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_szoveg|t9    -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_szoveg|t10   -1.238    0.166   -7.436    0.000   -1.238   -1.238
##     dpv_szoveg|t11   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_szoveg|t12   -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_szoveg|t13   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_szoveg|t14   -0.929    0.146   -6.346    0.000   -0.929   -0.929
##     dpv_szoveg|t15   -0.787    0.140   -5.628    0.000   -0.787   -0.787
##     dpv_logszab|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_logszab|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_logszab|t3   -1.565    0.200   -7.839    0.000   -1.565   -1.565
##     dpv_logszab|t4   -1.293    0.171   -7.558    0.000   -1.293   -1.293
##     dpv_logszab|t5   -1.139    0.159   -7.159    0.000   -1.139   -1.139
##     dpv_logszab|t6   -0.821    0.141   -5.811    0.000   -0.821   -0.821
##     dpv_logszab|t7   -0.690    0.136   -5.069    0.000   -0.690   -0.690
##     dpv_muvsorr|t1   -2.334    0.374   -6.236    0.000   -2.334   -2.334
##     dpv_muvsorr|t2   -2.062    0.290   -7.116    0.000   -2.062   -2.062
##     dpv_muvsorr|t3   -1.890    0.251   -7.523    0.000   -1.890   -1.890
##     dpv_muvsorr|t4   -1.654    0.212   -7.818    0.000   -1.654   -1.654
##     dpv_muvsorr|t5   -1.486    0.190   -7.812    0.000   -1.486   -1.486
##     dpv_muvsorr|t6   -1.416    0.183   -7.750    0.000   -1.416   -1.416
##     dpv_muvsorr|t7   -1.352    0.176   -7.664    0.000   -1.352   -1.352
##     dpv_muvsorr|t8   -1.187    0.163   -7.303    0.000   -1.187   -1.187
##     dpv_muvsorr|t9   -1.093    0.156   -7.008    0.000   -1.093   -1.093
##     dpv_muvsrr|t10   -1.007    0.151   -6.686    0.000   -1.007   -1.007
##     dpv_muvsrr|t11   -0.967    0.148   -6.518    0.000   -0.967   -0.967
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .dpv_tajek         0.077    0.009    8.992    0.000    0.077    0.738
##    .dpv_szaml         0.261                               0.261    0.261
##    .dpv_szameml       0.153    0.014   10.759    0.000    0.153    0.621
##    .dpv_szamegyz      0.220                               0.220    0.220
##    .dpv_rel           0.437                               0.437    0.437
##    .dpv_helyiert      0.072    0.006   11.058    0.000    0.072    0.813
##    .dpv_potlas        0.340                               0.340    0.340
##    .dpv_muvel         0.132                               0.132    0.132
##    .dpv_szorzoszt     0.128                               0.128    0.128
##    .dpv_irasbeli      0.289                               0.289    0.289
##    .dpv_szoveg        0.202                               0.202    0.202
##    .dpv_logszab       0.158                               0.158    0.158
##    .dpv_muvsorr       0.212                               0.212    0.212
##    .dpv_praktik       0.098    0.019    5.196    0.000    0.098    0.581
##     dpv               1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dpv_szaml         1.000                               1.000    1.000
##     dpv_szamegyz      1.000                               1.000    1.000
##     dpv_rel           1.000                               1.000    1.000
##     dpv_potlas        1.000                               1.000    1.000
##     dpv_muvel         1.000                               1.000    1.000
##     dpv_szorzoszt     1.000                               1.000    1.000
##     dpv_irasbeli      1.000                               1.000    1.000
##     dpv_szoveg        1.000                               1.000    1.000
##     dpv_logszab       1.000                               1.000    1.000
##     dpv_muvsorr       1.000                               1.000    1.000

And then both at once.

ModBoth <- '
wm =~ betuszam_ertek + szamterj_ertek
vc =~ szokincs_ertek + kozjel_ertek + altmegert_ertek
ps =~ kodolas_ertek + szimbol_ertek
pr =~ kepifog_ertek + mozaik_ertek + matrix_ertek
g =~ wm + vc + ps + pr

dpv =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik' 

FitBoth <- cfa(ModBoth, std.lv = T, meanstructure = T, data, estimator = "DWLS")

summary(FitBoth, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 118 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        77
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                96.465
##   Degrees of freedom                               247
##   P-value (Chi-square)                           1.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2834.805
##   Degrees of freedom                               276
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.066
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.074
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   wm =~                                                                 
##     betuszam_ertek    0.747    0.515    1.450    0.147    2.038    0.873
##     szamterj_ertek    0.872    0.601    1.450    0.147    2.380    0.880
##   vc =~                                                                 
##     szokincs_ertek    1.182    0.138    8.589    0.000    1.635    0.712
##     kozjel_ertek      1.426    0.158    9.000    0.000    1.972    0.896
##     altmegert_ertk    1.436    0.160    8.961    0.000    1.986    0.830
##   ps =~                                                                 
##     kodolas_ertek     1.698    0.614    2.766    0.006    2.762    0.983
##     szimbol_ertek     0.574    0.198    2.895    0.004    0.934    0.501
##   pr =~                                                                 
##     kepifog_ertek     0.967    0.216    4.472    0.000    1.978    0.816
##     mozaik_ertek      1.078    0.242    4.450    0.000    2.203    0.872
##     matrix_ertek      1.104    0.249    4.443    0.000    2.258    0.841
##   g =~                                                                  
##     wm                2.539    1.795    1.415    0.157    0.930    0.930
##     vc                0.955    0.118    8.115    0.000    0.691    0.691
##     ps                1.283    0.473    2.709    0.007    0.789    0.789
##     pr                1.783    0.435    4.096    0.000    0.872    0.872
##   dpv =~                                                                
##     dpv_tajek         0.226    0.017   12.995    0.000    0.226    0.698
##     dpv_szaml         0.422    0.036   11.665    0.000    0.422    0.771
##     dpv_szameml       0.256    0.016   15.779    0.000    0.256    0.513
##     dpv_szamegyz      0.754    0.060   12.569    0.000    0.754    0.801
##     dpv_rel           0.251    0.024   10.438    0.000    0.251    0.602
##     dpv_helyiert      0.173    0.016   10.788    0.000    0.173    0.578
##     dpv_potlas        6.829    0.547   12.493    0.000    6.829    0.732
##     dpv_muvel         4.615    0.365   12.649    0.000    4.615    0.838
##     dpv_szorzoszt     1.439    0.114   12.676    0.000    1.439    0.755
##     dpv_irasbeli      2.173    0.208   10.438    0.000    2.173    0.557
##     dpv_szoveg        4.120    0.326   12.640    0.000    4.120    0.806
##     dpv_logszab       1.474    0.100   14.755    0.000    1.474    0.883
##     dpv_muvsorr       1.843    0.154   11.935    0.000    1.843    0.671
##     dpv_praktik       0.283    0.018   15.434    0.000    0.283    0.685
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     dpv               0.777    0.032   24.352    0.000    0.777    0.777
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .betuszam_ertek   10.951    0.231   47.362    0.000   10.951    4.690
##    .szamterj_ertek    9.176    0.268   34.266    0.000    9.176    3.393
##    .szokincs_ertek   12.461    0.228   54.765    0.000   12.461    5.423
##    .kozjel_ertek     12.706    0.218   58.309    0.000   12.706    5.773
##    .altmegert_ertk   11.235    0.237   47.419    0.000   11.235    4.695
##    .kodolas_ertek    10.451    0.278   37.568    0.000   10.451    3.720
##    .szimbol_ertek    11.275    0.184   61.141    0.000   11.275    6.054
##    .kepifog_ertek    12.078    0.240   50.328    0.000   12.078    4.983
##    .mozaik_ertek     10.588    0.250   42.326    0.000   10.588    4.191
##    .matrix_ertek     10.196    0.266   38.353    0.000   10.196    3.798
##    .dpv_tajek         0.882    0.032   27.523    0.000    0.882    2.725
##    .dpv_szaml         4.833    0.054   89.319    0.000    4.833    8.844
##    .dpv_szameml       0.559    0.049   11.311    0.000    0.559    1.120
##    .dpv_szamegyz      5.637    0.093   60.454    0.000    5.637    5.986
##    .dpv_rel           3.843    0.041   93.272    0.000    3.843    9.235
##    .dpv_helyiert      0.902    0.030   30.483    0.000    0.902    3.018
##    .dpv_potlas       95.402    0.923  103.326    0.000   95.402   10.231
##    .dpv_muvel        40.206    0.545   73.764    0.000   40.206    7.304
##    .dpv_szorzoszt     8.206    0.189   43.496    0.000    8.206    4.307
##    .dpv_irasbeli     36.755    0.386   95.099    0.000   36.755    9.416
##    .dpv_szoveg       24.951    0.506   49.300    0.000   24.951    4.881
##    .dpv_logszab       8.216    0.165   49.723    0.000    8.216    4.923
##    .dpv_muvsorr      21.000    0.272   77.215    0.000   21.000    7.645
##    .dpv_praktik       0.784    0.041   19.164    0.000    0.784    1.898
##    .wm                0.000                               0.000    0.000
##    .vc                0.000                               0.000    0.000
##    .ps                0.000                               0.000    0.000
##    .pr                0.000                               0.000    0.000
##     g                 0.000                               0.000    0.000
##     dpv               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .betuszam_ertek    1.301    1.064    1.223    0.221    1.301    0.239
##    .szamterj_ertek    1.650    1.498    1.101    0.271    1.650    0.225
##    .szokincs_ertek    2.607    0.821    3.175    0.001    2.607    0.494
##    .kozjel_ertek      0.956    0.780    1.226    0.220    0.956    0.197
##    .altmegert_ertk    1.782    0.943    1.889    0.059    1.782    0.311
##    .kodolas_ertek     0.268    2.394    0.112    0.911    0.268    0.034
##    .szimbol_ertek     2.597    0.494    5.255    0.000    2.597    0.749
##    .kepifog_ertek     1.964    0.885    2.219    0.026    1.964    0.334
##    .mozaik_ertek      1.530    0.944    1.621    0.105    1.530    0.240
##    .matrix_ertek      2.112    1.080    1.955    0.051    2.112    0.293
##    .dpv_tajek         0.054    0.026    2.085    0.037    0.054    0.512
##    .dpv_szaml         0.121    0.110    1.104    0.270    0.121    0.405
##    .dpv_szameml       0.183    0.010   18.105    0.000    0.183    0.737
##    .dpv_szamegyz      0.318    0.291    1.092    0.275    0.318    0.359
##    .dpv_rel           0.110    0.052    2.129    0.033    0.110    0.637
##    .dpv_helyiert      0.059    0.024    2.434    0.015    0.059    0.666
##    .dpv_potlas       40.318   23.091    1.746    0.081   40.318    0.464
##    .dpv_muvel         9.001   12.317    0.731    0.465    9.001    0.297
##    .dpv_szorzoszt     1.560    1.074    1.453    0.146    1.560    0.430
##    .dpv_irasbeli     10.517    8.434    1.247    0.212   10.517    0.690
##    .dpv_szoveg        9.154    8.820    1.038    0.299    9.154    0.350
##    .dpv_logszab       0.613    0.837    0.733    0.464    0.613    0.220
##    .dpv_muvsorr       4.149    2.740    1.514    0.130    4.149    0.550
##    .dpv_praktik       0.091    0.025    3.561    0.000    0.091    0.531
##    .wm                1.000                               0.134    0.134
##    .vc                1.000                               0.523    0.523
##    .ps                1.000                               0.378    0.378
##    .pr                1.000                               0.239    0.239
##     g                 1.000                               1.000    1.000
##     dpv               1.000                               1.000    1.000

Plots

lavaanPlot(model = FitBoth, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "grey"), coefs = TRUE, covs = TRUE, stars = TRUE, stand = T, digits = 1)
DPVLats <- list(
  DPV = c("dpv_tajek", "dpv_szaml", "dpv_szameml", "dpv_szamegyz", "dpv_rel", "dpv_helyiert", "dpv_potlas", "dpv_muvel", "dpv_szorzoszt", "dpv_irasbeli", "dpv_szoveg", "dpv_logszab", "dpv_muvsorr", "dpv_praktik"),
  wm = c("betuszam_ertek", "szamterj_ertek"),
  vc = c("szokincs_ertek", "kozjel_ertek", "altmegert_ertek"),
  ps = c("kodolas_ertek", "szimbol_ertek"),
  pr = c("kepifog_ertek", "mozaik_ertek", "matrix_ertek"))

semPaths(FitBoth, "model", "std", title = F, residuals = F,
         groups = "DPVLats", pastel = T, mar = c(2, 1, 3, 1),
         bifactor = c("dpv", "g"),
         layout = "tree",
         exoCov = T, intercepts = F)

Standard Regressions

Standard: Unstandardized

summary(lm(osztalyzat ~ WISC_TtlQ, data))
## 
## Call:
## lm(formula = osztalyzat ~ WISC_TtlQ, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.33473 -0.38533 -0.08454  0.46569  1.46587 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.619763   0.522974  -3.097  0.00254 ** 
## WISC_TtlQ    0.050038   0.004805  10.414  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6544 on 100 degrees of freedom
## Multiple R-squared:  0.5203, Adjusted R-squared:  0.5155 
## F-statistic: 108.4 on 1 and 100 DF,  p-value: < 2.2e-16
summary(lm(osztalyzat ~ dpv_ossz, data))
## 
## Call:
## lm(formula = osztalyzat ~ dpv_ossz, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.03552 -0.78556 -0.01857  0.96448  1.52371 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.489153   0.750575  -0.652    0.516    
## dpv_ossz     0.016946   0.002959   5.727 1.08e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8198 on 100 degrees of freedom
## Multiple R-squared:  0.247,  Adjusted R-squared:  0.2395 
## F-statistic:  32.8 on 1 and 100 DF,  p-value: 1.077e-07
summary(lm(osztalyzat ~ as.numeric(SES), data))
## 
## Call:
## lm(formula = osztalyzat ~ as.numeric(SES), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9875 -0.4885 -0.1657  0.5123  1.7676 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.78431    0.07773  48.686  < 2e-16 ***
## as.numeric(SES)  0.17712    0.02645   6.696 1.27e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.785 on 100 degrees of freedom
## Multiple R-squared:  0.3095, Adjusted R-squared:  0.3026 
## F-statistic: 44.83 on 1 and 100 DF,  p-value: 1.268e-09
summary(lm(osztalyzat ~ MSZMT_total, data))
## 
## Call:
## lm(formula = osztalyzat ~ MSZMT_total, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.01716 -0.45088 -0.00269  0.64821  1.87684 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.801508   0.178504  26.899  < 2e-16 ***
## MSZMT_total -0.008434   0.001327  -6.354 6.28e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7974 on 100 degrees of freedom
## Multiple R-squared:  0.2876, Adjusted R-squared:  0.2805 
## F-statistic: 40.37 on 1 and 100 DF,  p-value: 6.276e-09
summary(lm(osztalyzat ~ WISC_TtlQ + dpv_ossz, data))
## 
## Call:
## lm(formula = osztalyzat ~ WISC_TtlQ + dpv_ossz, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3370 -0.3983 -0.1022  0.4404  1.4338 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.923267   0.628894  -3.058  0.00286 ** 
## WISC_TtlQ    0.046695   0.006154   7.588 1.81e-11 ***
## dpv_ossz     0.002635   0.003025   0.871  0.38571    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6552 on 99 degrees of freedom
## Multiple R-squared:  0.5239, Adjusted R-squared:  0.5143 
## F-statistic: 54.47 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(osztalyzat ~ WISC_TtlQ + as.numeric(SES), data)) 
## 
## Call:
## lm(formula = osztalyzat ~ WISC_TtlQ + as.numeric(SES), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3395 -0.3953 -0.1051  0.4689  1.4510 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -1.741182   0.840011  -2.073   0.0408 *  
## WISC_TtlQ        0.051162   0.007754   6.598 2.07e-09 ***
## as.numeric(SES) -0.006593   0.035586  -0.185   0.8534    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6576 on 99 degrees of freedom
## Multiple R-squared:  0.5204, Adjusted R-squared:  0.5107 
## F-statistic: 53.71 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(osztalyzat ~ WISC_TtlQ + MSZMT_total, data))
## 
## Call:
## lm(formula = osztalyzat ~ WISC_TtlQ + MSZMT_total, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3944 -0.4128 -0.1110  0.4351  1.2885 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.308215   0.667830  -0.462  0.64544    
## WISC_TtlQ    0.041948   0.005359   7.828  5.6e-12 ***
## MSZMT_total -0.003631   0.001215  -2.989  0.00353 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6299 on 99 degrees of freedom
## Multiple R-squared:   0.56,  Adjusted R-squared:  0.5511 
## F-statistic: 62.99 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(osztalyzat ~ WISC_TtlQ + dpv_ossz + as.numeric(SES) + MSZMT_total, data))
## 
## Call:
## lm(formula = osztalyzat ~ WISC_TtlQ + dpv_ossz + as.numeric(SES) + 
##     MSZMT_total, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.36543 -0.40715 -0.08392  0.48102  1.29570 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.181756   1.056015  -0.172  0.86371    
## WISC_TtlQ        0.047002   0.008587   5.473 3.46e-07 ***
## dpv_ossz        -0.002403   0.003394  -0.708  0.48057    
## as.numeric(SES) -0.018938   0.034805  -0.544  0.58762    
## MSZMT_total     -0.004180   0.001418  -2.948  0.00401 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.634 on 97 degrees of freedom
## Multiple R-squared:  0.5631, Adjusted R-squared:  0.5451 
## F-statistic: 31.26 on 4 and 97 DF,  p-value: < 2.2e-16

Standard: Standardized

summary(lm(scale(osztalyzat) ~ scale(WISC_TtlQ), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(WISC_TtlQ), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.41983 -0.40990 -0.08993  0.49538  1.55934 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -3.467e-16  6.892e-02    0.00        1    
## scale(WISC_TtlQ)  7.213e-01  6.926e-02   10.41   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6961 on 100 degrees of freedom
## Multiple R-squared:  0.5203, Adjusted R-squared:  0.5155 
## F-statistic: 108.4 on 1 and 100 DF,  p-value: < 2.2e-16
summary(lm(scale(osztalyzat) ~ scale(dpv_ossz), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(dpv_ossz), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.16531 -0.83565 -0.01976  1.02598  1.62087 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.189e-16  8.635e-02   0.000        1    
## scale(dpv_ossz) 4.970e-01  8.678e-02   5.727 1.08e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8721 on 100 degrees of freedom
## Multiple R-squared:  0.247,  Adjusted R-squared:  0.2395 
## F-statistic:  32.8 on 1 and 100 DF,  p-value: 1.077e-07
summary(lm(scale(osztalyzat) ~ scale(as.numeric(SES)), data)) 
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(as.numeric(SES)), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1143 -0.5196 -0.1762  0.5450  1.8803 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -2.504e-16  8.269e-02   0.000        1    
## scale(as.numeric(SES))  5.564e-01  8.309e-02   6.696 1.27e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8351 on 100 degrees of freedom
## Multiple R-squared:  0.3095, Adjusted R-squared:  0.3026 
## F-statistic: 44.83 on 1 and 100 DF,  p-value: 1.268e-09
summary(lm(scale(osztalyzat) ~ scale(MSZMT_total), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(MSZMT_total), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.14577 -0.47963 -0.00286  0.68955  1.99651 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -2.258e-16  8.399e-02   0.000        1    
## scale(MSZMT_total) -5.363e-01  8.440e-02  -6.354 6.28e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8482 on 100 degrees of freedom
## Multiple R-squared:  0.2876, Adjusted R-squared:  0.2805 
## F-statistic: 40.37 on 1 and 100 DF,  p-value: 6.276e-09
summary(lm(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4223 -0.4237 -0.1087  0.4685  1.5252 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -2.856e-16  6.901e-02   0.000    1.000    
## scale(WISC_TtlQ)  6.731e-01  8.870e-02   7.588 1.81e-11 ***
## scale(dpv_ossz)   7.728e-02  8.870e-02   0.871    0.386    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6969 on 99 degrees of freedom
## Multiple R-squared:  0.5239, Adjusted R-squared:  0.5143 
## F-statistic: 54.47 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(as.numeric(SES)), data)) 
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(as.numeric(SES)), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4249 -0.4205 -0.1118  0.4988  1.5435 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -3.484e-16  6.926e-02   0.000    1.000    
## scale(WISC_TtlQ)        7.375e-01  1.118e-01   6.598 2.07e-09 ***
## scale(as.numeric(SES)) -2.071e-02  1.118e-01  -0.185    0.853    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6995 on 99 degrees of freedom
## Multiple R-squared:  0.5204, Adjusted R-squared:  0.5107 
## F-statistic: 53.71 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(MSZMT_total), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(MSZMT_total), 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4833 -0.4392 -0.1181  0.4628  1.3706 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -3.287e-16  6.634e-02   0.000  1.00000    
## scale(WISC_TtlQ)    6.047e-01  7.725e-02   7.828  5.6e-12 ***
## scale(MSZMT_total) -2.309e-01  7.725e-02  -2.989  0.00353 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.67 on 99 degrees of freedom
## Multiple R-squared:   0.56,  Adjusted R-squared:  0.5511 
## F-statistic: 62.99 on 2 and 99 DF,  p-value: < 2.2e-16
summary(lm(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz) + scale(as.numeric(SES)) + scale(MSZMT_total), data))
## 
## Call:
## lm(formula = scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz) + 
##     scale(as.numeric(SES)) + scale(MSZMT_total), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.45249 -0.43311 -0.08927  0.51170  1.37832 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            -3.867e-16  6.678e-02   0.000  1.00000    
## scale(WISC_TtlQ)        6.775e-01  1.238e-01   5.473 3.46e-07 ***
## scale(dpv_ossz)        -7.048e-02  9.952e-02  -0.708  0.48057    
## scale(as.numeric(SES)) -5.949e-02  1.093e-01  -0.544  0.58762    
## scale(MSZMT_total)     -2.658e-01  9.016e-02  -2.948  0.00401 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6745 on 97 degrees of freedom
## Multiple R-squared:  0.5631, Adjusted R-squared:  0.5451 
## F-statistic: 31.26 on 4 and 97 DF,  p-value: < 2.2e-16

Robust Regressions

Robust: Unstandardized

HCReg(osztalyzat ~ WISC_TtlQ, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -1.6197626  0.4052548 -3.9969 0.0001229 ***
## WISC_TtlQ    0.0500377  0.0036845 13.5807 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5202518
## 
## $adj_r_squared
## [1] 0.5154544
HCReg(osztalyzat ~ dpv_ossz, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -0.4891530  0.9255660 -0.5285    0.5983    
## dpv_ossz     0.0169463  0.0036395  4.6562 9.922e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.2469913
## 
## $adj_r_squared
## [1] 0.2394612
HCReg(osztalyzat ~ as.numeric(SES), data) 
## $coeftest_results
## 
## t test of coefficients:
## 
##                 Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)     3.784314   0.077357 48.9200 < 2.2e-16 ***
## as.numeric(SES) 0.177123   0.024884  7.1179 1.694e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.3095473
## 
## $adj_r_squared
## [1] 0.3026428
HCReg(osztalyzat ~ MSZMT_total, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)  4.8015079  0.1725471 27.8272 < 2.2e-16 ***
## MSZMT_total -0.0084339  0.0012048 -7.0005 2.977e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.2875992
## 
## $adj_r_squared
## [1] 0.2804752
HCReg(osztalyzat ~ WISC_TtlQ + dpv_ossz, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -1.9232675  0.4603108 -4.1782 6.340e-05 ***
## WISC_TtlQ    0.0466947  0.0049572  9.4196 2.019e-15 ***
## dpv_ossz     0.0026353  0.0023766  1.1088    0.2702    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5239025
## 
## $adj_r_squared
## [1] 0.5142843
HCReg(osztalyzat ~ WISC_TtlQ + as.numeric(SES), data) 
## $coeftest_results
## 
## t test of coefficients:
## 
##                   Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)     -1.7411817  0.7887485 -2.2075   0.02959 *  
## WISC_TtlQ        0.0511620  0.0072983  7.0101 2.949e-10 ***
## as.numeric(SES) -0.0065933  0.0386462 -0.1706   0.86488    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5204181
## 
## $adj_r_squared
## [1] 0.5107296
HCReg(osztalyzat ~ WISC_TtlQ + MSZMT_total, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -0.3082146  0.6401389 -0.4815  0.631237    
## WISC_TtlQ    0.0419483  0.0048491  8.6507 9.499e-14 ***
## MSZMT_total -0.0036307  0.0012031 -3.0177  0.003239 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5599519
## 
## $adj_r_squared
## [1] 0.551062
HCReg(osztalyzat ~ WISC_TtlQ + dpv_ossz + as.numeric(SES) + MSZMT_total, data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                   Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)     -0.1817559  0.8888797 -0.2045  0.838409    
## WISC_TtlQ        0.0470020  0.0078425  5.9932 3.507e-08 ***
## dpv_ossz        -0.0024031  0.0024254 -0.9908  0.324245    
## as.numeric(SES) -0.0189378  0.0365354 -0.5183  0.605401    
## MSZMT_total     -0.0041800  0.0013200 -3.1666  0.002062 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5631072
## 
## $adj_r_squared
## [1] 0.545091

Robust: Standardized

HCReg(scale(osztalyzat) ~ scale(WISC_TtlQ), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                     Estimate  Std. Error t value Pr(>|t|)    
## (Intercept)      -3.4672e-16  6.8537e-02   0.000        1    
## scale(WISC_TtlQ)  7.2128e-01  5.3111e-02  13.581   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5202518
## 
## $adj_r_squared
## [1] 0.5154544
HCReg(scale(osztalyzat) ~ scale(dpv_ossz), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                   Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)     1.1886e-16 8.7201e-02  0.0000         1    
## scale(dpv_ossz) 4.9698e-01 1.0674e-01  4.6562 9.922e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.2469913
## 
## $adj_r_squared
## [1] 0.2394612
HCReg(scale(osztalyzat) ~ scale(as.numeric(SES)), data) 
## $coeftest_results
## 
## t test of coefficients:
## 
##                           Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)            -2.5044e-16  8.2290e-02  0.0000         1    
## scale(as.numeric(SES))  5.5637e-01  7.8165e-02  7.1179 1.694e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.3095473
## 
## $adj_r_squared
## [1] 0.3026428
HCReg(scale(osztalyzat) ~ scale(MSZMT_total), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                       Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)        -2.2575e-16  8.3624e-02  0.0000         1    
## scale(MSZMT_total) -5.3628e-01  7.6607e-02 -7.0005 2.977e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.2875992
## 
## $adj_r_squared
## [1] 0.2804752
HCReg(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                     Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)      -2.8557e-16  6.8438e-02  0.0000    1.0000    
## scale(WISC_TtlQ)  6.7310e-01  7.1457e-02  9.4196 2.019e-15 ***
## scale(dpv_ossz)   7.7284e-02  6.9698e-02  1.1088    0.2702    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5239025
## 
## $adj_r_squared
## [1] 0.5142843
HCReg(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(as.numeric(SES)), data) 
## $coeftest_results
## 
## t test of coefficients:
## 
##                           Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)            -3.4843e-16  6.8760e-02  0.0000    1.0000    
## scale(WISC_TtlQ)        7.3749e-01  1.0520e-01  7.0101 2.949e-10 ***
## scale(as.numeric(SES)) -2.0711e-02  1.2139e-01 -0.1706    0.8649    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5204181
## 
## $adj_r_squared
## [1] 0.5107296
HCReg(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(MSZMT_total), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                       Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)        -3.2875e-16  6.5854e-02  0.0000  1.000000    
## scale(WISC_TtlQ)    6.0468e-01  6.9899e-02  8.6507 9.499e-14 ***
## scale(MSZMT_total) -2.3086e-01  7.6504e-02 -3.0177  0.003239 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5599519
## 
## $adj_r_squared
## [1] 0.551062
HCReg(scale(osztalyzat) ~ scale(WISC_TtlQ) + scale(dpv_ossz) + scale(as.numeric(SES)) + scale(MSZMT_total), data)
## $coeftest_results
## 
## t test of coefficients:
## 
##                           Estimate  Std. Error t value  Pr(>|t|)    
## (Intercept)            -3.8671e-16  6.5888e-02  0.0000  1.000000    
## scale(WISC_TtlQ)        6.7753e-01  1.1305e-01  5.9932 3.507e-08 ***
## scale(dpv_ossz)        -7.0475e-02  7.1129e-02 -0.9908  0.324245    
## scale(as.numeric(SES)) -5.9486e-02  1.1476e-01 -0.5183  0.605401    
## scale(MSZMT_total)     -2.6579e-01  8.3936e-02 -3.1666  0.002062 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## $r_squared
## [1] 0.5631072
## 
## $adj_r_squared
## [1] 0.545091

SAM Models

WISCSAM <- '
g =~ betuszam_ertek + szamterj_ertek + szokincs_ertek + kozjel_ertek + altmegert_ertek + kodolas_ertek + szimbol_ertek + kepifog_ertek + mozaik_ertek + matrix_ertek

osztalyzat ~ g'

DPVSAM <- '
dpv =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik

osztalyzat ~ dpv'

SESSAM <- '
osztalyzat ~ SES'

MARSSAM <- '
MARS =~ mszmt1 + mszmt2 + mszmt3 + mszmt4 + mszmt5 + mszmt6 + mszmt7 + mszmt8 + mszmt9 + mszmt10 + mszmt11 + mszmt12 + mszmt13 + mszmt14 + mszmt15 + mszmt16 + mszmt17 + mszmt18 + mszmt19 + mszmt20 + mszmt21 + mszmt22 + mszmt23 + mszmt24 + mszmt25 + mszmt26 + mszmt27 + mszmt28 + mszmt29 + mszmt30 + mszmt31 + mszmt32 + mszmt33 + mszmt34 + mszmt35 + mszmt36 + mszmt37 + mszmt38 + mszmt39 + mszmt40

osztalyzat ~ MARS'

WISCDPVSAM <- '
g =~ betuszam_ertek + szamterj_ertek + szokincs_ertek + kozjel_ertek + altmegert_ertek + kodolas_ertek + szimbol_ertek + kepifog_ertek + mozaik_ertek + matrix_ertek

dpv =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik

g ~~ dpv

osztalyzat ~ g + dpv'

WISCSESSAM <- '
g =~ betuszam_ertek + szamterj_ertek + szokincs_ertek + kozjel_ertek + altmegert_ertek + kodolas_ertek + szimbol_ertek + kepifog_ertek + mozaik_ertek + matrix_ertek

g ~~ SES

osztalyzat ~ g + SES'

WISCMARSSAM <- '
g =~ betuszam_ertek + szamterj_ertek + szokincs_ertek + kozjel_ertek + altmegert_ertek + kodolas_ertek + szimbol_ertek + kepifog_ertek + mozaik_ertek + matrix_ertek

MARS =~ mszmt1 + mszmt2 + mszmt3 + mszmt4 + mszmt5 + mszmt6 + mszmt7 + mszmt8 + mszmt9 + mszmt10 + mszmt11 + mszmt12 + mszmt13 + mszmt14 + mszmt15 + mszmt16 + mszmt17 + mszmt18 + mszmt19 + mszmt20 + mszmt21 + mszmt22 + mszmt23 + mszmt24 + mszmt25 + mszmt26 + mszmt27 + mszmt28 + mszmt29 + mszmt30 + mszmt31 + mszmt32 + mszmt33 + mszmt34 + mszmt35 + mszmt36 + mszmt37 + mszmt38 + mszmt39 + mszmt40

g ~~ MARS

osztalyzat ~ g + MARS'

WISCDPVSESMARSSAM <- '
g =~ betuszam_ertek + szamterj_ertek + szokincs_ertek + kozjel_ertek + altmegert_ertek + kodolas_ertek + szimbol_ertek + kepifog_ertek + mozaik_ertek + matrix_ertek

dpv =~ dpv_tajek + dpv_szaml + dpv_szameml + dpv_szamegyz + dpv_rel + dpv_helyiert + dpv_potlas + dpv_muvel + dpv_szorzoszt + dpv_irasbeli + dpv_szoveg + dpv_logszab + dpv_muvsorr + dpv_praktik

MARS =~ mszmt1 + mszmt2 + mszmt3 + mszmt4 + mszmt5 + mszmt6 + mszmt7 + mszmt8 + mszmt9 + mszmt10 + mszmt11 + mszmt12 + mszmt13 + mszmt14 + mszmt15 + mszmt16 + mszmt17 + mszmt18 + mszmt19 + mszmt20 + mszmt21 + mszmt22 + mszmt23 + mszmt24 + mszmt25 + mszmt26 + mszmt27 + mszmt28 + mszmt29 + mszmt30 + mszmt31 + mszmt32 + mszmt33 + mszmt34 + mszmt35 + mszmt36 + mszmt37 + mszmt38 + mszmt39 + mszmt40

g ~~ dpv + SES + MARS
dpv ~~ SES + MARS
SES ~~ MARS

osztalyzat ~ g + dpv + SES + MARS'

WISCSAMFit <- sam(WISCSAM, data)
DPVSAMFit <- sam(DPVSAM, data)
SESSAMFit <- sem(SESSAM, data)
MARSSAMFit <- sam(MARSSAM, data)
WISCDPVSAMFit <- sam(WISCDPVSAM, data)
WISCSESSAMFit <- sam(WISCSESSAM, data)
WISCMARSSAMFit <- sam(WISCMARSSAM, data)
WISCDPVSESMARSSAMFit <- sam(WISCDPVSESMARSSAM, data)

summary(WISCSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       1
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind   Chisq Df
##       1      g   10 147.897 35
## 
##   Model-based reliability latent variables:
## 
##       g osztalyzat
##   0.917          1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     g                 0.425    0.056    7.578    0.000    0.716    0.766
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.362    0.057    6.327    0.000    0.362    0.414
##     g                 2.845    0.689    4.132    0.000    1.000    1.000
summary(DPVSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       1
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind   Chisq Df
##       1    dpv   14 267.038 77
## 
##   Model-based reliability latent variables:
## 
##     dpv osztalyzat
##   0.959          1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     dpv               2.573    0.521    4.936    0.000    0.510    0.545
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.615    0.088    7.014    0.000    0.615    0.703
##     dpv               0.039    0.012    3.392    0.001    1.000    1.000
summary(SESSAMFit, stand = T, fit = T)
## lavaan 0.6.14 ended normally after 1 iteration
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         2
## 
##   Number of observations                           102
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                 9.965
##   Degrees of freedom                                 1
##   P-value                                        0.002
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -132.942
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                 269.884
##   Bayesian (BIC)                               275.134
##   Sample-size adjusted Bayesian (SABIC)        268.817
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     SES               0.020    0.006    3.235    0.001    0.020    0.305
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.794    0.111    7.141    0.000    0.794    0.907
summary(MARSSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       1
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind    Chisq  Df
##       1   MARS   40 2355.196 740
## 
##   Model-based reliability latent variables:
## 
##    MARS osztalyzat
##   0.985          1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     MARS             -0.439    0.085   -5.194    0.000   -0.551   -0.589
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.572    0.081    7.084    0.000    0.572    0.654
##     MARS              1.574    0.479    3.283    0.001    1.000    1.000
summary(WISCDPVSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       2
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind   Chisq Df
##       1      g   10 147.897 35
##       2    dpv   14 267.038 77
## 
##   Model-based reliability latent variables:
## 
##       g   dpv osztalyzat
##   0.917 0.959          1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     g                 0.418    0.070    5.937    0.000    0.706    0.754
##     dpv               0.077    0.486    0.157    0.875    0.015    0.016
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     dpv               0.234    0.056    4.163    0.000    0.701    0.701
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.362    0.057    6.348    0.000    0.362    0.414
##     g                 2.845    0.689    4.132    0.000    1.000    1.000
##     dpv               0.039    0.012    3.392    0.001    1.000    1.000
summary(WISCSESSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       1
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind   Chisq Df
##       1      g   10 147.897 35
## 
##   Model-based reliability latent variables:
## 
##       g osztalyzat SES
##   0.917          1   1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     g                 0.466    0.064    7.242    0.000    0.787    0.841
##     SES              -0.009    0.005   -1.742    0.081   -0.009   -0.141
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     SES              12.719    3.024    4.206    0.000    7.541    0.531
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.349    0.057    6.151    0.000    0.349    0.399
##     SES             201.680   28.241    7.141    0.000  201.680    1.000
##     g                 2.845    0.689    4.132    0.000    1.000    1.000
summary(WISCMARSSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       2
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind    Chisq  Df
##       1      g   10  147.897  35
##       2   MARS   40 2355.196 740
## 
##   Model-based reliability latent variables:
## 
##       g  MARS osztalyzat
##   0.917 0.985          1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     g                 0.357    0.058    6.103    0.000    0.601    0.643
##     MARS             -0.154    0.065   -2.360    0.018   -0.194   -0.207
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     MARS             -1.256    0.327   -3.848    0.000   -0.594   -0.594
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.338    0.052    6.499    0.000    0.338    0.386
##     g                 2.845    0.689    4.132    0.000    1.000    1.000
##     MARS              1.574    0.479    3.283    0.001    1.000    1.000
summary(WISCDPVSESMARSSAMFit, stand = T, fit = T)
## Warning in lav_object_summary(object = object, header = header, fit.measures = fit.measures, : lavaan WARNING: fit measures not available if test = "none"
## This is lavaan 0.6.14 -- using the SAM approach to SEM
## 
##   SAM method                                     LOCAL
##   Mapping matrix M method                           ML
##   Number of measurement blocks                       3
##   Estimator measurement part                        ML
##   Estimator  structural part                        ML
## 
##   Number of observations                           102
## 
## Summary Information Measurement + Structural:
## 
##   Block Latent Nind    Chisq  Df
##       1      g   10  147.897  35
##       2    dpv   14  267.038  77
##       3   MARS   40 2355.196 740
## 
##   Model-based reliability latent variables:
## 
##       g   dpv  MARS osztalyzat SES
##   0.917 0.959 0.985          1   1
## 
##   Summary Information Structural part:
## 
##   chisq df cfi rmsea srmr
##       0  0   1     0    0
## 
## Parameter Estimates:
## 
##   Standard errors                              Twostep
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   osztalyzat ~                                                          
##     g                 0.457    0.085    5.371    0.000    0.770    0.823
##     dpv              -0.949    0.595   -1.597    0.110   -0.188   -0.201
##     SES              -0.010    0.006   -1.693    0.090   -0.010   -0.145
##     MARS             -0.202    0.078   -2.580    0.010   -0.253   -0.270
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   g ~~                                                                  
##     dpv               0.234    0.056    4.163    0.000    0.701    0.701
##     SES              12.719    3.024    4.206    0.000    7.541    0.531
##     MARS             -1.256    0.327   -3.848    0.000   -0.594   -0.594
##   dpv ~~                                                                
##     SES               0.494    0.296    1.670    0.095    2.490    0.175
##     MARS             -0.179    0.045   -3.940    0.000   -0.719   -0.719
##   MARS ~~                                                               
##     SES              -3.177    1.855   -1.712    0.087   -2.532   -0.178
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .osztalyzat        0.319    0.053    6.067    0.000    0.319    0.364
##     SES             201.680   28.241    7.141    0.000  201.680    1.000
##     g                 2.845    0.689    4.132    0.000    1.000    1.000
##     dpv               0.039    0.012    3.392    0.001    1.000    1.000
##     MARS              1.574    0.479    3.283    0.001    1.000    1.000

Discussion

The DPV measures a g that is highly similar to the g measured by the WISC (r = .78), which is very similar to the r = .72 result achieved by Zaboski, Kranzler & Gage (2018). This is likely attenuated because of psychometric sampling error, since the DPV is purely concerned with mathematics and the g factor from the WISC is a higher-order g factor that is much less colored by a particular form of content.

References

Zaboski, B. A., Kranzler, J. H., & Gage, N. A. (2018). Meta-analysis of the relationship between academic achievement and broad abilities of the Cattell-horn-Carroll theory. Journal of School Psychology, 71, 42–56. https://doi.org/10.1016/j.jsp.2018.10.001

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] lavaanPlot_0.6.2 semPlot_1.1.6    lavaan_0.6-14    ggcorrplot_0.1.4
##  [5] lmtest_0.9-40    zoo_1.8-11       sandwich_3.0-2   cowplot_1.1.1   
##  [9] psych_2.2.9      lubridate_1.9.2  forcats_1.0.0    stringr_1.5.0   
## [13] purrr_1.0.1      readr_2.1.4      tibble_3.1.8     ggplot2_3.4.1   
## [17] tidyverse_2.0.0  dplyr_1.1.0      tidyr_1.3.0      readxl_1.4.2    
## [21] pacman_0.5.1    
## 
## loaded via a namespace (and not attached):
##   [1] minqa_1.2.5          colorspace_2.1-0     ellipsis_0.3.2      
##   [4] htmlTable_2.4.1      corpcor_1.6.10       base64enc_0.1-3     
##   [7] rstudioapi_0.14      farver_2.1.1         fansi_1.0.4         
##  [10] splines_4.2.2        mnormt_2.1.1         cachem_1.0.6        
##  [13] knitr_1.42           glasso_1.11          Formula_1.2-4       
##  [16] jsonlite_1.8.4       nloptr_2.0.3         cluster_2.1.4       
##  [19] png_0.1-8            DiagrammeR_1.0.9     compiler_4.2.2      
##  [22] backports_1.4.1      Matrix_1.5-1         fastmap_1.1.0       
##  [25] cli_3.6.0            visNetwork_2.1.2     htmltools_0.5.4     
##  [28] tools_4.2.2          igraph_1.4.0         OpenMx_2.21.1       
##  [31] coda_0.19-4          gtable_0.3.1         glue_1.6.2          
##  [34] reshape2_1.4.4       Rcpp_1.0.10          carData_3.0-5       
##  [37] cellranger_1.1.0     jquerylib_0.1.4      vctrs_0.5.2         
##  [40] nlme_3.1-160         lisrelToR_0.1.5      xfun_0.37           
##  [43] openxlsx_4.2.5.2     lme4_1.1-31          timechange_0.2.0    
##  [46] lifecycle_1.0.3      gtools_3.9.4         XML_3.99-0.13       
##  [49] MASS_7.3-58.1        scales_1.2.1         hms_1.1.2           
##  [52] kutils_1.70          parallel_4.2.2       RColorBrewer_1.1-3  
##  [55] yaml_2.3.7           pbapply_1.7-0        gridExtra_2.3       
##  [58] sass_0.4.5           rpart_4.1.19         stringi_1.7.12      
##  [61] highr_0.10           sem_3.1-15           checkmate_2.1.0     
##  [64] boot_1.3-28          zip_2.2.2            rlang_1.0.6         
##  [67] pkgconfig_2.0.3      arm_1.13-1           evaluate_0.20       
##  [70] lattice_0.20-45      labeling_0.4.2       htmlwidgets_1.6.1   
##  [73] tidyselect_1.2.0     plyr_1.8.8           magrittr_2.0.3      
##  [76] R6_2.5.1             generics_0.1.3       Hmisc_5.0-1         
##  [79] pillar_1.8.1         foreign_0.8-83       withr_2.5.0         
##  [82] rockchalk_1.8.157    abind_1.4-5          nnet_7.3-18         
##  [85] fdrtool_1.2.17       utf8_1.2.3           tzdb_0.3.0          
##  [88] rmarkdown_2.20       jpeg_0.1-10          grid_4.2.2          
##  [91] qgraph_1.9.3         data.table_1.14.6    pbivnorm_0.6.0      
##  [94] digest_0.6.31        xtable_1.8-4         mi_1.1              
##  [97] GPArotation_2023.3-1 RcppParallel_5.1.6   stats4_4.2.2        
## [100] munsell_0.5.0        bslib_0.4.2          quadprog_1.5-8