##############################################################################################################
##############################################################################################################
#########################     Parents' and Teacher's Judgments on Math and Reading         ####################
#########################                                                                 ####################
#########################               Created by: Shally Novita                         ####################
#########################       on 01.12.2020, last edited: 12.05.2023                    ####################
#########################                                                                #####################
##############################################################################################################
##############################################################################################################



###Load data
setwd('C:/Users/shall/OneDrive/Dokumente/Project/learning and individual differences')
library(foreign)

data_cohort <- read.spss(file='SC2_CohortProfile_D_10-0-0.sav', use.value.labels = F, to.data.frame = T)
data_teach1 <- read.spss(file='SC2_pTarget_D_10-0-0.sav', use.value.labels=FALSE, to.data.frame=TRUE)
data_parent <- read.spss(file='SC2_pParent_D_10-0-0.sav', use.value.labels = F, to.data.frame = T)
data_comp <- read.spss(file='SC2_xTargetCompetencies_D_10-0-0.sav', use.value.labels= FALSE, to.data.frame=TRUE)
data_teach2 <- read.spss(file='SC2_pEducator_D_10-0-0.sav', use.value.labels=FALSE, to.data.frame=TRUE)
data_class <- read.spss(file='SC2_pCourseClass_D_10-0-0.sav', use.value.labels = F, to.data.frame = T)

library(dplyr)
## 
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:stats':
## 
##     filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
var_cohort <- select(data_cohort, ID_t, wave, ID_i, ID_cc, tx80107, tx80220, 
                     tx80522:tx80502, tx80505_R, tx80505_D, 
                     tx8610y,tx8610m) 

cohort_wave <- filter(var_cohort, wave %in% c(3,4,5,6))

cohort_wide <- reshape(data=cohort_wave, 
                       idvar="ID_t",
                       timevar= "wave",
                       direction="wide")

cohort <- cohort_wide[!sapply(cohort_wide, function(x) all(is.na(x)))]

###teacher data1
var_teach1 <- select(data_teach1, 1:7, eb01030:eb01050, e41370c, e41370d,
                     t41203b)

teacher1_wave <- filter(var_teach1, wave %in% c(3,4,5,6))

teacher1_wide <- reshape(data=teacher1_wave, 
                         idvar="ID_t",
                         timevar= "wave",
                         direction="wide")
## Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying =
## varying, : multiple rows match for wave=3: first taken
## Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying =
## varying, : multiple rows match for wave=4: first taken
## Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying =
## varying, : multiple rows match for wave=5: first taken
## Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying =
## varying, : multiple rows match for wave=6: first taken
teacher1 <- teacher1_wide[!sapply(teacher1_wide, function(x) all(is.na(x)))]

###parent data
var_parent <- select(data_parent, 1:4, pb01030:pb01050, p73170y, p731702,
                     p412000,p413000_g1D, p414000_g1D, p400000_g1, p403000_g1,
                     p731802_g3, p731852_g3, p731904_g14, p731954_g14, p728000, p724102, p724101,
                     p32903a, p32903b, p32903c, p32903d, p66600a)

parent_wave <- filter(var_parent, wave %in% c(3,4,5,6))

parent_wide <- reshape(data=parent_wave, 
                       idvar="ID_t",
                       timevar= "wave",
                       direction="wide")

parent <- parent_wide[!sapply(parent_wide, function(x) all(is.na(x)))]

###competence data
competence <- select(data_comp, 1:7,mag1v051_c:mag1_sc2u, 
                     mag1v051_sc2g2_c:mag2_sc1u, dgci110s_sc2g2_c:rxg2_sc3,
                     reg50110_sc2g4_c, mag5d041_sc2g4_c:reg4_sc2u)

###teacher data2
var_teach2 <- select(data_teach2, 1:4, e400000, e76212m_O, e76212y_R, e76212y_D, e762110)
teacher2_wave <- filter(var_teach2, wave %in% c(3,4,5,6))
teacher2_wave <- teacher2_wave[ which(teacher2_wave$ex20100 == 1), ]
teacher2_wide <- reshape(data=teacher2_wave, 
                         idvar="ID_e",
                         timevar= "wave",
                         direction="wide")

teacher2 <- teacher2_wide[!sapply(teacher2_wide, function(x) all(is.na(x)))]

###class data
var_class <- select(data_class, 1:4, e19001c_D, e451000_D, e79201c_D)
var_class <- var_class[ which(var_class$ex20100 == 1), ]
class_wide <- reshape(data=var_class, 
                      idvar="ID_e",
                      timevar= "wave",
                      direction="wide")
class <- class_wide[!sapply(class_wide, function(x) all(is.na(x)))]

###merge data
data0 <- merge(cohort, teacher1, by = "ID_t", all=T) 
data1 <- merge(data0, parent, by="ID_t", all=T) 
data2 <- merge(data1, competence, by="ID_t", all=T)
data2 <- rename(data2, ID_e = ID_e1.3)
data3 <- merge(data2, teacher2, by="ID_e", all=T) 
data4 <- merge(data3, class, by="ID_e", all=T)

###calculating age of children
library(zoo)
## 
## Attache Paket: 'zoo'
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     as.Date, as.Date.numeric
data5 <- data4
data5$birthday_c <- as.yearmon(paste(data5$tx8050y.3, data5$tx8050m.3), "%Y %m") #non string values
data5$testday_c <- as.yearmon(paste(data5$tx8610y.4, data5$tx8610m.4), "%Y %m")#non string values
data5$age_c <- as.numeric(difftime(data5$testday_c, data5$birthday_c)/365.25)

###calculating age of parent
data5$age_p <- as.numeric(data5$tx8610y.4 - data5$p73170y.3) #in the dataset only found birth year

###defining H-Education
data5$edu <- ifelse(is.na(data5$p731852_g3.3), data5$p731802_g3.3,
                    ifelse(data5$p731802_g3.3>data5$p731852_g3.3, data5$p731802_g3.3, 
                           data5$p731852_g3.3)) 

###defining migration based on first language of parents 
data6 <- data5
data6 <- mutate(data6, language = ifelse(is.na(p414000_g1D.4), p413000_g1D.4,
                                         ifelse(p413000_g1D.4==1 | p414000_g1D.4==1, 1, 0)))

###recode gender and special needs
recode(data6$tx80501.3, '1' ='0', '2' = '1')
##    [1] "0" "0" "0" "1" "0" "0" "0" "0" "1" "0" "0" "1" "1" "1" "1" "1" "0" "0"
##   [19] "0" "0" "0" "1" "1" "0" "0" "0" "1" "1" "0" "1" "1" "0" "1" "0" "1" "0"
##   [37] "1" "0" "0" "0" "0" "1" "0" "1" "0" "0" "0" "1" "1" "0" "0" "0" "1" "0"
##   [55] "0" "1" "0" "1" "0" "0" "1" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1"
##   [73] "0" "0" NA  "1" "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "1"
##   [91] "0" "0" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "1" "0" "0" "0" "0" "1"
##  [109] "0" "0" "1" "1" "0" "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "0"
##  [127] "1" "0" "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "0" "0" "0" "1" "0" "0"
##  [145] "1" "0" "1" "1" "1" "0" "1" "0" "1" "0" "0" "1" "0" "1" "1" "1" "0" "0"
##  [163] "0" "0" "1" "0" "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "1" "1" "1" "1"
##  [181] "1" "0" "1" "0" "0" "0" "0" "1" "0" "1" "0" "1" "0" "1" "1" "0" "0" "1"
##  [199] "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "0" "0" "0" "1"
##  [217] "0" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1" "0" "1" "1" "1" "1" "1" "0"
##  [235] "0" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0" "0" "0" "1" "1" "0" "1" "1"
##  [253] "0" "1" "0" "0" "1" "0" "1" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1" "1"
##  [271] "0" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0" "0" "1" "1" "1" "0" "1" "1"
##  [289] "1" "0" "0" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1" "0" "1" "1" "1" "1"
##  [307] "0" "1" "1" "1" "0" "1" "0" "1" "1" "0" "0" "0" "1" "1" "1" "0" "1" "0"
##  [325] "0" "0" "1" "0" "1" "1" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0" "1" "1"
##  [343] "1" "1" "1" "0" "1" "0" "0" "0" "0" "0" "1" "1" "1" "0" "1" "0" "1" "0"
##  [361] "0" "0" "0" "0" "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "1" "1"
##  [379] "0" "1" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "0" "1" "0" "0" "0" "1"
##  [397] "1" "1" "0" "0" "0" "1" "1" "1" "0" "0" "1" "0" "1" "1" "0" "1" "1" "1"
##  [415] "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1" "1" "1" "0" "1" "1" "1"
##  [433] "1" "0" "1" "0" "1" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "0"
##  [451] "1" "0" "0" "1" "1" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0" "0"
##  [469] "1" "0" "1" "0" "0" "1" "1" "0" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1"
##  [487] "0" "0" "0" "1" "1" "0" "1" "0" "1" "1" "0" "1" "0" "1" "0" "1" "0" "1"
##  [505] "0" "1" "1" "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1" "1" "1"
##  [523] "1" "0" "1" "1" "1" "1" "1" "1" "1" "1" "0" "0" "1" "1" "1" "1" "1" "1"
##  [541] "0" "1" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "0" "0" "1" "0" "1"
##  [559] "1" "1" "1" "1" "1" "0" "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1" "0"
##  [577] "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "1" "0" "1" "1" "0" "1" "1" "0"
##  [595] "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1" "1" "0" "1"
##  [613] "0" "0" "0" "0" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1"
##  [631] "1" "0" "0" "1" "0" "0" "1" "0" "1" "0" "0" "1" "1" "1" "0" "0" "0" "1"
##  [649] "1" "1" "0" "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "0"
##  [667] "1" "1" "1" "1" "1" "1" "1" "1" "0" "0" "1" "1" "0" "1" "1" "0" "1" "0"
##  [685] "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1" "1"
##  [703] "1" "1" "0" "1" "1" "0" "1" "1" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1"
##  [721] "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "0" "1" "1" "0" "1" "1" "0" "0"
##  [739] "0" "0" "1" "0" "0" "1" "1" "0" "1" "0" "0" "1" "0" "1" "1" "0" "1" "0"
##  [757] "0" "1" "0" "1" "0" "1" "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" NA  "0"
##  [775] "0" "0" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0" "0" "0" "0" "0" "1" "0"
##  [793] "0" "1" "0" "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0" "0"
##  [811] "0" "1" "1" "0" "1" "1" "0" "0" "0" "1" "1" "1" "0" "1" NA  "1" "0" "0"
##  [829] "0" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1" "0" "0" "0"
##  [847] "1" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1" "0" "1" "0" "1" "0" "0" "0"
##  [865] "1" "1" "0" "1" "1" "1" "0" "0" "1" "0" "1" "0" "1" "0" "1" "1" "0" "0"
##  [883] "1" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "1" "0" "1" "0"
##  [901] "1" "1" "0" "0" "1" "0" "1" "1" "0" "0" "0" "0" "1" "1" "1" "0" "1" "1"
##  [919] "1" "0" "0" "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1" "1" "1"
##  [937] "1" "0" "1" "1" "1" "1" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "0"
##  [955] "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "0" "1" "1" "1" "1" "0" "1" "1"
##  [973] "0" "0" "0" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1" "1" "0"
##  [991] "0" "1" "1" "0" "1" "0" "1" "1" "1" "1" "1" "0" "1" "0" "1" "0" "0" "0"
## [1009] "0" "1" "0" "1" "0" "0" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0"
## [1027] "1" "1" "0" "0" "1" "1" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "0" "1"
## [1045] "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0" "1" "0" "0" "0" "0"
## [1063] "1" "0" "1" "0" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1" "1" "0" "1" "0"
## [1081] "1" "0" "0" "0" "1" "1" "1" "1" "0" "0" "1" "1" "0" "0" "1" "1" "0" "0"
## [1099] "0" "0" "0" "1" "1" "0" "1" "0" "1" "0" "1" "1" "0" "0" "0" "0" "1" "1"
## [1117] "1" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "0" "1" "0" "0" "0"
## [1135] "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1" "0" "1" "1" "1" "0"
## [1153] "0" "0" "1" "1" "0" "1" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1" "0" "1"
## [1171] "1" "1" "1" "0" "0" "0" "0" "1" "1" "0" "0" "1" "1" "1" "1" "1" "0" "1"
## [1189] "1" "0" "0" "1" "0" "0" "0" "0" "0" "1" "0" "1" "0" "1" "1" "0" "1" "0"
## [1207] "1" "0" "0" "0" "0" "1" "0" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1"
## [1225] "0" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "0" "1" "1" "1" "0" "0"
## [1243] "1" "0" "0" "1" "0" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "1" "1"
## [1261] "1" "0" "1" "0" "0" "0" "0" "0" "1" "0" "1" "1" "1" "1" "0" "0" "1" "1"
## [1279] "0" "0" "0" "0" "0" "0" "0" "1" "0" "1" "0" "1" "0" "0" "1" "1" "0" "1"
## [1297] "0" "0" "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "0" "0" "0" "1"
## [1315] "1" "1" "0" "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "1" "0" "1" "0"
## [1333] "1" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "0"
## [1351] "1" "0" "1" "0" "1" "0" "0" "1" "0" "1" "1" "1" "1" "1" "1" "0" "0" "0"
## [1369] "0" "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "1" "1" "1" "1" "1" "0" "1"
## [1387] "0" "1" "1" "1" "1" "1" "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "1"
## [1405] "0" "0" "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "0" "0" "1" "1" "0" "1"
## [1423] "1" "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "1" "0" "1" "0" "1"
## [1441] "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "1" "0" "0" "1" "1" "1" "1" "1"
## [1459] "1" "0" "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "1"
## [1477] "1" "1" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "1" "1" "0" "1" "0"
## [1495] "1" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "1" "0" "1" "1" "0" "0"
## [1513] "0" "1" "0" "0" "0" "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1" "1" "1"
## [1531] "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "1" "1" "0" "1" "1" "1" "1" "1"
## [1549] "1" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "1" "1" "1" "1" "0" "1"
## [1567] "1" "1" "0" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "1" "1" "0" "1" "0"
## [1585] "0" "1" "1" "0" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "1" "1"
## [1603] "0" "1" "0" "1" "0" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "0" "1"
## [1621] "1" "0" "0" "0" "1" "0" "1" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "0"
## [1639] "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "0" "0" "1"
## [1657] "0" "1" "1" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "1"
## [1675] "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "1" "1" "0" "1" "0" "0" "1" "1"
## [1693] "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "0" "1" "0"
## [1711] "1" "1" "1" "1" "0" "1" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "1" "1"
## [1729] "1" "0" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1" "0" "1" "0" "0" "1" "0"
## [1747] "0" "1" "1" "0" "1" "1" "1" "0" "1" "1" "0" "0" "1" "0" "1" "1" "1" "0"
## [1765] "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0"
## [1783] "0" "0" "1" "0" "1" "0" "1" "0" "0" "1" "0" "0" "0" "1" "0" "0" "0" "0"
## [1801] "1" "0" "0" "0" "0" "1" "0" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "0"
## [1819] "0" "1" "1" "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "0" "0" "1" "1" "0"
## [1837] "0" "1" "0" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "1"
## [1855] "0" "0" "0" "0" "1" "0" "1" "0" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1"
## [1873] "0" "0" "0" "1" "1" "0" "0" "1" "0" "1" "0" "1" "0" "1" "1" "0" "1" "1"
## [1891] "1" "0" "0" "0" "0" "1" "0" "1" "1" "0" "1" "0" "0" "1" "0" "0" "1" "0"
## [1909] "0" "1" "0" "1" "0" "1" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "0" "0"
## [1927] "1" "1" "1" "0" "1" "0" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0" "1" "0"
## [1945] "1" "1" "0" "1" "0" "1" "0" "1" "0" "1" "1" "1" "0" "1" "0" "1" "1" "1"
## [1963] "0" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "0" "1" "0" "1" "0"
## [1981] "1" "0" "1" "0" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "0" "1" "0"
## [1999] "0" "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "0" "0" "0" "0" "1" "1"
## [2017] "1" "1" "0" "0" "0" "0" "1" "1" "0" "1" "0" "1" "0" "0" NA  "1" "1" "0"
## [2035] "1" "1" "1" "0" "1" "0" "1" "1" "0" "0" "0" "1" "0" "1" "1" "1" "1" "1"
## [2053] "0" "0" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1" "0"
## [2071] "0" "1" "0" "1" "0" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1" "1" "1" "1"
## [2089] "0" "1" "1" "1" "0" "1" "0" "1" "1" "1" "1" "1" "0" "1" "0" "1" "1" "1"
## [2107] "0" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0" "1" "1" "1" "1" "1" "1" "0"
## [2125] "1" "1" "1" "0" "1" "0" "0" "0" "0" "1" "1" "1" "1" "1" "1" "1" "1" "0"
## [2143] "1" "1" "1" "1" "1" "1" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0"
## [2161] "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1"
## [2179] "0" "1" "0" "1" "0" "0" "0" "0" "1" "1" "1" "0" "0" "1" "1" "0" "0" "0"
## [2197] "0" "0" "1" "1" "0" "0" "1" "1" "0" "1" "1" "1" "1" "0" "1" "0" "1" "1"
## [2215] "1" "1" "1" "0" "1" "1" "0" "0" "1" "0" "0" "1" "1" "0" "1" "0" "1" "1"
## [2233] "1" "1" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1" "0"
## [2251] "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "0" "1" "1" "0" "0" "1" "0" "1"
## [2269] "0" "0" "1" "0" "1" "1" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "0" "0"
## [2287] "1" "0" "0" "1" "0" "0" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "1" "0"
## [2305] "0" "1" "0" "1" "1" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "1"
## [2323] "0" "1" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1"
## [2341] "1" "0" "1" "1" "0" "0" "0" "1" "0" "1" "1" "1" "1" "1" "0" "0" "0" "0"
## [2359] "1" "0" "1" "0" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0"
## [2377] "1" "1" "0" "0" "1" "0" "1" "1" "0" "0" "1" "1" "0" "0" "1" "0" "0" "1"
## [2395] "1" NA  "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "0" "1" "0" "1" "1"
## [2413] "0" "1" "1" "0" "1" "0" "0" "0" "0" "1" "0" "1" "1" "0" "0" "0" "1" "1"
## [2431] "1" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "0" "0" "0" "1" "0" "1" "1"
## [2449] "0" "1" "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1"
## [2467] "1" "1" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "0" "0" "1"
## [2485] "1" "1" "0" "1" "0" "1" "1" "1" "0" "0" "1" "1" "1" "0" "1" "0" "0" "0"
## [2503] "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1" "1" "0" "1" "1" "1" "1" "0"
## [2521] "0" "0" "0" "0" "0" "1" "1" "0" "1" "0" "1" "1" "1" "0" "0" "1" "0" "0"
## [2539] "0" "0" "0" "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "0" "0" "0" "0"
## [2557] "1" "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "0" "0" "1" "0" "0"
## [2575] "0" "0" "1" "1" "1" "0" "0" "0" "1" "1" "1" "0" "0" "1" "1" "0" "1" "1"
## [2593] "1" "1" "0" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "0" "0" "0" "0"
## [2611] "0" "1" "0" "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "1" "1" "0" "1"
## [2629] "0" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0"
## [2647] "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "1" "0" "0" "1"
## [2665] "0" "0" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1" "0" "1" "1" "1" "1" "0"
## [2683] "1" "0" "1" "1" "1" "0" "1" "1" "1" "0" "0" "0" "0" "0" "0" "1" "1" "1"
## [2701] "0" "1" "0" "0" "0" "1" "0" "0" "1" "1" "1" "0" "0" "1" "0" "0" "1" "0"
## [2719] "1" "0" "1" "1" "1" "1" "0" "0" "0" "0" "1" "0" "1" "1" "1" "1" "1" "1"
## [2737] "1" "0" "1" "0" "0" "1" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1"
## [2755] "0" "1" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "1" "0" "0" "0" "0" "0"
## [2773] "1" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "0" "0" "0"
## [2791] "1" "0" "0" "0" "0" "1" "0" "0" "0" "1" "0" "0" "1" "0" "0" "1" "1" "0"
## [2809] "0" "1" "0" "1" "1" "1" "1" "0" "1" "0" "0" "0" "0" "1" "1" "1" "0" "0"
## [2827] "0" "1" "1" "0" "0" "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1"
## [2845] "1" "1" "0" "1" "0" "0" "1" "0" "0" "1" "1" "1" "0" "0" "1" "0" "1" "1"
## [2863] "1" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "1"
## [2881] "0" "1" "0" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1" "1" "0" "1" "1" "1"
## [2899] "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "1" "0" "1" "1" "1" "0" "1" "0"
## [2917] "0" "1" "0" "0" "1" "0" "0" "0" "0" "1" "0" "0" "0" "0" "0" "0" "1" "0"
## [2935] "1" "1" "1" "0" "1" "0" "0" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1" "1"
## [2953] "1" "1" "0" "0" "1" "0" "1" "1" "0" "0" "0" "1" "0" "0" "0" "1" "1" "0"
## [2971] "0" "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "1" "1" "1" "0" "1" "1"
## [2989] "1" "1" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1" "1" "0" "1" "0" "1" "1"
## [3007] "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "0" "1" "1"
## [3025] "0" "1" "1" "1" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "1" "0" "0" "0"
## [3043] "1" "1" "0" "1" "0" "0" "1" "0" "0" "1" "0" "1" "1" "0" "0" "0" "0" "0"
## [3061] "1" "1" "1" "1" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "0" "0" "0" "1"
## [3079] "0" "1" "0" "1" "1" "1" "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "0"
## [3097] "1" "1" "1" "1" "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1" "1"
## [3115] "1" "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "0" "1" "0" "1" "1" "1"
## [3133] "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "1" "1" "1"
## [3151] "0" "0" "1" "1" "1" "0" "0" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "0"
## [3169] "1" "1" "1" "1" "0" "1" "0" "1" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1"
## [3187] "0" "1" "0" "0" "0" "1" "0" "0" "1" "0" "1" "1" "1" "0" "0" "1" "1" "1"
## [3205] "0" "1" "0" "0" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "0" "1" "1"
## [3223] "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "1" "1" "1" "0" "1" "0" "1" "1"
## [3241] "1" "0" "0" "0" "0" "1" "0" "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "1"
## [3259] "1" "1" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1" "1" "1" "0" "0" "1" "1"
## [3277] "0" "1" "1" "0" "1" "1" "1" "1" "0" "0" "0" "1" "0" "0" "0" "1" "0" "1"
## [3295] "1" "1" "1" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1"
## [3313] "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "1" "1" "1" "0" "0" "0" "1" "1"
## [3331] "1" "1" "1" "1" "1" "0" "0" "1" "0" "0" "1" "0" "1" "1" "1" "0" "0" "0"
## [3349] "0" "0" "0" "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0"
## [3367] "1" "1" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "0" "1" "1" "1" "1" "0"
## [3385] "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "0" "1" "0" "1" "1" "0" "1" "0"
## [3403] "0" "0" "0" "0" "1" "0" "0" "0" "0" "0" "0" "1" "1" "0" "0" "1" "1" "0"
## [3421] "0" "1" "0" "0" "0" "1" "1" "1" "1" "0" "0" "1" "0" "0" "1" "0" "1" "0"
## [3439] "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "1" "0" "1" "0" "1" "1" "0" "0"
## [3457] "0" "1" "0" "1" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "1" "0" "1" "1"
## [3475] "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0"
## [3493] "0" "1" "1" "1" "0" "1" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "1" "0"
## [3511] "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0" "0" "1"
## [3529] "1" "0" "1" "1" "0" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "1"
## [3547] "0" "1" "0" "1" "1" "0" "0" "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "1"
## [3565] "0" "1" "1" "0" "0" "1" "0" "0" "0" "0" "0" "1" "1" "1" "1" "0" "1" "0"
## [3583] "1" "0" "1" "0" "0" "0" "1" "1" "0" "0" "0" "1" "1" "0" "1" "0" "1" "1"
## [3601] "0" "0" "1" "0" "1" "0" "1" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "0"
## [3619] "1" "0" "0" "0" "0" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0"
## [3637] "1" "1" "0" "0" "0" "0" "0" "1" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0"
## [3655] "1" "0" "1" "0" "0" "1" "1" "0" "1" "1" "0" "0" "0" "1" "1" "1" "1" "0"
## [3673] "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "1" "0" "1" "0" "1"
## [3691] "0" "0" "1" "0" "1" "1" "1" "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "0"
## [3709] "0" "1" "1" "0" "0" "1" "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "0" "1"
## [3727] "1" "0" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "1" "0"
## [3745] "0" "0" "1" "0" "1" "1" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1"
## [3763] "0" "0" "1" "0" "1" "1" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1" "1" "1"
## [3781] "1" "0" "0" "0" "1" "0" "0" "0" "0" "0" "0" "0" "0" "1" "1" "1" "0" "0"
## [3799] "1" "0" "0" "0" "0" "1" "1" "1" "1" "1" "0" "1" "0" "0" "0" "1" "1" "1"
## [3817] "0" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "0" "0"
## [3835] "1" "0" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "0" "0" "1"
## [3853] "0" "1" "1" "0" "1" "1" "1" "0" "0" "0" "0" "1" "0" "1" "0" "1" "0" "0"
## [3871] "0" "1" "0" "0" "1" "0" "1" "0" "0" "0" "1" "0" "1" "0" "1" "0" "1" "1"
## [3889] "0" "0" "1" "0" "1" "1" "1" "0" "0" "0" "0" "1" "0" "1" "0" "0" "0" "0"
## [3907] "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "1"
## [3925] "0" "1" "0" "0" "0" "1" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1"
## [3943] "1" "0" "0" "1" "0" "1" "0" "1" "0" "0" "0" "0" "1" "1" "0" "0" "1" "0"
## [3961] "0" "0" "1" "1" "1" "0" "0" "1" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0"
## [3979] "0" "1" "0" "1" "0" "0" "1" "1" "1" "1" "0" "1" "0" "0" "0" "0" "1" "1"
## [3997] "1" "1" "1" "0" "1" "0" "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1"
## [4015] "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "1"
## [4033] "0" "1" "1" "1" "1" "0" "0" "1" "1" "0" "0" "1" "1" "1" "1" "0" "1" "0"
## [4051] "0" "1" "1" "1" "1" "1" "0" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0" "1"
## [4069] "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "1" "0" "1" "1" "1" "1" "0" "1"
## [4087] "1" "0" "1" "1" "1" "0" "0" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1" "0"
## [4105] "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0"
## [4123] "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1"
## [4141] "1" "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1" "0" "1" "1" "0" "1"
## [4159] "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "1"
## [4177] "0" "0" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "0" "1" "0"
## [4195] "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1" "0" "0" "1" "1" "1" "0"
## [4213] "0" "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "1" "1"
## [4231] "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "0" "0" "0" "0" "1" "0" "1" "1"
## [4249] "0" "0" "0" "0" "0" "1" "0" "1" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0"
## [4267] "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "0" "1" "0" "1" "1" "1" "0" "0"
## [4285] "1" "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "0"
## [4303] "1" "1" "1" "0" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "1" "1" "0" "0"
## [4321] "0" "0" "1" "1" "1" "1" "0" "1" "1" "0" "0" "1" "1" "0" "1" "1" "1" "1"
## [4339] "1" "0" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1" "0"
## [4357] "1" "1" "0" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "1" "0" "0" "1" "0"
## [4375] "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "1" "1" "1" "1" "1" "1" "0"
## [4393] "1" "1" "1" "0" "1" "0" "1" "1" "0" "0" "0" "0" "0" "0" "0" "1" "0" "1"
## [4411] "1" "0" "1" "1" "1" "1" "1" "1" "1" "1" "1" "0" "1" "0" "0" "0" "0" "0"
## [4429] "1" "0" "1" "0" "1" "1" "1" "1" "0" "0" "0" "0" "0" "1" "1" "0" "0" "0"
## [4447] "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1" "1" "0" "0" "1" "1" "0" "1"
## [4465] "0" "1" "0" "0" "0" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1" "0" "0"
## [4483] "1" "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "1" "0" "1" "0" "0" "1" "0"
## [4501] "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1" "0" "1" "1" "0" "1" "0" "1"
## [4519] "1" "0" "0" "1" "0" "1" "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "0"
## [4537] "0" "0" "1" "0" "1" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "0" "1" "1"
## [4555] "0" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "0" "1"
## [4573] "1" "0" "1" "1" "1" "1" "1" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1" "1"
## [4591] "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "1" "0" "1" "1"
## [4609] "0" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0"
## [4627] "0" "0" "0" "1" "0" "1" "0" "0" "0" "0" "0" "0" "0" "0" "0" "1" "0" "1"
## [4645] "0" "0" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "0" "1" "1" "1" "1" "0"
## [4663] "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "0" "1" "1" "1" "1" "0" "0"
## [4681] "1" "1" "0" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "0" "0" "0" "1"
## [4699] "1" "1" "1" "1" "0" "1" "1" "1" "1" "1" "0" "0" "1" "0" "1" "0" "1" "0"
## [4717] "0" "0" "0" "1" "0" "1" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "0" "1"
## [4735] "1" "1" "0" "1" "1" "0" "1" "0" "0" "1" "0" "1" "0" "0" "0" "1" "1" "0"
## [4753] "1" "0" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "1" "0"
## [4771] "0" "1" "1" "1" "1" "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "1" "1" "0"
## [4789] "0" "1" "0" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "0" "0" "1" "0"
## [4807] "1" "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1" "1"
## [4825] "1" "0" "1" "1" "1" "0" "0" "1" "0" "0" "1" "1" "1" "1" "0" "1" "1" "1"
## [4843] "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "1" "0"
## [4861] "1" "0" "1" "0" "0" "0" "1" "0" "0" "1" "0" "1" "0" "0" "0" "0" "1" "1"
## [4879] "1" "0" "1" "0" "1" "1" "1" "0" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1"
## [4897] "0" "0" "0" "0" "0" "0" "1" "0" "1" "1" "0" "1" "1" "0" "1" "0" "0" "1"
## [4915] "1" "0" "1" "0" "1" "0" "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "0" NA 
## [4933] "0" "1" "0" "1" "0" "0" "0" "0" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1"
## [4951] "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "1" "1" "1"
## [4969] "1" "0" "0" "1" "0" "1" "1" "0" "1" "0" "0" "0" "0" "0" "1" "0" "1" "0"
## [4987] "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "1" "1" "0" "1" "1" "1" "0" "1"
## [5005] "1" "0" "1" "1" "0" "0" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "0"
## [5023] "0" "1" "1" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "1" "1" "0" "1"
## [5041] "0" "1" "0" "1" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1" "1" "0" "0" "0"
## [5059] "0" "1" "0" "1" "1" "0" "1" "1" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0"
## [5077] "0" "0" "1" "1" "1" "0" "0" "1" "0" "1" "1" "1" "1" "1" "0" "0" "1" "0"
## [5095] "1" "1" "0" "1" "1" "1" "1" "0" "1" "0" "1" "0" "1" "1" "0" "1" "0" "0"
## [5113] "1" "1" "1" "0" "0" "1" "0" "1" "0" "0" "0" "1" "0" "1" "0" "0" "1" "0"
## [5131] "0" "0" "1" "1" "1" "1" "0" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1" "1"
## [5149] "1" "1" "1" "1" "1" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "1"
## [5167] "0" "0" "1" "0" "0" "0" "0" "0" "0" "1" "0" NA  "1" "1" "1" "0" "0" "0"
## [5185] NA  "1" "0" "0" "0" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "1"
## [5203] "1" "1" "0" "0" "1" "0" "0" "1" "0" "0" "0" "1" "0" "1" "1" "1" "1" "1"
## [5221] "0" "1" "0" "0" "0" "0" "1" "1" "0" "1" "0" "0" "1" "1" "1" "1" "1" "1"
## [5239] "1" "0" "0" "0" "0" "1" "0" "1" "0" "0" "1" "1" "1" "1" "0" "1" "0" "1"
## [5257] "1" "1" "0" "0" "0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "1" "1" "1" "1"
## [5275] "0" "0" "1" "0" "0" "0" "1" "0" "1" "0" "0" "1" "0" "1" "1" "0" "0" "1"
## [5293] "0" "1" "0" "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "0" "1" "1" "1" "1"
## [5311] "1" "0" "0" "0" "1" "1" "1" "0" "0" "1" "1" "1" "0" "1" "1" "0" "0" "1"
## [5329] "1" "1" "0" "1" "1" "1" "0" "0" "1" "1" "0" "0" "0" "1" "1" "1" "0" "0"
## [5347] "0" "1" "1" "0" "0" "1" "1" "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "0"
## [5365] "0" "0" "1" "1" "0" "1" "0" "1" "1" "1" "0" "1" "1" "0" "0" "0" "0" "1"
## [5383] "0" "1" "1" "1" "0" "1" "1" "1" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0"
## [5401] "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "0" "1" "1" "1" "1" "1" "1" "0"
## [5419] "1" "0" "1" "0" "1" "0" "0" "1" "0" "1" "0" "0" "1" "0" "1" "0" "1" "1"
## [5437] "1" "1" "1" "0" "1" "0" "0" "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "0"
## [5455] "1" "1" "1" "0" "1" "1" "1" "1" "0" "0" "0" "0" "0" "0" "0" "0" "0" "1"
## [5473] "1" "0" "0" "0" "0" "0" NA  "1" "1" "0" "1" "0" "0" "1" "0" "1" "0" "0"
## [5491] "0" "0" "1" "0" "0" "0" "1" "1" "1" "1" "1" "1" "1" "1" "1" "0" "0" "1"
## [5509] "1" "1" "0" "1" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1" "1" "0" "1"
## [5527] "0" "0" "1" "0" "0" "0" "0" "1" "1" "0" "0" "1" "1" "0" "0" "0" "0" "1"
## [5545] "1" "0" "0" "0" "0" "0" "0" "1" "0" "0" "1" "0" "0" "0" "1" "1" "0" "0"
## [5563] "0" "0" "1" "0" "0" "0" "0" "0" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1"
## [5581] "1" "1" "1" "0" "1" "0" "0" "0" "0" "0" "0" NA  "0" "1" "1" "1" "0" "1"
## [5599] "1" "0" "1" "1" "0" "0" "0" "0" "0" "0" "0" "1" "1" "1" "0" "0" "0" "1"
## [5617] "0" "0" "1" "0" "0" "1" "0" "0" "1" "1" "1" "0" "1" "1" "1" "0" "1" "0"
## [5635] "0" "0" "0" "0" "0" "0" "1" "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1"
## [5653] "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "0"
## [5671] "1" "0" "1" "1" "0" "0" "1" "1" "0" "1" "1" "1" "0" "1" "0" "0" "0" "1"
## [5689] "0" "1" "0" "0" "0" "1" "1" "0" "0" "0" "1" "1" "0" "1" "0" "0" "0" "0"
## [5707] "0" "0" "1" "1" "1" "0" "0" "0" "0" "0" "0" "0" "1" "0" "1" "0" "1" "0"
## [5725] "1" "0" "0" "0" "0" "1" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "0" "1"
## [5743] "0" "0" "1" "1" "1" "1" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "1" "0"
## [5761] "1" "0" "1" "1" "0" "1" "1" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "0"
## [5779] "0" "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "0" "0" "0" "1" "1" "0" "1"
## [5797] "1" "0" "1" "0" "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "1" "0" "0" "1"
## [5815] "1" "0" "1" "0" "0" "1" "0" "0" "0" "0" "1" "0" "1" "0" "0" "1" "1" "0"
## [5833] "0" "1" "0" "0" "0" "0" "1" "1" "1" "1" "1" "1" "0" "1" "1" "1" "1" "1"
## [5851] "1" "1" "0" "0" "1" "1" "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "0" "0"
## [5869] "1" "1" "0" "1" "1" "1" "1" "1" "0" "1" "0" "0" "1" "1" "1" "1" "1" "1"
## [5887] "1" "1" "1" "0" "0" "1" "0" "1" "1" "0" "0" "0" "0" "1" "1" "1" "0" "0"
## [5905] "1" "1" "0" "1" "1" "1" "1" "1" "1" "1" "0" "0" "1" "0" "0" "1" "0" "1"
## [5923] "0" "1" "0" "1" "1" "1" "1" "0" "0" "1" "0" "1" "0" "0" "0" "1" "1" "0"
## [5941] "0" "0" "0" "1" "1" "0" "0" "0" "0" "0" "0" "1" "1" "1" "0" "1" "1" "1"
## [5959] "0" "1" "1" "1" "1" "1" "1" "1" "0" "1" "0" "1" "0" "1" "0" "1" "0" "0"
## [5977] "0" "0" "0" "0" "1" "1" "1" "1" "1" "0" "0" "0" "0" "1" "0" "0" "0" "1"
## [5995] "1" "0" "0" "1" "0" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "0" "1" "1"
## [6013] "1" "0" "1" "0" "1" "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6031] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6049] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6067] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6085] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6103] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6121] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6139] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6157] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6175] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6193] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6211] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6229] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6247] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6265] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6283] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6301] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6319] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6337] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6355] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6373] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6391] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6409] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6427] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6445] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6463] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6481] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6499] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6517] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6535] NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6553] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6571] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6589] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6607] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6625] NA  "1" NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6643] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6661] NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6679] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6697] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6715] NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6733] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA 
## [6751] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6769] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6787] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6805] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6823] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6841] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA 
## [6859] NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6877] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6895] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6913] NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6931] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6949] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [6967] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  "0"
## [6985] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7003] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7021] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7039] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7057] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0"
## [7075] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7093] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7111] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA 
## [7129] NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7147] NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7165] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1"
## [7183] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7201] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0"
## [7219] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7237] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7255] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7273] NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7291] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7309] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7327] "1" NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA 
## [7345] "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7363] NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA 
## [7381] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7399] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA 
## [7417] NA  NA  NA  "0" NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7435] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA 
## [7453] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA 
## [7471] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7489] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7507] NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA 
## [7525] NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7543] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7561] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0"
## [7579] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7597] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7615] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" "1" NA  NA 
## [7633] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA 
## [7651] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7669] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7687] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7705] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7723] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA 
## [7741] NA  NA  NA  NA  NA  NA  NA  "0" "1" NA  "1" NA  NA  NA  NA  NA  NA  NA 
## [7759] NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7777] NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0"
## [7795] NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7813] NA  NA  NA  NA  "0" "1" NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA 
## [7831] NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  "1"
## [7849] NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA 
## [7867] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  "0" "0"
## [7885] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7903] NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  "1" "0" NA 
## [7921] NA  NA  NA  "0" "1" "1" NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  "0" NA 
## [7939] NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7957] NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  "1" NA  NA 
## [7975] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [7993] NA  NA  "0" NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8011] NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8029] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8047] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA 
## [8065] NA  "1" "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8083] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA 
## [8101] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8119] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA 
## [8137] NA  NA  NA  NA  NA  "1" "0" NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA 
## [8155] NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8173] "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA 
## [8191] NA  "0" NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA 
## [8209] NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  "1"
## [8227] NA  NA  NA  NA  NA  NA  "1" NA  NA  "1" NA  "0" NA  "0" NA  "1" NA  NA 
## [8245] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8263] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8281] NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA 
## [8299] NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  "0"
## [8317] NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8335] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8353] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8371] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [8389] NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA 
## [8407] NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  NA 
## [8425] NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  "0" "0" NA  NA 
## [8443] "1" NA  NA  "1" "1" NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  "0" "1" NA 
## [8461] "0" NA  NA  "0" NA  NA  "0" NA  NA  NA  "1" NA  "1" NA  NA  NA  NA  NA 
## [8479] NA  NA  "1" NA  "1" NA  "0" NA  "1" NA  "1" NA  NA  "0" "1" NA  NA  NA 
## [8497] NA  "1" NA  NA  "0" NA  NA  NA  "1" "1" NA  NA  NA  NA  NA  NA  "0" NA 
## [8515] "1" "1" "0" NA  NA  NA  NA  NA  "1" NA  NA  NA  "0" NA  NA  NA  NA  "0"
## [8533] NA  NA  "0" NA  NA  NA  NA  "1" NA  NA  NA  NA  NA  NA  "1" "1" NA  NA 
## [8551] NA  NA  "1" NA  NA  NA  NA  NA  NA  "0" NA  NA  NA  NA  "1" "1" NA  "0"
## [8569] NA  "0" "0" NA  NA  "0" "0" NA  NA  NA  NA  NA  "0" "1" NA  "1" NA  NA 
## [8587] NA  NA  NA  NA  NA  "1" NA  "0" NA  NA  NA  "0" "1" "1" NA  "1" NA  "0"
## [8605] NA  "0" "0" NA  NA  NA  NA  NA  NA  "1" "0" "0" "1" NA  NA  NA  NA  "0"
## [8623] NA  NA  NA  NA  NA  "1" NA  NA  "0" NA  "1" NA  NA  NA  "0" NA  NA  NA 
## [8641] NA  NA  "0" "1" NA  "0" NA  NA  NA  NA  "1" NA  NA  "1" NA  NA  NA  NA 
## [8659] NA  NA  NA  NA  NA  NA  "0" NA  NA  "1" NA  NA  NA  NA  "1" NA  NA  "0"
## [8677] NA  NA  NA  NA  "0" NA  NA  "1" NA  NA  NA  "1" NA  NA  NA  NA  NA  "1"
## [8695] "1" NA  NA  NA  NA  "1" "0" "1" "1" NA  NA  NA  NA  NA  "0" NA  NA  NA 
## [8713] NA  "0" NA  "0" NA  NA  "0" NA  NA  NA  "0" NA  "0" "0" NA  "1" NA  NA 
## [8731] NA  "0" "0" "0" NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  "1" "0" NA  NA 
## [8749] NA  NA  "1" NA  "1" "1" "0" NA  NA  "1" "0" NA  "1" "0" "1" "1" NA  NA 
## [8767] "1" "0" NA  NA  NA  "0" NA  NA  "1" "0" NA  NA  "0" NA  NA  NA  NA  "1"
## [8785] NA  NA  "1" NA  NA  NA  "1" "1" NA  "0" "1" NA  "0" NA  NA  "1" "1" NA 
## [8803] NA  NA  "1" "1" "1" "0" NA  NA  "1" "0" NA  "1" NA  NA  NA  NA  NA  "0"
## [8821] "1" NA  NA  "1" NA  NA  NA  NA  NA  "1" "1" "1" NA  NA  "0" "0" "0" "0"
## [8839] "0" "0" NA  "0" NA  NA  NA  NA  "1" NA  NA  "1" NA  NA  NA  "1" NA  NA 
## [8857] "1" NA  "0" NA  "0" NA  "0" NA  "1" NA  NA  NA  NA  NA  NA  NA  "1" NA 
## [8875] "0" "1" NA  NA  "1" NA  NA  NA  NA  "0" NA  NA  NA  "1" NA  NA  NA  NA 
## [8893] "0" NA  NA  NA  NA  NA  "0" NA  "0" "0" NA  "0" NA  NA  NA  NA  "0" "1"
## [8911] "0" NA  NA  NA  NA  "0" NA  NA  "0" NA  NA  NA  "0" NA  "1" NA  NA  "0"
## [8929] "1" "0" NA  NA  NA  NA  "0" NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  "1"
## [8947] "1" NA  "0" "1" NA  "0" NA  "0" "1" NA  NA  NA  "1" "0" NA  NA  "0" "0"
## [8965] "1" "1" NA  NA  NA  NA  "1" NA  NA  "0" NA  NA  NA  NA  "1" "1" NA  NA 
## [8983] "0" NA  NA  "1" NA  NA  NA  NA  NA  NA  NA  NA  "1" NA  NA  NA  "1" "1"
## [9001] NA  "1" NA  "1" "1" NA  NA  "0" "0" NA  "0" "0" "1" "1" NA  NA  "1" NA 
## [9019] NA  NA  NA  "1" "0" "1" NA  "0" NA  "0" NA  NA  "1" NA  NA  "1" "0" NA 
## [9037] NA  NA  NA  NA  "0" NA  "0" "1" NA  NA  "1" "0" NA  NA  NA  NA  NA  NA 
## [9055] "1" "1" "1" "1" "0" NA  NA  NA  NA  NA  "1" NA  NA  NA  "1" NA  NA  "0"
## [9073] NA  "0" NA  NA  NA  "0" "0" "1" NA  "1" "0" NA  NA  NA  NA  NA  NA  NA 
## [9091] NA  NA  NA  NA  "0" "1" NA  NA  NA  NA  NA  NA  NA  NA  "0" NA  NA  "1"
## [9109] "0" NA  NA  "0" "0" "1" "1" NA  NA  NA  "1" NA  "0" NA  NA  NA  NA  "1"
## [9127] NA  "1" NA  "1" NA  NA  NA  "0" "0" "0" "0" "1" NA  "1" "0" "0" "1" NA 
## [9145] NA  "0" NA  "0" NA  NA  NA  "0" "0" NA  "0" NA  "1" NA  "1" NA  NA  NA 
## [9163] "0" NA  "1" "1" NA  "0" NA  NA  NA  "1" NA  NA  NA  "1" NA  "1" NA  NA 
## [9181] NA  "1" NA  NA  "0" "1" "0" "1" "1" NA  "1" "0" NA  "1" NA  NA  "0" "1"
## [9199] NA  NA  "0" NA  NA  NA  NA  "0" NA  NA  NA  NA  NA  NA  NA  "0" "1" "1"
## [9217] NA  NA  "0" "0" NA  "1" "1" NA  "1" "1" "1" NA  NA  NA  "0" "1" NA  NA 
## [9235] "0" "1" NA  NA  NA  "1" "1" "0" "1" NA  "1" "1" NA  NA  "0" NA  NA  "0"
## [9253] "0" NA  "0" "1" "0" "0" "0" NA  "0" "0" "0" NA  "0" "1" "0" NA  NA  "0"
## [9271] NA  "0" NA  "1" "1" NA  NA  "1" "1" "0" "0" "0" "1" "1" NA  "1" "0" "0"
## [9289] NA  "0" NA  "1" NA  "0" NA  NA  "1" "1" "0" NA  NA  "1" NA  NA  "0" NA 
## [9307] NA  "0" "1" NA  "0" "1" "0" "1" "0" "1" NA  NA  "0" NA  NA  "0" "1" "1"
## [9325] NA  NA  "0" "1" "0" "0" "1" NA  "0" NA  NA  NA  "1" "1" NA  NA  "1" NA 
## [9343] NA  "0" NA  NA  "1" "0" "0" "1" "1" NA  "0" NA  "0" "1" "1" NA  NA  "0"
## [9361] NA  "0" "1" "1" "1" "1" "1" "0" "1" "0" "0" "0" NA  "0" NA  "1" "1" "0"
## [9379] "1" "1" "0" "1" "0" "0" NA  "0" NA  "1" "1" "1" "1" "1" "1" "1" "1" "1"
## [9397] "0" NA  "1" "1" NA  "1" "0" "0" NA  NA  "0" "0" "1" "0" "1" "1" "1" NA 
## [9415] "1" "1" NA  "1" "0" "0" "1" NA  NA  "1" "1" "0" "1" "0" "1" "1" "1" "1"
## [9433] "0" "1" "0" NA  "1" NA  "0" "1" "1" "1" "0" NA  "1" "1" NA  NA  NA  "0"
## [9451] "1" NA  "0" "0" NA  "1" "1" "0" "1" NA  "0" NA  "1" "1" "1" "0" "0" NA 
## [9469] "0" "1" "0" "1" "0" NA  NA  "1" "0" NA  NA  "0" NA  "1" "1" "0" "0" "1"
## [9487] NA  "1" "1" "1" "0" "0" "1" "1" "0" "1" "1" "0" "1" "1" "1" "0" "0" "1"
## [9505] "0" "1" "1" "1" "0" "0" "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "1" "0"
## [9523] "1" "1" "0" "1" "0" "0" "1" "1" "1" "1" "0" "0" "0" "1" "1" "0" "0" "1"
## [9541] "0" "1" "1" "1" "1" "0" "1" "0" "1" "1" "1" "1" "0" "0" "1" "1" "1" "0"
## [9559] "1" "0" "1" "1" "0" "1" "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "0"
## [9577] "1" "1" "1" "0" "1" "0" "1" "1" "0" "1" "1" "0" "0" "1" "0" "0" "1" "0"
## [9595] "1" "0" "0" "1" "0" "0" "0" "1" "1" "1" "0" "0" "0" "0" "0" "1" "0" "1"
## [9613] "1" "0" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1" "1" "0" "0" "0" "0" "0"
## [9631] "0" "0" "1" "0" "0" "1" "0" "1" "0" "1" "0" "1" "0" "1" "0" "0" "0" "0"
## [9649] "0" "1" "1" "0" "0" "1" "0" "0" "1" "0" "0" "1" "1" "0" "1" "1" "1" "0"
## [9667] "0" "0" "1" "0" "0" "1" "0" "0" "0" "1" "0" "0" "0" "0" "1" "0" "1" "0"
## [9685] "1" "1" "0" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1" "0" "0" "1"
## [9703] "1" "1" "1" "1" "0" "0" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "1"
## [9721] "1" "1" "0" "0" "1" "1" "1" "0" "1" "0" "1" "1" "0" "0" "1" "1" "1" "1"
## [9739] "0" "1" "1" "1" "0" "1" "0" "1" "1" "0" "1" "1" "1" "0" "1" "0" "1" "1"
## [9757] "0" "1" "0" "1" "1" "1" "0" "0" "0" "1" "0" "0" "1" "1" "0" "1" "0" "0"
## [9775] "0" "0" "1" "1" NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA 
## [9793] NA  NA  NA  NA  NA  NA  NA  NA  "0" "1" "1" "1" "1" "0" "0" "0" "1" "1"
## [9811] "0" "1" "0" "0" "1" "0" "1" "0" "0" "1" "1" "0" "0" "1" "1" "1" "0" NA 
## [9829] NA  NA  NA  NA  NA  "1" NA  "1" "0" NA  "1" NA  NA  NA  "0" "1" NA  "1"
## [9847] "0" "1" "0" "1" "0" NA  NA  "1" NA  "0" "0" "0" "0" "1" NA  "0" "0" "1"
## [9865] "1" "1" "0"
###select cases
data7 <- data6[which(data5$wave_w4 ==1), ]

###Rename variables
data7 <- rename(data7, participation = tx80107.3)
data7 <- rename(data7, sex_p = p731702.4)
data7 <- rename(data7, sex_c = tx80501.3)
data7 <- rename(data7, sex_t = e762110.3)
data7 <- rename(data7, mig_t = e400000.3)
data7 <- rename(data7, judgMA1 = pb01050.3)
data7 <- rename(data7, judgMA2 = pb01050.4)
data7 <- rename(data7, judgMA1T = eb01050.3)
data7 <- rename(data7, judgMA2T = eb01050.4)
data7 <- rename(data7, judgRE1 = pb01060.3)
data7 <- rename(data7, judgRE2 = pb01060.4)
data7 <- rename(data7, judgRE1T = eb01031.3)
data7 <- rename(data7, judgRE2T = eb01031.4)
data7 <- rename(data7, reasoning = dgg2_sc3b)
data7 <- rename(data7, math1 = mag1_sc1)
data7 <- rename(data7, math2 = mag2_sc1)
data7 <- rename(data7, math4 = mag4_sc1)
data7 <- rename(data7, mig_class = e451000_D.3)
data7 <- rename(data7, ses_class = e79201c_D.3)
data7 <- rename(data7, sen_class = e19001c_D.3)
data7 <- rename(data7, read2 = rxg2_sc3)
data7 <- rename(data7, sen = tx80505_D.3)
data7 <- rename(data7, math_grade = p724102.5) 
data7 <- rename(data7, reading_grade = p724101.5) 

###Descriptives
library(Hmisc)
## Lade nötiges Paket: lattice
## Lade nötiges Paket: survival
## Lade nötiges Paket: Formula
## Lade nötiges Paket: ggplot2
## 
## Attache Paket: 'Hmisc'
## Die folgenden Objekte sind maskiert von 'package:dplyr':
## 
##     src, summarize
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     format.pval, units
describe(data7$ID_t)
## data7$ID_t 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6340        0     6340        1  2924478   163578  2002196  3004450 
##      .25      .50      .75      .90      .95 
##  3005629  3007578  3017798  3018851  3019197 
## 
## lowest : 2000568 2000569 2000577 2000578 2000585
## highest: 3022061 3023006 3023187 3023439 3023458
##                                                   
## Value      2000000 2010000 3000000 3010000 3020000
## Frequency      543       1     532    3070    2194
## Proportion   0.086   0.000   0.084   0.484   0.346
## 
## For the frequency table, variable is rounded to the nearest 10000
describe(data7$ID_e)
## data7$ID_e 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     5517      823      841        1  1011871    317.1  1011456  1011504 
##      .25      .50      .75      .90      .95 
##  1011639  1011849  1012126  1012254  1012300 
## 
## lowest : 1011403 1011405 1011406 1011407 1011408
## highest: 1012338 1012339 1012340 1012341 1012342
describe(data7$ID_i.4)
## data7$ID_i.4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6340        0      361        1  1002740    126.5  1002566  1002584 
##      .25      .50      .75      .90      .95 
##  1002646  1002743  1002835  1002887  1002911 
## 
## lowest : 1002555 1002556 1002557 1002558 1002559
## highest: 1002924 1002925 1002926 1002927 1002928
describe(data7$participation)
## data7$participation 
##        n  missing distinct     Info     Mean      Gmd 
##     6340        0        2    0.233     2.83   0.3112 
##                       
## Value          1     3
## Frequency    539  5801
## Proportion 0.085 0.915
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attache Paket: 'plyr'
## Die folgenden Objekte sind maskiert von 'package:Hmisc':
## 
##     is.discrete, summarize
## Die folgenden Objekte sind maskiert von 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
classID <- select(data7, ID_t, ID_e)
describe(count(classID$ID_e), na.rm=T)
## count(classID$ID_e) 
## 
##  2  Variables      842  Observations
## --------------------------------------------------------------------------------
## x 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      841        1      841        1  1011861    319.1  1011447  1011491 
##      .25      .50      .75      .90      .95 
##  1011624  1011839  1012116  1012254  1012299 
## 
## lowest : 1011403 1011405 1011406 1011407 1011408
## highest: 1012338 1012339 1012340 1012341 1012342
## --------------------------------------------------------------------------------
## freq 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      842        0       21    0.993     7.53    6.298        1        2 
##      .25      .50      .75      .90      .95 
##        3        6        9       12       14 
## 
## lowest :   1   2   3   4   5, highest:  17  18  19  21 823
##                                                                             
## Value          0     2     4     6     8    10    12    14    16    18    20
## Frequency     50    75   264    79   187    44    93    17    27     1     4
## Proportion 0.059 0.089 0.314 0.094 0.222 0.052 0.110 0.020 0.032 0.001 0.005
##                 
## Value        824
## Frequency      1
## Proportion 0.001
## 
## For the frequency table, variable is rounded to the nearest 2
## --------------------------------------------------------------------------------
schoolID <- select(data7, ID_t, ID_e, ID_i.4)
describe(count(schoolID$ID_i.4), na.rm=T)
## count(schoolID$ID_i.4) 
## 
##  2  Variables      361  Observations
## --------------------------------------------------------------------------------
## x 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      361        0      361        1  1002740    124.7  1002573  1002591 
##      .25      .50      .75      .90      .95 
##  1002647  1002740  1002833  1002888  1002910 
## 
## lowest : 1002555 1002556 1002557 1002558 1002559
## highest: 1002924 1002925 1002926 1002927 1002928
## --------------------------------------------------------------------------------
## freq 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      361        0       46    0.998    17.56    10.68        5        7 
##      .25      .50      .75      .90      .95 
##       10       16       23       31       35 
## 
## lowest :  2  3  4  5  6, highest: 46 47 50 57 75
## --------------------------------------------------------------------------------
cschool <- select(data7, ID_e, ID_i.4)
count(cschool$ID_i.4)
##           x freq
## 1   1002555    9
## 2   1002556    9
## 3   1002557   20
## 4   1002558   39
## 5   1002559   17
## 6   1002560    9
## 7   1002561   32
## 8   1002562   33
## 9   1002563   14
## 10  1002564   75
## 11  1002565   45
## 12  1002566   36
## 13  1002567    9
## 14  1002568   13
## 15  1002569   10
## 16  1002570    9
## 17  1002571   37
## 18  1002572   16
## 19  1002573    9
## 20  1002574    8
## 21  1002575   30
## 22  1002576   13
## 23  1002577    7
## 24  1002578   22
## 25  1002579   24
## 26  1002580   16
## 27  1002581   18
## 28  1002582   16
## 29  1002583   29
## 30  1002584   16
## 31  1002585   32
## 32  1002586   28
## 33  1002587   32
## 34  1002588   16
## 35  1002589   11
## 36  1002590   15
## 37  1002591   22
## 38  1002592   22
## 39  1002593   30
## 40  1002594   18
## 41  1002595   12
## 42  1002596   25
## 43  1002598   10
## 44  1002599    6
## 45  1002600    8
## 46  1002601   11
## 47  1002602   28
## 48  1002604   10
## 49  1002605    9
## 50  1002606   23
## 51  1002607    4
## 52  1002608   16
## 53  1002609    4
## 54  1002610   12
## 55  1002611   10
## 56  1002612   13
## 57  1002613   22
## 58  1002614   22
## 59  1002615   23
## 60  1002616    8
## 61  1002617    4
## 62  1002618    9
## 63  1002619   31
## 64  1002620    8
## 65  1002621   21
## 66  1002622    7
## 67  1002623   22
## 68  1002624    9
## 69  1002625   10
## 70  1002626    9
## 71  1002627   13
## 72  1002628   12
## 73  1002629   21
## 74  1002630   14
## 75  1002631   11
## 76  1002632   13
## 77  1002633   18
## 78  1002634   10
## 79  1002635    5
## 80  1002636   25
## 81  1002637   12
## 82  1002638   21
## 83  1002639   11
## 84  1002640   23
## 85  1002641   46
## 86  1002642   12
## 87  1002643   18
## 88  1002644   23
## 89  1002645    4
## 90  1002646   17
## 91  1002647    4
## 92  1002648   29
## 93  1002649   22
## 94  1002650   20
## 95  1002651   24
## 96  1002652   16
## 97  1002653   25
## 98  1002654   16
## 99  1002655    7
## 100 1002656   11
## 101 1002658   23
## 102 1002659   17
## 103 1002660    8
## 104 1002661   32
## 105 1002662    4
## 106 1002663   14
## 107 1002664    5
## 108 1002665   22
## 109 1002666    2
## 110 1002667   16
## 111 1002668   29
## 112 1002669    8
## 113 1002670   10
## 114 1002671   18
## 115 1002672   28
## 116 1002673    7
## 117 1002674   50
## 118 1002675   23
## 119 1002676    3
## 120 1002677   12
## 121 1002678   13
## 122 1002679   10
## 123 1002680   15
## 124 1002681   14
## 125 1002682    6
## 126 1002683   23
## 127 1002684    9
## 128 1002685   19
## 129 1002686   23
## 130 1002687   16
## 131 1002688   15
## 132 1002689   33
## 133 1002690   27
## 134 1002691   22
## 135 1002692   15
## 136 1002693   39
## 137 1002694   11
## 138 1002695   33
## 139 1002696   29
## 140 1002697   12
## 141 1002699   15
## 142 1002700    7
## 143 1002701    8
## 144 1002702   22
## 145 1002703   22
## 146 1002704   14
## 147 1002705   10
## 148 1002706    8
## 149 1002707   19
## 150 1002708   15
## 151 1002709   11
## 152 1002710   28
## 153 1002711   16
## 154 1002712    8
## 155 1002713   11
## 156 1002714   16
## 157 1002715    9
## 158 1002716   12
## 159 1002717   16
## 160 1002718   24
## 161 1002720   21
## 162 1002721   14
## 163 1002722   20
## 164 1002723   32
## 165 1002724    8
## 166 1002725   10
## 167 1002726   11
## 168 1002727   25
## 169 1002728   23
## 170 1002729    9
## 171 1002730   29
## 172 1002731   12
## 173 1002732    9
## 174 1002733   16
## 175 1002734   43
## 176 1002735    8
## 177 1002736   13
## 178 1002737    8
## 179 1002738   16
## 180 1002739   18
## 181 1002740   12
## 182 1002741   11
## 183 1002742   21
## 184 1002743    3
## 185 1002744   34
## 186 1002745   12
## 187 1002746   31
## 188 1002747   15
## 189 1002748    6
## 190 1002750    7
## 191 1002751    4
## 192 1002752   13
## 193 1002753   35
## 194 1002754   22
## 195 1002755   14
## 196 1002756   28
## 197 1002757   13
## 198 1002758   22
## 199 1002759   35
## 200 1002760    7
## 201 1002761   14
## 202 1002762   13
## 203 1002763   21
## 204 1002764   39
## 205 1002765   19
## 206 1002766   21
## 207 1002767   23
## 208 1002768   57
## 209 1002769   24
## 210 1002770   21
## 211 1002771    8
## 212 1002772   10
## 213 1002773   25
## 214 1002774   28
## 215 1002775   14
## 216 1002776   16
## 217 1002777   23
## 218 1002778    9
## 219 1002779    9
## 220 1002780   17
## 221 1002781   22
## 222 1002782   20
## 223 1002783   15
## 224 1002784    9
## 225 1002785   17
## 226 1002786    6
## 227 1002787   29
## 228 1002788    4
## 229 1002789   21
## 230 1002790   13
## 231 1002791   13
## 232 1002792    9
## 233 1002793   26
## 234 1002794   18
## 235 1002795   16
## 236 1002796    7
## 237 1002797   14
## 238 1002798    5
## 239 1002799    7
## 240 1002800   12
## 241 1002801   19
## 242 1002802   38
## 243 1002803   28
## 244 1002804    3
## 245 1002805    9
## 246 1002807   14
## 247 1002808   12
## 248 1002809   24
## 249 1002810   20
## 250 1002811   24
## 251 1002812   21
## 252 1002813    6
## 253 1002814    8
## 254 1002815   17
## 255 1002816   10
## 256 1002817   22
## 257 1002818   12
## 258 1002819   16
## 259 1002820   24
## 260 1002821   28
## 261 1002822   12
## 262 1002823   26
## 263 1002824   19
## 264 1002825   14
## 265 1002826   10
## 266 1002827   28
## 267 1002828   12
## 268 1002829   23
## 269 1002831   14
## 270 1002832   24
## 271 1002833    6
## 272 1002834   20
## 273 1002835   31
## 274 1002836   31
## 275 1002837   23
## 276 1002838   14
## 277 1002839   21
## 278 1002840   15
## 279 1002841   10
## 280 1002842   32
## 281 1002843    7
## 282 1002844   18
## 283 1002845    6
## 284 1002846    5
## 285 1002847   42
## 286 1002848   33
## 287 1002849   23
## 288 1002850   11
## 289 1002851   14
## 290 1002852   10
## 291 1002853    5
## 292 1002854   39
## 293 1002855   34
## 294 1002856   10
## 295 1002857   14
## 296 1002858   19
## 297 1002859   23
## 298 1002860   28
## 299 1002861    8
## 300 1002862   10
## 301 1002863   17
## 302 1002865   29
## 303 1002866    7
## 304 1002867   15
## 305 1002868   21
## 306 1002869   20
## 307 1002870   20
## 308 1002871   15
## 309 1002872   32
## 310 1002873   21
## 311 1002874   10
## 312 1002875    4
## 313 1002876   15
## 314 1002877   39
## 315 1002878   12
## 316 1002879   12
## 317 1002880   28
## 318 1002881    8
## 319 1002882   21
## 320 1002883   13
## 321 1002884   26
## 322 1002885   21
## 323 1002886    5
## 324 1002887   35
## 325 1002888   17
## 326 1002889    9
## 327 1002890   25
## 328 1002892    9
## 329 1002893   14
## 330 1002894   27
## 331 1002895   35
## 332 1002896   10
## 333 1002898   13
## 334 1002900    6
## 335 1002901   22
## 336 1002902   26
## 337 1002904    9
## 338 1002905   16
## 339 1002906   12
## 340 1002907   12
## 341 1002908   16
## 342 1002909   14
## 343 1002910   20
## 344 1002911   15
## 345 1002912   16
## 346 1002913    4
## 347 1002914   11
## 348 1002915    3
## 349 1002916   21
## 350 1002917    9
## 351 1002918   15
## 352 1002919   21
## 353 1002920   22
## 354 1002921   10
## 355 1002922   30
## 356 1002923    9
## 357 1002924   47
## 358 1002925   33
## 359 1002926    8
## 360 1002927   18
## 361 1002928   26
describe(data7$sex_c)
## data7$sex_c 
##        n  missing distinct     Info     Mean      Gmd 
##     6339        1        2     0.75    1.511   0.4998 
##                       
## Value          1     2
## Frequency   3101  3238
## Proportion 0.489 0.511
describe(data7$sex_p)
## data7$sex_p 
##        n  missing distinct     Info     Mean      Gmd 
##     4866     1474        2    0.269      1.9   0.1795 
##                     
## Value         1    2
## Frequency   485 4381
## Proportion  0.1  0.9
describe(data7$sex_t)
## data7$sex_t 
##        n  missing distinct     Info     Mean      Gmd 
##     5292     1048        2    0.145    1.949  0.09651 
##                       
## Value          1     2
## Frequency    269  5023
## Proportion 0.051 0.949
describe(data7$age_c)
## data7$age_c 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6277       63       66    0.997    7.729   0.4284    7.168    7.253 
##      .25      .50      .75      .90      .95 
##    7.420    7.671    8.000    8.167    8.337 
## 
## lowest : 6.083504 6.086242 6.253251 6.420260 6.505133
## highest: 9.251198 9.336071 9.418207 9.500342 9.503080
sdage <- data7$age_c
sd(sdage, na.rm=T)
## [1] 0.384369
describe(data7$age_p)
## data7$age_p 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     4876     1464       44    0.997    39.07    6.149       30       32 
##      .25      .50      .75      .90      .95 
##       35       39       43       46       48 
## 
## lowest : 18 22 23 24 25, highest: 60 61 62 63 66
age_psd = data7$age_p
sd(age_psd, na.rm="T")
## [1] 5.465084
describe(data7$judgRE2)
## data7$judgRE2 
##        n  missing distinct     Info     Mean      Gmd 
##     4851     1489        5    0.862    3.421   0.9273 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     64   454  2342  1360   631
## Proportion 0.013 0.094 0.483 0.280 0.130
sdjRE <- data7$judgRE2
sd(sdjRE, na.rm=T)
## [1] 0.8776862
describe(data7$judgMA2)
## data7$judgMA2 
##        n  missing distinct     Info     Mean      Gmd 
##     4858     1482        5    0.896    3.558    1.007 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     57   438  1999  1466   898
## Proportion 0.012 0.090 0.411 0.302 0.185
sdjMA <- data7$judgMA2
sd(sdjMA, na.rm=T)
## [1] 0.931264
describe(data7$judgRE2T)
## data7$judgRE2T 
##        n  missing distinct     Info     Mean      Gmd 
##     5152     1188        5    0.934    3.178     1.25 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    381  1023  1777  1240   731
## Proportion 0.074 0.199 0.345 0.241 0.142
sdjRET <- data7$judgRET
sd(sdjRET, na.rm=T)
## [1] NA
describe(data7$judgMA2T)
## data7$judgMA2T 
##        n  missing distinct     Info     Mean      Gmd 
##     5146     1194        5    0.923    3.345    1.176 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    279   744  1840  1489   794
## Proportion 0.054 0.145 0.358 0.289 0.154
sdjMAT <- data7$judgMA2T
sd(sdjMAT, na.rm=T)
## [1] 1.072018
describe(data7$judgRE1)
## data7$judgRE1 
##        n  missing distinct     Info     Mean      Gmd 
##     5277     1063        5    0.812    3.346    0.839 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     47   470  2941  1249   570
## Proportion 0.009 0.089 0.557 0.237 0.108
sdjRE1 <- data7$judgRE1
sd(sdjRE1, na.rm=T)
## [1] 0.8209539
describe(data7$judgMA1)
## data7$judgMA1 
##        n  missing distinct     Info     Mean      Gmd 
##     5325     1015        5    0.883    3.577   0.9551 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     34   392  2325  1614   960
## Proportion 0.006 0.074 0.437 0.303 0.180
sdjMA1 <- data7$judgMA1
sd(sdjMA1, na.rm=T)
## [1] 0.8889769
describe(data7$judgRE1T)
## data7$judgRE1T 
##        n  missing distinct     Info     Mean      Gmd 
##     5391      949        5    0.921    3.197     1.19 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    327  1008  2077  1233   746
## Proportion 0.061 0.187 0.385 0.229 0.138
sdjRET1 <- data7$judgRE1T
sd(sdjRET1, na.rm=T)
## [1] 1.083131
describe(data7$judgMA1T)
## data7$judgMA1T 
##        n  missing distinct     Info     Mean      Gmd 
##     5297     1043        5    0.906     3.32    1.095 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    215   756  2158  1453   715
## Proportion 0.041 0.143 0.407 0.274 0.135
sdjMAT1 <- data7$judgMA1T
sd(sdjMAT1, na.rm=T)
## [1] 1.008399
describe(data7$read2)
## data7$read2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     5926      414       21    0.994    7.251    4.734        1        2 
##      .25      .50      .75      .90      .95 
##        4        7       10       13       16 
## 
## lowest :  0  1  2  3  4, highest: 16 17 18 19 20
sdread2 <- data7$read2
sd(sdread2, na.rm=T)
## [1] 4.257599
describe(data7$read4)
##  
## NULL
sdread4 <- data7$read2
sd(sdread4, na.rm=T)
## [1] 4.257599
describe(data7$math2)
## data7$math2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6167      173     1663        1 0.004614    1.316 -1.82236 -1.48350 
##      .25      .50      .75      .90      .95 
## -0.79733 -0.02631  0.76733  1.54564  1.97148 
## 
## lowest : -4.54340 -3.53180 -3.52153 -3.50289 -3.30869
## highest:  4.31529  4.31567  4.33727  4.34073  4.35296
sdmath2 <- data7$math2
sd(sdmath2, na.rm=T)
## [1] 1.173924
describe(data7$math4)
## data7$math4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     5491      849     2610        1 0.002186    1.264 -1.84210 -1.47005 
##      .25      .50      .75      .90      .95 
## -0.68387  0.05689  0.77419  1.37389  1.83761 
## 
## lowest : -4.905058 -4.237821 -4.168551 -4.150749 -4.124969
## highest:  3.610323  3.664296  4.115057  4.253784  4.884146
sdmath4 <- data7$math4
sd(sdmath4, na.rm=T)
## [1] 1.129947
describe(data7$reasoning)
## data7$reasoning 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     6102      238       13    0.978    6.773    2.844        1        3 
##      .25      .50      .75      .90      .95 
##        6        7        8       10       10 
## 
## lowest :  0  1  2  3  4, highest:  8  9 10 11 12
##                                                                             
## Value          0     1     2     3     4     5     6     7     8     9    10
## Frequency    196   166   185   216   310   417   716  1099  1398   723   392
## Proportion 0.032 0.027 0.030 0.035 0.051 0.068 0.117 0.180 0.229 0.118 0.064
##                       
## Value         11    12
## Frequency    188    96
## Proportion 0.031 0.016
sdreasoning <- data7$reasoning
sd(sdreasoning, na.rm=T)
## [1] 2.615834
describe(data7$language)
## data7$language 
##        n  missing distinct     Info      Sum     Mean      Gmd 
##     4783     1557        2    0.457      897   0.1875   0.3048
language <- data7$language
table(language)
## language
##    0    1 
## 3886  897
describe(data7$sen)
## data7$sen 
##        n  missing distinct     Info     Mean      Gmd 
##     6262       78        2    0.083    1.028  0.05524 
##                       
## Value          1     2
## Frequency   6084   178
## Proportion 0.972 0.028
describe(data7$edu)
## data7$edu 
##        n  missing distinct     Info     Mean      Gmd 
##     5270     1070        7    0.938    14.92    2.578 
## 
## lowest :  9 10 12 13 15, highest: 12 13 15 16 18
##                                                     
## Value          9    10    12    13    15    16    18
## Frequency     67   117   334  1673  1057   577  1445
## Proportion 0.013 0.022 0.063 0.317 0.201 0.109 0.274
sdedu <- data7$edu
sd(sdedu, na.rm=T)
## [1] 2.329111
library(psych)
## 
## Attache Paket: 'psych'
## Das folgende Objekt ist maskiert 'package:Hmisc':
## 
##     describe
## Die folgenden Objekte sind maskiert von 'package:ggplot2':
## 
##     %+%, alpha
alpha(data7[c("dgci2103_sc2g2_c", "dgci2105_sc2g2_c", "dgci2104_sc2g2_c", 
              "dgci2107_c", "dgci2108_c", "dgci2109_c", "dgci2106_sc2g2_c",
              "dgci2204_sc2g2_c", "dgci2205_sc2g2_c", "dgci2203_sc2g2_c", 
              "dgci2206_sc2g2_c", "dgci2207_c")], check.keys=T)
## 
## Reliability analysis   
## Call: alpha(x = data7[c("dgci2103_sc2g2_c", "dgci2105_sc2g2_c", "dgci2104_sc2g2_c", 
##     "dgci2107_c", "dgci2108_c", "dgci2109_c", "dgci2106_sc2g2_c", 
##     "dgci2204_sc2g2_c", "dgci2205_sc2g2_c", "dgci2203_sc2g2_c", 
##     "dgci2206_sc2g2_c", "dgci2207_c")], check.keys = T)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.75      0.75    0.77       0.2   3 0.0046 0.57 0.22     0.17
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.74  0.75  0.76
## Duhachek  0.74  0.75  0.76
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## dgci2103_sc2g2_c      0.74      0.74    0.76      0.21 2.9   0.0048 0.020  0.16
## dgci2105_sc2g2_c      0.72      0.72    0.73      0.19 2.5   0.0052 0.015  0.16
## dgci2104_sc2g2_c      0.74      0.74    0.76      0.20 2.8   0.0049 0.020  0.16
## dgci2107_c            0.72      0.72    0.75      0.19 2.6   0.0051 0.018  0.16
## dgci2108_c            0.74      0.75    0.76      0.21 2.9   0.0047 0.018  0.19
## dgci2109_c            0.75      0.76    0.77      0.22 3.1   0.0046 0.017  0.23
## dgci2106_sc2g2_c      0.73      0.73    0.75      0.20 2.8   0.0049 0.017  0.16
## dgci2204_sc2g2_c      0.72      0.72    0.75      0.19 2.6   0.0052 0.018  0.16
## dgci2205_sc2g2_c      0.71      0.72    0.73      0.19 2.5   0.0053 0.014  0.16
## dgci2203_sc2g2_c      0.72      0.72    0.74      0.19 2.6   0.0052 0.019  0.13
## dgci2206_sc2g2_c      0.75      0.74    0.76      0.21 2.9   0.0047 0.019  0.23
## dgci2207_c            0.74      0.74    0.76      0.21 2.9   0.0047 0.019  0.19
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean   sd
## dgci2103_sc2g2_c 6036  0.46  0.47  0.38   0.33 0.83 0.38
## dgci2105_sc2g2_c 6015  0.63  0.64  0.62   0.53 0.83 0.37
## dgci2104_sc2g2_c 6015  0.53  0.51  0.42   0.37 0.61 0.49
## dgci2107_c       6042  0.59  0.59  0.53   0.47 0.77 0.42
## dgci2108_c       5929  0.40  0.43  0.35   0.27 0.17 0.38
## dgci2109_c       5859  0.31  0.35  0.25   0.20 0.12 0.32
## dgci2106_sc2g2_c 6023  0.54  0.51  0.46   0.38 0.63 0.48
## dgci2204_sc2g2_c 6052  0.60  0.59  0.54   0.47 0.73 0.45
## dgci2205_sc2g2_c 6026  0.65  0.64  0.64   0.54 0.79 0.41
## dgci2203_sc2g2_c 6043  0.59  0.60  0.55   0.49 0.84 0.37
## dgci2206_sc2g2_c 6003  0.45  0.44  0.35   0.29 0.32 0.47
## dgci2207_c       5964  0.43  0.44  0.36   0.29 0.22 0.42
## 
## Non missing response frequency for each item
##                     0    1 miss
## dgci2103_sc2g2_c 0.17 0.83 0.05
## dgci2105_sc2g2_c 0.17 0.83 0.05
## dgci2104_sc2g2_c 0.39 0.61 0.05
## dgci2107_c       0.23 0.77 0.05
## dgci2108_c       0.83 0.17 0.06
## dgci2109_c       0.88 0.12 0.08
## dgci2106_sc2g2_c 0.37 0.63 0.05
## dgci2204_sc2g2_c 0.27 0.73 0.05
## dgci2205_sc2g2_c 0.21 0.79 0.05
## dgci2203_sc2g2_c 0.16 0.84 0.05
## dgci2206_sc2g2_c 0.68 0.32 0.05
## dgci2207_c       0.78 0.22 0.06
alpha(data7[c("rxg20001_c","rxg20002_c","rxg20003_c","rxg20004_c", "rxg20005_c", 
              "rxg20006_c","rxg20007_c","rxg20008_c","rxg20009_c", "rxg20010_c",
              "rxg20011_c","rxg20012_c","rxg20013_c","rxg20014_c", "rxg20015_c",
              "rxg20016_c","rxg20017_c","rxg20018_c","rxg20019_c", "rxg20020_c")])
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## 
## Reliability analysis   
## Call: alpha(x = data7[c("rxg20001_c", "rxg20002_c", "rxg20003_c", "rxg20004_c", 
##     "rxg20005_c", "rxg20006_c", "rxg20007_c", "rxg20008_c", "rxg20009_c", 
##     "rxg20010_c", "rxg20011_c", "rxg20012_c", "rxg20013_c", "rxg20014_c", 
##     "rxg20015_c", "rxg20016_c", "rxg20017_c", "rxg20018_c", "rxg20019_c", 
##     "rxg20020_c")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.93      0.93    0.91      0.39  13 0.0013 0.77 0.26      0.4
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.93  0.93
## Duhachek  0.92  0.93  0.93
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## rxg20001_c      0.93      0.93    0.91      0.40  13   0.0013 0.018  0.41
## rxg20002_c      0.92      0.93    0.91      0.40  12   0.0013 0.018  0.41
## rxg20003_c      0.92      0.93    0.91      0.39  12   0.0013 0.018  0.40
## rxg20004_c      0.92      0.92    0.91      0.39  12   0.0014 0.018  0.41
## rxg20005_c      0.92      0.92    0.90      0.38  12   0.0014 0.015  0.39
## rxg20006_c      0.92      0.92    0.91      0.39  12   0.0014 0.018  0.40
## rxg20007_c      0.92      0.92    0.91      0.39  12   0.0014 0.019  0.40
## rxg20008_c      0.93      0.93    0.91      0.42  14   0.0012 0.013  0.42
## rxg20009_c      0.92      0.93    0.91      0.40  13   0.0013 0.019  0.41
## rxg20010_c      0.92      0.93    0.91      0.40  13   0.0013 0.018  0.41
## rxg20011_c      0.92      0.93    0.91      0.39  12   0.0013 0.019  0.41
## rxg20012_c      0.92      0.93    0.91      0.40  13   0.0013 0.019  0.41
## rxg20013_c      0.92      0.92    0.91      0.39  12   0.0014 0.019  0.39
## rxg20014_c      0.92      0.93    0.91      0.39  12   0.0013 0.019  0.41
## rxg20015_c      0.92      0.92    0.91      0.38  12   0.0014 0.019  0.39
## rxg20016_c      0.92      0.92    0.91      0.39  12   0.0014 0.019  0.38
## rxg20017_c      0.92      0.92    0.90      0.37  11   0.0014 0.016  0.38
## rxg20018_c      0.92      0.92    0.90      0.38  12   0.0014 0.018  0.38
## rxg20019_c      0.92      0.92    0.90      0.38  12   0.0014 0.018  0.38
## rxg20020_c      0.92      0.92    0.90      0.38  12   0.0014 0.018  0.38
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean   sd
## rxg20001_c 5698  0.51  0.55  0.50   0.50 0.95 0.21
## rxg20002_c 5568  0.63  0.58  0.55   0.53 0.85 0.36
## rxg20003_c 5166  0.66  0.61  0.57   0.56 0.79 0.41
## rxg20004_c 5320  0.64  0.63  0.60   0.59 0.81 0.39
## rxg20005_c 5071  0.68  0.77  0.73   0.75 0.86 0.34
## rxg20006_c 4687  0.66  0.65  0.62   0.61 0.82 0.39
## rxg20007_c 4334  0.63  0.63  0.60   0.59 0.78 0.41
## rxg20008_c 3297  0.36  0.30  0.24   0.23 0.68 0.47
## rxg20009_c 2892  0.60  0.58  0.54   0.53 0.62 0.49
## rxg20010_c 2595  0.58  0.55  0.51   0.50 0.60 0.49
## rxg20011_c 2251  0.60  0.62  0.59   0.57 0.73 0.44
## rxg20012_c 1743  0.57  0.56  0.53   0.50 0.64 0.48
## rxg20013_c 1581  0.68  0.70  0.69   0.66 0.79 0.41
## rxg20014_c 1261  0.61  0.61  0.59   0.56 0.64 0.48
## rxg20015_c 1028  0.69  0.74  0.73   0.69 0.69 0.46
## rxg20016_c  887  0.65  0.70  0.68   0.65 0.62 0.49
## rxg20017_c  671  0.76  0.87  0.83   0.83 0.64 0.48
## rxg20018_c  584  0.67  0.76  0.74   0.71 0.57 0.50
## rxg20019_c  464  0.69  0.78  0.78   0.74 0.51 0.50
## rxg20020_c  410  0.70  0.80  0.78   0.76 0.40 0.49
## 
## Non missing response frequency for each item
##               0    1 miss
## rxg20001_c 0.05 0.95 0.10
## rxg20002_c 0.15 0.85 0.12
## rxg20003_c 0.21 0.79 0.19
## rxg20004_c 0.19 0.81 0.16
## rxg20005_c 0.14 0.86 0.20
## rxg20006_c 0.18 0.82 0.26
## rxg20007_c 0.22 0.78 0.32
## rxg20008_c 0.32 0.68 0.48
## rxg20009_c 0.38 0.62 0.54
## rxg20010_c 0.40 0.60 0.59
## rxg20011_c 0.27 0.73 0.64
## rxg20012_c 0.36 0.64 0.73
## rxg20013_c 0.21 0.79 0.75
## rxg20014_c 0.36 0.64 0.80
## rxg20015_c 0.31 0.69 0.84
## rxg20016_c 0.38 0.62 0.86
## rxg20017_c 0.36 0.64 0.89
## rxg20018_c 0.43 0.57 0.91
## rxg20019_c 0.49 0.51 0.93
## rxg20020_c 0.60 0.40 0.94
alpha(data7[c("mag1v051_sc2g2_c", "mag2v071_c","mag2r031_c","mag2d061_c",      
              "mag1d131_sc2g2_c", "mag2r131_c","mag2v121_c","mag2q061_c",      
              "mag2r111_c","mag1d09s_sc2g2_c", "mag1z121_sc2g2_c", "mag2g12s_c",      
              "mag1d081_sc2g2_c","mag2g021_c","mag2r151_c","mag1v021_sc2g2_c",
              "mag1z071_sc2g2_c","mag2d101_c","mag1g031_sc2g2_c","mag2v041_c",      
              "mag2q011_c","mag1r19s_sc2g2_c","mag2g091_c","mag2q051_c" )])
## 
## Reliability analysis   
## Call: alpha(x = data7[c("mag1v051_sc2g2_c", "mag2v071_c", "mag2r031_c", 
##     "mag2d061_c", "mag1d131_sc2g2_c", "mag2r131_c", "mag2v121_c", 
##     "mag2q061_c", "mag2r111_c", "mag1d09s_sc2g2_c", "mag1z121_sc2g2_c", 
##     "mag2g12s_c", "mag1d081_sc2g2_c", "mag2g021_c", "mag2r151_c", 
##     "mag1v021_sc2g2_c", "mag1z071_sc2g2_c", "mag2d101_c", "mag1g031_sc2g2_c", 
##     "mag2v041_c", "mag2q011_c", "mag1r19s_sc2g2_c", "mag2g091_c", 
##     "mag2q051_c")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##        0.8      0.82    0.82      0.16 4.6 0.0035 0.93 0.26     0.16
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79   0.8  0.81
## Duhachek  0.79   0.8  0.81
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r
## mag1v051_sc2g2_c      0.79      0.81    0.82      0.16 4.3   0.0037 0.0040
## mag2v071_c            0.79      0.81    0.82      0.16 4.4   0.0037 0.0040
## mag2r031_c            0.80      0.82    0.82      0.17 4.6   0.0036 0.0038
## mag2d061_c            0.79      0.81    0.81      0.16 4.3   0.0037 0.0031
## mag1d131_sc2g2_c      0.79      0.81    0.81      0.16 4.3   0.0037 0.0030
## mag2r131_c            0.79      0.82    0.82      0.16 4.4   0.0036 0.0041
## mag2v121_c            0.79      0.81    0.82      0.16 4.3   0.0037 0.0040
## mag2q061_c            0.80      0.82    0.82      0.17 4.6   0.0036 0.0036
## mag2r111_c            0.80      0.82    0.82      0.16 4.5   0.0036 0.0040
## mag1d09s_sc2g2_c      0.81      0.82    0.82      0.16 4.5   0.0034 0.0040
## mag1z121_sc2g2_c      0.79      0.81    0.82      0.16 4.4   0.0037 0.0041
## mag2g12s_c            0.80      0.81    0.82      0.16 4.3   0.0037 0.0040
## mag1d081_sc2g2_c      0.79      0.81    0.82      0.16 4.3   0.0037 0.0040
## mag2g021_c            0.79      0.82    0.82      0.16 4.4   0.0036 0.0040
## mag2r151_c            0.79      0.82    0.82      0.16 4.4   0.0036 0.0041
## mag1v021_sc2g2_c      0.79      0.81    0.82      0.16 4.4   0.0037 0.0041
## mag1z071_sc2g2_c      0.79      0.81    0.82      0.16 4.3   0.0037 0.0039
## mag2d101_c            0.79      0.82    0.82      0.16 4.4   0.0036 0.0041
## mag1g031_sc2g2_c      0.79      0.81    0.81      0.16 4.2   0.0037 0.0036
## mag2v041_c            0.79      0.81    0.81      0.16 4.3   0.0037 0.0037
## mag2q011_c            0.79      0.82    0.82      0.16 4.4   0.0036 0.0041
## mag1r19s_sc2g2_c      0.80      0.82    0.82      0.17 4.6   0.0035 0.0037
## mag2g091_c            0.79      0.81    0.81      0.16 4.3   0.0037 0.0038
## mag2q051_c            0.79      0.81    0.82      0.16 4.4   0.0037 0.0040
##                  med.r
## mag1v051_sc2g2_c  0.16
## mag2v071_c        0.16
## mag2r031_c        0.17
## mag2d061_c        0.16
## mag1d131_sc2g2_c  0.16
## mag2r131_c        0.16
## mag2v121_c        0.16
## mag2q061_c        0.17
## mag2r111_c        0.17
## mag1d09s_sc2g2_c  0.17
## mag1z121_sc2g2_c  0.16
## mag2g12s_c        0.16
## mag1d081_sc2g2_c  0.16
## mag2g021_c        0.16
## mag2r151_c        0.16
## mag1v021_sc2g2_c  0.15
## mag1z071_sc2g2_c  0.16
## mag2d101_c        0.16
## mag1g031_sc2g2_c  0.15
## mag2v041_c        0.15
## mag2q011_c        0.16
## mag1r19s_sc2g2_c  0.17
## mag2g091_c        0.16
## mag2q051_c        0.16
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean   sd
## mag1v051_sc2g2_c 6028  0.46  0.49  0.45   0.40 0.74 0.44
## mag2v071_c       5898  0.41  0.44  0.40   0.36 0.65 0.48
## mag2r031_c       6108  0.28  0.31  0.25   0.22 0.84 0.36
## mag2d061_c       5929  0.49  0.50  0.50   0.42 0.62 0.49
## mag1d131_sc2g2_c 5808  0.51  0.53  0.53   0.45 0.56 0.50
## mag2r131_c       5731  0.38  0.40  0.35   0.32 0.45 0.50
## mag2v121_c       6055  0.47  0.48  0.45   0.40 0.62 0.48
## mag2q061_c       5951  0.24  0.29  0.22   0.20 0.15 0.36
## mag2r111_c       5998  0.33  0.34  0.28   0.25 0.51 0.50
## mag1d09s_sc2g2_c 5912  0.44  0.37  0.31   0.28 2.75 1.02
## mag1z121_sc2g2_c 6087  0.41  0.45  0.41   0.37 0.21 0.41
## mag2g12s_c       5454  0.57  0.50  0.47   0.42 3.01 1.06
## mag1d081_sc2g2_c 6082  0.48  0.49  0.46   0.41 0.83 0.37
## mag2g021_c       6033  0.38  0.41  0.36   0.33 0.40 0.49
## mag2r151_c       6098  0.41  0.42  0.38   0.33 0.65 0.48
## mag1v021_sc2g2_c 5977  0.45  0.47  0.43   0.39 0.54 0.50
## mag1z071_sc2g2_c 6023  0.45  0.48  0.45   0.40 0.59 0.49
## mag2d101_c       6049  0.39  0.42  0.37   0.33 0.79 0.41
## mag1g031_sc2g2_c 6023  0.54  0.56  0.54   0.48 0.76 0.43
## mag2v041_c       6017  0.51  0.55  0.52   0.47 0.64 0.48
## mag2q011_c       5833  0.39  0.42  0.37   0.34 0.56 0.50
## mag1r19s_sc2g2_c 5376  0.32  0.30  0.23   0.21 4.65 0.56
## mag2g091_c       5755  0.48  0.51  0.49   0.44 0.62 0.49
## mag2q051_c       5834  0.43  0.47  0.43   0.38 0.82 0.38
## 
## Non missing response frequency for each item
##                     0    1    2    3    4    5 miss
## mag1v051_sc2g2_c 0.26 0.74 0.00 0.00 0.00 0.00 0.05
## mag2v071_c       0.35 0.65 0.00 0.00 0.00 0.00 0.07
## mag2r031_c       0.16 0.84 0.00 0.00 0.00 0.00 0.04
## mag2d061_c       0.38 0.62 0.00 0.00 0.00 0.00 0.06
## mag1d131_sc2g2_c 0.44 0.56 0.00 0.00 0.00 0.00 0.08
## mag2r131_c       0.55 0.45 0.00 0.00 0.00 0.00 0.10
## mag2v121_c       0.38 0.62 0.00 0.00 0.00 0.00 0.04
## mag2q061_c       0.85 0.15 0.00 0.00 0.00 0.00 0.06
## mag2r111_c       0.49 0.51 0.00 0.00 0.00 0.00 0.05
## mag1d09s_sc2g2_c 0.01 0.13 0.23 0.36 0.27 0.00 0.07
## mag1z121_sc2g2_c 0.79 0.21 0.00 0.00 0.00 0.00 0.04
## mag2g12s_c       0.03 0.03 0.29 0.20 0.45 0.00 0.14
## mag1d081_sc2g2_c 0.17 0.83 0.00 0.00 0.00 0.00 0.04
## mag2g021_c       0.60 0.40 0.00 0.00 0.00 0.00 0.05
## mag2r151_c       0.35 0.65 0.00 0.00 0.00 0.00 0.04
## mag1v021_sc2g2_c 0.46 0.54 0.00 0.00 0.00 0.00 0.06
## mag1z071_sc2g2_c 0.41 0.59 0.00 0.00 0.00 0.00 0.05
## mag2d101_c       0.21 0.79 0.00 0.00 0.00 0.00 0.05
## mag1g031_sc2g2_c 0.24 0.76 0.00 0.00 0.00 0.00 0.05
## mag2v041_c       0.36 0.64 0.00 0.00 0.00 0.00 0.05
## mag2q011_c       0.44 0.56 0.00 0.00 0.00 0.00 0.08
## mag1r19s_sc2g2_c 0.00 0.00 0.00 0.02 0.30 0.68 0.15
## mag2g091_c       0.38 0.62 0.00 0.00 0.00 0.00 0.09
## mag2q051_c       0.18 0.82 0.00 0.00 0.00 0.00 0.08
###scale continous variables
data7$read2[data7$read2<0]<-NA
data7$read2Z <- scale(data7$read2)
data7$reasoningZ <- scale(data7$reasoning)
data7$eduZ <- scale(data7$edu)
summary(data7)
##       ID_e              ID_t             ID_i.3          ID_cc.3.x         
##  Min.   :1011403   Min.   :2000568   Min.   :1002555   Min.   :       -55  
##  1st Qu.:1011639   1st Qu.:3005629   1st Qu.:1002646   1st Qu.:1002645103  
##  Median :1011849   Median :3007578   Median :1002743   Median :1002742103  
##  Mean   :1011871   Mean   :2924479   Mean   :1002740   Mean   :1001948894  
##  3rd Qu.:1012126   3rd Qu.:3017798   3rd Qu.:1002835   3rd Qu.:1002835103  
##  Max.   :1012342   Max.   :3023458   Max.   :1002928   Max.   :1002928102  
##  NA's   :823                                                               
##  participation    tx80220.3       tx80522.3        tx8610m.3      tx8610y.3   
##  Min.   :1.00   Min.   :1.000   Min.   :0.0000   Min.   :1.00   Min.   :2013  
##  1st Qu.:3.00   1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:2.00   1st Qu.:2013  
##  Median :3.00   Median :1.000   Median :1.0000   Median :3.00   Median :2013  
##  Mean   :2.83   Mean   :1.024   Mean   :0.9762   Mean   :3.43   Mean   :2013  
##  3rd Qu.:3.00   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:5.00   3rd Qu.:2013  
##  Max.   :3.00   Max.   :2.000   Max.   :1.0000   Max.   :9.00   Max.   :2013  
##                                                  NA's   :307    NA's   :307   
##    tx8611m.3       tx8611y.3      tx80523.3       tx8620m.3        tx8620y.3   
##  Min.   :2.000   Min.   :2013   Min.   :0.000   Min.   : 5.000   Min.   :2013  
##  1st Qu.:3.000   1st Qu.:2013   1st Qu.:1.000   1st Qu.: 5.000   1st Qu.:2013  
##  Median :3.000   Median :2013   Median :1.000   Median : 6.000   Median :2013  
##  Mean   :3.657   Mean   :2013   Mean   :0.842   Mean   : 6.415   Mean   :2013  
##  3rd Qu.:5.000   3rd Qu.:2013   3rd Qu.:1.000   3rd Qu.: 8.000   3rd Qu.:2013  
##  Max.   :6.000   Max.   :2013   Max.   :1.000   Max.   :10.000   Max.   :2013  
##  NA's   :213     NA's   :213                    NA's   :1002     NA's   :1002  
##    tx80524.3        tx80525.3          sex_c         tx8050m.3     
##  Min.   :0.0000   Min.   :0.0000   Min.   :1.000   Min.   : 1.000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.000   1st Qu.: 4.000  
##  Median :1.0000   Median :1.0000   Median :2.000   Median : 7.000  
##  Mean   :0.8729   Mean   :0.8831   Mean   :1.511   Mean   : 6.497  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.: 9.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :2.000   Max.   :12.000  
##                                    NA's   :1       NA's   :1       
##    tx8050y.3         sen            ID_i.4          ID_cc.4.x         
##  Min.   :2004   Min.   :1.000   Min.   :1002555   Min.   :       -55  
##  1st Qu.:2005   1st Qu.:1.000   1st Qu.:1002646   1st Qu.:1002643101  
##  Median :2006   Median :1.000   Median :1002743   Median :1002741103  
##  Mean   :2006   Mean   :1.028   Mean   :1002740   Mean   : 993724586  
##  3rd Qu.:2006   3rd Qu.:1.000   3rd Qu.:1002835   3rd Qu.:1002835102  
##  Max.   :2007   Max.   :2.000   Max.   :1002928   Max.   :1002928102  
##                 NA's   :78                                            
##    tx80107.4      tx80220.4   tx80522.4   tx8610m.4       tx8610y.4   
##  Min.   :1.00   Min.   :1   Min.   :1   Min.   : 1.00   Min.   :2013  
##  1st Qu.:3.00   1st Qu.:1   1st Qu.:1   1st Qu.:11.00   1st Qu.:2013  
##  Median :3.00   Median :1   Median :1   Median :11.00   Median :2013  
##  Mean   :2.83   Mean   :1   Mean   :1   Mean   :10.43   Mean   :2013  
##  3rd Qu.:3.00   3rd Qu.:1   3rd Qu.:1   3rd Qu.:11.00   3rd Qu.:2013  
##  Max.   :3.00   Max.   :1   Max.   :1   Max.   :12.00   Max.   :2014  
##                                         NA's   :62      NA's   :62    
##    tx8611m.4       tx8611y.4      tx80523.4        tx8620m.4       tx8620y.4   
##  Min.   : 1.00   Min.   :2013   Min.   :0.0000   Min.   :2.000   Min.   :2014  
##  1st Qu.:11.00   1st Qu.:2013   1st Qu.:1.0000   1st Qu.:3.000   1st Qu.:2014  
##  Median :11.00   Median :2013   Median :1.0000   Median :3.000   Median :2014  
##  Mean   :10.29   Mean   :2013   Mean   :0.7675   Mean   :3.414   Mean   :2014  
##  3rd Qu.:12.00   3rd Qu.:2013   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:2014  
##  Max.   :12.00   Max.   :2014   Max.   :1.0000   Max.   :5.000   Max.   :2014  
##  NA's   :51      NA's   :51                      NA's   :1474    NA's   :1474  
##    tx80524.4       tx80525.4        tx80501.4       tx8050m.4     
##  Min.   :0.000   Min.   :0.0000   Min.   :1.000   Min.   : 1.000  
##  1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:1.000   1st Qu.: 4.000  
##  Median :1.000   Median :1.0000   Median :2.000   Median : 7.000  
##  Mean   :0.847   Mean   :0.7883   Mean   :1.511   Mean   : 6.497  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.: 9.000  
##  Max.   :1.000   Max.   :1.0000   Max.   :2.000   Max.   :12.000  
##                                   NA's   :1                       
##    tx8050y.4     tx80505_D.4        ID_i.5          ID_cc.5.x         
##  Min.   :2004   Min.   :1.000   Min.   :1002555   Min.   :-5.500e+01  
##  1st Qu.:2005   1st Qu.:1.000   1st Qu.:1002646   1st Qu.: 1.003e+10  
##  Median :2006   Median :1.000   Median :1002743   Median : 1.003e+10  
##  Mean   :2006   Mean   :1.036   Mean   :1002740   Mean   : 8.798e+09  
##  3rd Qu.:2006   3rd Qu.:1.000   3rd Qu.:1002835   3rd Qu.: 1.003e+10  
##  Max.   :2007   Max.   :2.000   Max.   :1002928   Max.   : 1.003e+10  
##                 NA's   :419                                           
##    tx80107.5      tx80220.5       tx80522.5        tx8610m.5       tx8610y.5   
##  Min.   :1.00   Min.   :1.000   Min.   :0.0000   Min.   : 1.00   Min.   :2014  
##  1st Qu.:3.00   1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:11.00   1st Qu.:2014  
##  Median :3.00   Median :1.000   Median :1.0000   Median :11.00   Median :2014  
##  Mean   :2.83   Mean   :1.126   Mean   :0.8986   Mean   :11.14   Mean   :2014  
##  3rd Qu.:3.00   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:12.00   3rd Qu.:2014  
##  Max.   :3.00   Max.   :3.000   Max.   :1.0000   Max.   :12.00   Max.   :2016  
##                                                  NA's   :823     NA's   :823   
##    tx8611m.5      tx8611y.5      tx80523.5        tx8620m.5       tx8620y.5   
##  Min.   : 1.0   Min.   :2014   Min.   :0.0000   Min.   :3.000   Min.   :2015  
##  1st Qu.:11.0   1st Qu.:2014   1st Qu.:0.0000   1st Qu.:4.000   1st Qu.:2015  
##  Median :12.0   Median :2014   Median :1.0000   Median :5.000   Median :2015  
##  Mean   :11.6   Mean   :2014   Mean   :0.6642   Mean   :4.726   Mean   :2015  
##  3rd Qu.:12.0   3rd Qu.:2014   3rd Qu.:1.0000   3rd Qu.:5.000   3rd Qu.:2015  
##  Max.   :12.0   Max.   :2015   Max.   :1.0000   Max.   :6.000   Max.   :2015  
##  NA's   :863    NA's   :863                     NA's   :2129    NA's   :2129  
##    tx80524.5        tx80525.5        tx80501.5       tx8050m.5     
##  Min.   :0.0000   Min.   :0.0000   Min.   :1.000   Min.   : 1.000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.: 4.000  
##  Median :1.0000   Median :1.0000   Median :2.000   Median : 7.000  
##  Mean   :0.7653   Mean   :0.6756   Mean   :1.513   Mean   : 6.488  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.: 9.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :2.000   Max.   :12.000  
##                                    NA's   :516     NA's   :515     
##    tx8050y.5     tx80505_D.5        ID_i.6          ID_cc.6.x         
##  Min.   :2004   Min.   :1.000   Min.   :    -55   Min.   :-5.500e+01  
##  1st Qu.:2005   1st Qu.:1.000   1st Qu.:1002646   1st Qu.: 1.003e+10  
##  Median :2006   Median :1.000   Median :1002742   Median : 1.003e+10  
##  Mean   :2006   Mean   :1.046   Mean   :1002581   Mean   : 8.594e+09  
##  3rd Qu.:2006   3rd Qu.:1.000   3rd Qu.:1002835   3rd Qu.: 1.003e+10  
##  Max.   :2007   Max.   :2.000   Max.   :1002928   Max.   : 1.003e+10  
##  NA's   :515    NA's   :1529                                          
##    tx80107.6      tx80220.6      tx80522.6        tx8610m.6       tx8610y.6   
##  Min.   :1.00   Min.   :1.00   Min.   :0.0000   Min.   : 1.00   Min.   :2015  
##  1st Qu.:3.00   1st Qu.:1.00   1st Qu.:1.0000   1st Qu.:11.00   1st Qu.:2015  
##  Median :3.00   Median :1.00   Median :1.0000   Median :12.00   Median :2015  
##  Mean   :2.83   Mean   :1.16   Mean   :0.8892   Mean   :11.19   Mean   :2015  
##  3rd Qu.:3.00   3rd Qu.:1.00   3rd Qu.:1.0000   3rd Qu.:12.00   3rd Qu.:2015  
##  Max.   :3.00   Max.   :3.00   Max.   :1.0000   Max.   :12.00   Max.   :2016  
##                                NA's   :3        NA's   :728     NA's   :728   
##    tx8611m.6       tx8611y.6      tx80523.6        tx8620m.6       tx8620y.6   
##  Min.   : 1.00   Min.   :2015   Min.   :0.0000   Min.   :2.000   Min.   :2016  
##  1st Qu.:11.00   1st Qu.:2015   1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2016  
##  Median :12.00   Median :2015   Median :1.0000   Median :3.000   Median :2016  
##  Mean   :11.51   Mean   :2015   Mean   :0.6241   Mean   :3.486   Mean   :2016  
##  3rd Qu.:12.00   3rd Qu.:2015   3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:2016  
##  Max.   :12.00   Max.   :2016   Max.   :1.0000   Max.   :6.000   Max.   :2016  
##  NA's   :902     NA's   :902                     NA's   :2383    NA's   :2383  
##    tx80524.6        tx80525.6        tx80501.6       tx8050m.6     
##  Min.   :0.0000   Min.   :0.0000   Min.   :1.000   Min.   : 1.000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.: 4.000  
##  Median :1.0000   Median :1.0000   Median :2.000   Median : 7.000  
##  Mean   :0.8172   Mean   :0.6276   Mean   :1.513   Mean   : 6.488  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.: 9.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :2.000   Max.   :12.000  
##                                    NA's   :283     NA's   :282     
##    tx8050y.6     tx80505_D.6      tx20100.3        eb01030.3    
##  Min.   :2004   Min.   :1.000   Min.   :0.0000   Min.   :1.000  
##  1st Qu.:2005   1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:3.000  
##  Median :2006   Median :1.000   Median :1.0000   Median :3.000  
##  Mean   :2006   Mean   :1.039   Mean   :0.9871   Mean   :3.323  
##  3rd Qu.:2006   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:4.000  
##  Max.   :2007   Max.   :2.000   Max.   :1.0000   Max.   :5.000  
##  NA's   :282    NA's   :1870    NA's   :823      NA's   :921    
##     judgRE1T       eb01040.3        judgMA1T      e41370c.3     
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:0.0000  
##  Median :3.000   Median :3.000   Median :3.00   Median :0.0000  
##  Mean   :3.197   Mean   :3.281   Mean   :3.32   Mean   :0.0999  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:0.0000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :1.0000  
##  NA's   :949     NA's   :1068    NA's   :1043   NA's   :823     
##    e41370d.3        tx20100.4         ID_e1.4          eb01030.4    
##  Min.   :0.0000   Min.   :0.0000   Min.   :1011403   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:1011675   1st Qu.:3.000  
##  Median :0.0000   Median :1.0000   Median :1011912   Median :3.000  
##  Mean   :0.0395   Mean   :0.9937   Mean   :1011977   Mean   :3.343  
##  3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1012223   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1012880   Max.   :5.000  
##  NA's   :823      NA's   :1131     NA's   :1131      NA's   :1147   
##     judgRE2T       eb01040.4        judgMA2T       tx20100.5     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:1.0000  
##  Median :3.000   Median :3.000   Median :3.000   Median :1.0000  
##  Mean   :3.178   Mean   :3.361   Mean   :3.345   Mean   :0.9958  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:1.0000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :1.0000  
##  NA's   :1188    NA's   :1173    NA's   :1194    NA's   :637     
##     ID_e1.5          eb01030.5       eb01031.5       eb01040.5   
##  Min.   :1011406   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:1011849   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:3.00  
##  Median :1012289   Median :3.000   Median :3.000   Median :3.00  
##  Mean   :1014640   Mean   :3.352   Mean   :3.221   Mean   :3.39  
##  3rd Qu.:1018880   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.00  
##  Max.   :1019054   Max.   :5.000   Max.   :5.000   Max.   :5.00  
##  NA's   :1932      NA's   :1952    NA's   :1957    NA's   :1971  
##    eb01050.5       tx20100.6         ID_e1.6          eb01030.6    
##  Min.   :1.000   Min.   :0.0000   Min.   :1011406   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:1.0000   1st Qu.:1011905   1st Qu.:3.000  
##  Median :3.000   Median :1.0000   Median :1012696   Median :3.000  
##  Mean   :3.368   Mean   :0.9929   Mean   :1015402   Mean   :3.457  
##  3rd Qu.:4.000   3rd Qu.:1.0000   3rd Qu.:1019026   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :1.0000   Max.   :1019800   Max.   :5.000  
##  NA's   :2026    NA's   :704      NA's   :2253      NA's   :2286   
##    eb01031.6       eb01040.6       eb01050.6       e41370c.6     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:0.0000  
##  Median :3.000   Median :3.000   Median :3.000   Median :0.0000  
##  Mean   :3.316   Mean   :3.528   Mean   :3.442   Mean   :0.1062  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:0.0000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :1.0000  
##  NA's   :2295    NA's   :2309    NA's   :2326    NA's   :2253    
##    e41370d.6        t41203b.6       pb01030.3        judgRE1     
##  Min.   :0.0000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :0.0000   Median :1.000   Median :4.000   Median :3.000  
##  Mean   :0.0228   Mean   :1.487   Mean   :3.667   Mean   :3.346  
##  3rd Qu.:0.0000   3rd Qu.:2.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :4.000   Max.   :5.000   Max.   :5.000  
##  NA's   :2253     NA's   :1441    NA's   :1011    NA's   :1063   
##    pb01040.3        judgMA1        p73170y.3      p731702.3      p400000_g1.3  
##  Min.   :1.000   Min.   :1.000   Min.   :1947   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:1970   1st Qu.:2.000   1st Qu.:1.000  
##  Median :3.000   Median :3.000   Median :1974   Median :2.000   Median :1.000  
##  Mean   :3.543   Mean   :3.577   Mean   :1974   Mean   :1.901   Mean   :1.322  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:1978   3rd Qu.:2.000   3rd Qu.:1.000  
##  Max.   :5.000   Max.   :5.000   Max.   :1995   Max.   :2.000   Max.   :3.000  
##  NA's   :1029    NA's   :1015    NA's   :1412   NA's   :1002    NA's   :1410   
##   p403000_g1.3    p731802_g3.3    p731852_g3.3   p731904_g14.3  
##  Min.   :1.000   Min.   : 9.00   Min.   : 9.00   Min.   :11.74  
##  1st Qu.:1.000   1st Qu.:13.00   1st Qu.:13.00   1st Qu.:38.55  
##  Median :1.000   Median :13.00   Median :13.00   Median :52.72  
##  Mean   :1.336   Mean   :14.33   Mean   :14.19   Mean   :52.11  
##  3rd Qu.:1.000   3rd Qu.:16.00   3rd Qu.:16.00   3rd Qu.:70.09  
##  Max.   :3.000   Max.   :18.00   Max.   :18.00   Max.   :88.96  
##  NA's   :2170    NA's   :1070    NA's   :1852    NA's   :1626   
##  p731954_g14.3     p728000.3       p73170y.5      p731702.5     p413000_g1D.5  
##  Min.   :11.56   Min.   :1.000   Min.   :1953   Min.   :1.000   Min.   :0.000  
##  1st Qu.:30.47   1st Qu.:2.000   1st Qu.:1967   1st Qu.:2.000   1st Qu.:0.000  
##  Median :54.55   Median :2.000   Median :1972   Median :2.000   Median :0.000  
##  Mean   :52.30   Mean   :1.946   Mean   :1972   Mean   :1.904   Mean   :0.173  
##  3rd Qu.:73.38   3rd Qu.:2.000   3rd Qu.:1976   3rd Qu.:2.000   3rd Qu.:0.000  
##  Max.   :88.96   Max.   :2.000   Max.   :1988   Max.   :2.000   Max.   :1.000  
##  NA's   :2412    NA's   :1006    NA's   :6230   NA's   :2129    NA's   :6230   
##  p414000_g1D.5    p400000_g1.5    p403000_g1.5    p731802_g3.5  
##  Min.   :0.000   Min.   :1.000   Min.   :1.000   Min.   : 9.00  
##  1st Qu.:0.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:13.00  
##  Median :0.000   Median :1.000   Median :1.000   Median :15.00  
##  Mean   :0.179   Mean   :1.327   Mean   :1.273   Mean   :14.61  
##  3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:16.00  
##  Max.   :1.000   Max.   :3.000   Max.   :3.000   Max.   :18.00  
##  NA's   :6273    NA's   :6230    NA's   :3780    NA's   :2154   
##   p731852_g3.5   p731904_g14.5   p731954_g14.5     math_grade   reading_grade 
##  Min.   : 9.00   Min.   :11.74   Min.   :11.56   Min.   :1.00   Min.   :1.00  
##  1st Qu.:13.00   1st Qu.:44.92   1st Qu.:32.50   1st Qu.:1.00   1st Qu.:2.00  
##  Median :15.00   Median :54.55   Median :56.00   Median :2.00   Median :2.00  
##  Mean   :14.49   Mean   :54.56   Mean   :53.85   Mean   :1.97   Mean   :2.08  
##  3rd Qu.:16.00   3rd Qu.:70.50   3rd Qu.:73.55   3rd Qu.:2.00   3rd Qu.:3.00  
##  Max.   :18.00   Max.   :88.96   Max.   :88.96   Max.   :5.00   Max.   :6.00  
##  NA's   :2769    NA's   :2686    NA's   :3845    NA's   :2768   NA's   :2773  
##    p66600a.5       p73170y.6      p731702.6      p400000_g1.6    p403000_g1.6  
##  Min.   :1.000   Min.   :1950   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:1969   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :3.000   Median :1974   Median :2.000   Median :1.000   Median :1.000  
##  Mean   :2.979   Mean   :1973   Mean   :1.896   Mean   :1.293   Mean   :1.247  
##  3rd Qu.:3.000   3rd Qu.:1978   3rd Qu.:2.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :7.000   Max.   :1988   Max.   :2.000   Max.   :3.000   Max.   :3.000  
##  NA's   :2256    NA's   :6265   NA's   :2383    NA's   :6265    NA's   :6267   
##   p731802_g3.6    p731852_g3.6   p731904_g14.6   p731954_g14.6  
##  Min.   : 9.00   Min.   : 9.00   Min.   :11.74   Min.   :11.74  
##  1st Qu.:13.00   1st Qu.:13.00   1st Qu.:30.78   1st Qu.:28.48  
##  Median :15.00   Median :15.00   Median :50.37   Median :53.15  
##  Mean   :14.68   Mean   :14.54   Mean   :49.24   Mean   :50.24  
##  3rd Qu.:16.00   3rd Qu.:16.00   3rd Qu.:68.09   3rd Qu.:70.57  
##  Max.   :18.00   Max.   :18.00   Max.   :88.70   Max.   :86.72  
##  NA's   :2407    NA's   :3028    NA's   :5856    NA's   :6113   
##    p724102.6       p724101.6       p66600a.6       pb01030.4    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :2.000   Median :2.000   Median :3.000   Median :4.000  
##  Mean   :2.061   Mean   :2.117   Mean   :3.201   Mean   :3.689  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :2613    NA's   :2617    NA's   :6161    NA's   :1479   
##     judgRE2        pb01040.4        judgMA2        p73170y.4        sex_p     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1953   Min.   :1.0   
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:1970   1st Qu.:2.0   
##  Median :3.000   Median :3.000   Median :3.000   Median :1974   Median :2.0   
##  Mean   :3.421   Mean   :3.563   Mean   :3.558   Mean   :1974   Mean   :1.9   
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:1978   3rd Qu.:2.0   
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :1990   Max.   :2.0   
##  NA's   :1489    NA's   :1490    NA's   :1482    NA's   :5989   NA's   :1474  
##    p412000.4     p413000_g1D.4    p414000_g1D.4    p400000_g1.4  
##  Min.   :1.000   Min.   :0.0000   Min.   :0.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000  
##  Median :2.000   Median :0.0000   Median :0.000   Median :1.000  
##  Mean   :1.846   Mean   :0.1518   Mean   :0.159   Mean   :1.473  
##  3rd Qu.:2.000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:1.000  
##  Max.   :4.000   Max.   :1.0000   Max.   :1.000   Max.   :3.000  
##  NA's   :5264    NA's   :1557     NA's   :3219    NA's   :5989   
##   p403000_g1.4    p731802_g3.4    p731852_g3.4   p731904_g14.4  
##  Min.   :1.000   Min.   : 9.00   Min.   : 9.00   Min.   :11.56  
##  1st Qu.:1.000   1st Qu.:13.00   1st Qu.:13.00   1st Qu.:28.48  
##  Median :1.000   Median :13.00   Median :13.00   Median :50.73  
##  Mean   :1.491   Mean   :14.43   Mean   :14.29   Mean   :50.02  
##  3rd Qu.:1.000   3rd Qu.:16.00   3rd Qu.:16.00   3rd Qu.:68.55  
##  Max.   :3.000   Max.   :18.00   Max.   :18.00   Max.   :88.96  
##  NA's   :6124    NA's   :1520    NA's   :2278    NA's   :6015   
##  p731954_g14.4     p32903a.4       p32903b.4       p32903c.4    
##  Min.   :13.34   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:29.16   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :51.56   Median :3.000   Median :4.000   Median :5.000  
##  Mean   :51.66   Mean   :2.917   Mean   :3.478   Mean   :4.603  
##  3rd Qu.:72.30   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:5.000  
##  Max.   :88.70   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##  NA's   :6144    NA's   :1481    NA's   :1489    NA's   :1482   
##    p32903d.4       p66600a.4        wave_w1           wave_w2       
##  Min.   :1.000   Min.   :1.000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:1.000   1st Qu.:2.000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :3.000   Median :3.000   Median :0.00000   Median :0.00000  
##  Mean   :2.814   Mean   :2.941   Mean   :0.08423   Mean   :0.08312  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :5.000   Max.   :8.000   Max.   :1.00000   Max.   :1.00000  
##  NA's   :1486    NA's   :1692                                       
##     wave_w3          wave_w4     wave_w5          wave_w6      
##  Min.   :0.0000   Min.   :1   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1   Median :1.0000   Median :1.0000  
##  Mean   :0.9762   Mean   :1   Mean   :0.8986   Mean   :0.8888  
##  3rd Qu.:1.0000   3rd Qu.:1   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1   Max.   :1.0000   Max.   :1.0000  
##                                                                
##    mag1v051_c       mag1r141_c       mag1g171_c      mag1d131_c   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.000  
##  Median :1.0000   Median :0.0000   Median :1.000   Median :0.000  
##  Mean   :0.5735   Mean   :0.2543   Mean   :0.824   Mean   :0.482  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.000  
##  NA's   :729      NA's   :504      NA's   :477     NA's   :981    
##    mag1d132_c       mag1z061_c       mag1v01s_c      mag1z20s_c   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.0000   Median :1.0000   Median :2.000   Median :2.000  
##  Mean   :0.5868   Mean   :0.5501   Mean   :1.329   Mean   :1.417  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :2.000   Max.   :2.000  
##  NA's   :1345     NA's   :761      NA's   :880     NA's   :614    
##    mag1d09s_c     mag1z121_c       mag1g181_c       mag1d081_c    
##  Min.   :0.00   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :2.00   Median :0.0000   Median :1.0000   Median :1.0000  
##  Mean   :1.69   Mean   :0.1146   Mean   :0.5189   Mean   :0.6271  
##  3rd Qu.:3.00   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :3.00   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :687    NA's   :696      NA's   :703      NA's   :497     
##    mag1r151_c       mag1z111_c       mag1v021_c       mag1z071_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5912   Mean   :0.7145   Mean   :0.3813   Mean   :0.3497  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :526      NA's   :929      NA's   :1011     NA's   :933     
##    mag1d041_c       mag1g031_c       mag1z161_c      mag1v101_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.000   Median :1.0000  
##  Mean   :0.7118   Mean   :0.5016   Mean   :0.462   Mean   :0.7441  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##  NA's   :635      NA's   :828      NA's   :1017    NA's   :806     
##    mag1r19s_c         math1            mag1_sc2        mag1_sc1u      
##  Min.   :0.0000   Min.   :-5.2733   Min.   :0.4784   Min.   :-3.5595  
##  1st Qu.:0.0000   1st Qu.:-0.7557   1st Qu.:0.4969   1st Qu.: 0.9581  
##  Median :1.0000   Median :-0.0133   Median :0.5273   Median : 1.7000  
##  Mean   :0.5518   Mean   : 0.0023   Mean   :0.5636   Mean   : 1.7159  
##  3rd Qu.:1.0000   3rd Qu.: 0.7387   3rd Qu.:0.5817   3rd Qu.: 2.4526  
##  Max.   :1.0000   Max.   : 4.5997   Max.   :2.0658   Max.   : 6.3128  
##  NA's   :1918     NA's   :372       NA's   :372      NA's   :372      
##    mag1_sc2u      mag1v051_sc2g2_c   mag2v071_c       mag2r031_c    
##  Min.   :0.4784   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.4969   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.5273   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.5636   Mean   :0.7364   Mean   :0.6534   Mean   :0.8422  
##  3rd Qu.:0.5816   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :2.0657   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :372      NA's   :312      NA's   :442      NA's   :232     
##    mag2d061_c     mag1d131_sc2g2_c   mag2r131_c       mag2v121_c   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :1.000  
##  Mean   :0.6178   Mean   :0.5565   Mean   :0.4462   Mean   :0.624  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##  NA's   :411      NA's   :532      NA's   :609      NA's   :285    
##    mag2q061_c       mag2r111_c     mag1d09s_sc2g2_c mag1z121_sc2g2_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000    Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:2.000    1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000   Median :3.000    Median :0.0000  
##  Mean   :0.1512   Mean   :0.5103   Mean   :2.752    Mean   :0.2098  
##  3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:4.000    3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :4.000    Max.   :1.0000  
##  NA's   :389      NA's   :342      NA's   :428      NA's   :253     
##    mag2g12s_c    mag1d081_sc2g2_c   mag2g021_c       mag2r151_c    
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :3.000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :3.007   Mean   :0.8339   Mean   :0.3957   Mean   :0.6466  
##  3rd Qu.:4.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :4.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :886     NA's   :258      NA's   :307      NA's   :242     
##  mag1v021_sc2g2_c mag1z071_sc2g2_c   mag2d101_c     mag1g031_sc2g2_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.5402   Mean   :0.5892   Mean   :0.7914   Mean   :0.7574  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :363      NA's   :317      NA's   :291      NA's   :317     
##    mag2v041_c      mag2q011_c     mag1r19s_sc2g2_c   mag2g091_c    
##  Min.   :0.000   Min.   :0.0000   Min.   :0.000    Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:4.000    1st Qu.:0.0000  
##  Median :1.000   Median :1.0000   Median :5.000    Median :1.0000  
##  Mean   :0.641   Mean   :0.5555   Mean   :4.647    Mean   :0.6193  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:5.000    3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :5.000    Max.   :1.0000  
##  NA's   :323     NA's   :507      NA's   :964      NA's   :585     
##    mag2q051_c         math2             mag2_sc2        mag2_sc2u     
##  Min.   :0.0000   Min.   :-4.54340   Min.   :0.4422   Min.   :0.4422  
##  1st Qu.:1.0000   1st Qu.:-0.79733   1st Qu.:0.4575   1st Qu.:0.4574  
##  Median :1.0000   Median :-0.02631   Median :0.4838   Median :0.4845  
##  Mean   :0.8198   Mean   : 0.00461   Mean   :0.5254   Mean   :0.5259  
##  3rd Qu.:1.0000   3rd Qu.: 0.76733   3rd Qu.:0.5453   3rd Qu.:0.5453  
##  Max.   :1.0000   Max.   : 4.35296   Max.   :1.7278   Max.   :1.7282  
##  NA's   :506      NA's   :173        NA's   :173      NA's   :173     
##    mag2_sc1u      dgci110s_sc2g2_c dgci120s_sc2g2_c   dgg2_sc3a    
##  Min.   :-2.321   Min.   : 0.00    Min.   : 0.00    Min.   : 1.00  
##  1st Qu.: 1.425   1st Qu.:10.00    1st Qu.:12.00    1st Qu.:21.00  
##  Median : 2.197   Median :12.00    Median :14.00    Median :26.00  
##  Mean   : 2.227   Mean   :12.72    Mean   :14.49    Mean   :26.88  
##  3rd Qu.: 2.989   3rd Qu.:15.00    3rd Qu.:17.00    3rd Qu.:32.00  
##  Max.   : 6.574   Max.   :21.00    Max.   :21.00    Max.   :42.00  
##  NA's   :173      NA's   :249      NA's   :349      NA's   :228    
##  dgci2103_sc2g2_c dgci2105_sc2g2_c dgci2104_sc2g2_c   dgci2107_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.8269   Mean   :0.8328   Mean   :0.6095   Mean   :0.7734  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :304      NA's   :325      NA's   :325      NA's   :298     
##    dgci2108_c       dgci2109_c     dgci2204_sc2g2_c dgci2205_sc2g2_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.1741   Mean   :0.1191   Mean   :0.7274   Mean   :0.7902  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :411      NA's   :481      NA's   :288      NA's   :314     
##  dgci2203_sc2g2_c dgci2106_sc2g2_c dgci2206_sc2g2_c   dgci2207_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.8362   Mean   :0.6316   Mean   :0.3167   Mean   :0.2243  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :297      NA's   :317      NA's   :337      NA's   :376     
##    reasoning        rsci0001_c       rsci0002_c      rsci0003_c    
##  Min.   : 0.000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.: 6.000   1st Qu.:1.0000   1st Qu.:1.000   1st Qu.:1.0000  
##  Median : 7.000   Median :1.0000   Median :1.000   Median :1.0000  
##  Mean   : 6.773   Mean   :0.8731   Mean   :0.982   Mean   :0.9537  
##  3rd Qu.: 8.000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :12.000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##  NA's   :238      NA's   :374      NA's   :383     NA's   :465     
##    rsci0004_c       rsci0005_c       rsci0006_c       rsci0007_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.9627   Mean   :0.8848   Mean   :0.9025   Mean   :0.9255  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :436      NA's   :498      NA's   :568      NA's   :566     
##    rsci0008_c       rsci0009_c       rsci0010_c       rsci0011_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.9272   Mean   :0.9447   Mean   :0.8881   Mean   :0.9432  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :610      NA's   :643      NA's   :710      NA's   :797     
##    rsci0012_c       rsci0013_c       rsci0014_c       rsci0015_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.8806   Mean   :0.8656   Mean   :0.9758   Mean   :0.9149  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :929      NA's   :1041     NA's   :1247     NA's   :1394    
##    rsci0016_c       rsci0017_c      rsci0018_c       rsci0019_c    
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.000   Median :1.0000   Median :1.0000  
##  Mean   :0.8557   Mean   :0.939   Mean   :0.9696   Mean   :0.9319  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1682     NA's   :1863    NA's   :2059     NA's   :2275    
##    rsci0020_c      rsci0021_c       rsci0022_c       rsci0023_c    
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.951   Mean   :0.9617   Mean   :0.9556   Mean   :0.9482  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :2504    NA's   :2686     NA's   :2959     NA's   :3117    
##    rsci0024_c      rsci0025_c      rsci0026_c      rsci0027_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.937   Mean   :0.948   Mean   :0.958   Mean   :0.954  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :3295    NA's   :3781    NA's   :3990    NA's   :4207   
##    rsci0028_c      rsci0029_c      rsci0030_c      rsci0031_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.944   Mean   :0.886   Mean   :0.923   Mean   :0.933  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :4420    NA's   :4738    NA's   :4890    NA's   :5064   
##    rsci0032_c      rsci0033_c      rsci0034_c      rsci0035_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.892   Mean   :0.892   Mean   :0.904   Mean   :0.926  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :5253    NA's   :5383    NA's   :5524    NA's   :5610   
##    rsci0036_c      rsci0037_c      rsci0038_c      rsci0039_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.886   Mean   :0.901   Mean   :0.904   Mean   :0.899  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :5715    NA's   :5797    NA's   :5850    NA's   :5923   
##    rsci0040_c      rsci0041_c      rsci0042_c      rsci0043_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.871   Mean   :0.831   Mean   :0.875   Mean   :0.835  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :5984    NA's   :6020    NA's   :6059    NA's   :6085   
##    rsci0044_c      rsci0045_c      rsci0046_c      rsci0047_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.819   Mean   :0.826   Mean   :0.753   Mean   :0.679  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :6119    NA's   :6145    NA's   :6158    NA's   :6181   
##    rsci0048_c      rsci0049_c      rsci0050_c      rsci0051_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.745   Mean   :0.798   Mean   :0.793   Mean   :0.698  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :6183    NA's   :6112    NA's   :6190    NA's   :6224   
##    rsci0052_c      rsci0053_c      rsci0054_c      rsci0055_c     rsci0056_c  
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.00   Min.   :0.00  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.75   1st Qu.:1.00  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.00   Median :1.00  
##  Mean   :0.717   Mean   :0.722   Mean   :0.783   Mean   :0.75   Mean   :0.78  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.00   3rd Qu.:1.00  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.00   Max.   :1.00  
##  NA's   :6248    NA's   :6261    NA's   :6271    NA's   :6280   NA's   :6281  
##    rsci0057_c      rsci0058_c      rsci0059_c      rsci0060_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.691   Mean   :0.642   Mean   :0.681   Mean   :0.787  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :6285    NA's   :6287    NA's   :6293    NA's   :6293   
##    rsci0061_c      rsci0062_c      rsci0063_c      rsci0064_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.717   Mean   :0.581   Mean   :0.625   Mean   :0.658  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :6294    NA's   :6297    NA's   :6300    NA's   :6302   
##    rsci0065_c      rsci0066_c      rsci0067_c     rsci0068_c      rsci0069_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.0    Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.0    1st Qu.:0.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :0.5    Median :1.000   Median :1.000  
##  Mean   :0.545   Mean   :0.581   Mean   :0.5    Mean   :0.645   Mean   :0.714  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.0    3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.0    Max.   :1.000   Max.   :1.000  
##  NA's   :6307    NA's   :6309    NA's   :6312   NA's   :6309    NA's   :6312   
##    rsci0070_c       rsg2_sc3       rxg20001_c       rxg20002_c    
##  Min.   :0.000   Min.   : 0.00   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:15.00   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.000   Median :21.00   Median :1.0000   Median :1.0000  
##  Mean   :0.556   Mean   :21.36   Mean   :0.9516   Mean   :0.8499  
##  3rd Qu.:1.000   3rd Qu.:27.00   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :69.00   Max.   :1.0000   Max.   :1.0000  
##  NA's   :6313    NA's   :226     NA's   :642      NA's   :772     
##    rxg20003_c       rxg20004_c       rxg20005_c       rxg20006_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :0.7878   Mean   :0.8102   Mean   :0.8627   Mean   :0.8186  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1174     NA's   :1020     NA's   :1269     NA's   :1653    
##    rxg20007_c       rxg20008_c       rxg20009_c      rxg20010_c   
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :1.0000   Median :1.0000   Median :1.000   Median :1.000  
##  Mean   :0.7824   Mean   :0.6824   Mean   :0.618   Mean   :0.597  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.000  
##  NA's   :2006     NA's   :3043     NA's   :3448    NA's   :3745   
##    rxg20011_c      rxg20012_c      rxg20013_c      rxg20014_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.735   Mean   :0.637   Mean   :0.789   Mean   :0.638  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :4089    NA's   :4597    NA's   :4759    NA's   :5079   
##    rxg20015_c      rxg20016_c      rxg20017_c      rxg20018_c   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :0.692   Mean   :0.621   Mean   :0.639   Mean   :0.572  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##  NA's   :5312    NA's   :5453    NA's   :5669    NA's   :5756   
##    rxg20019_c      rxg20020_c        read2        reg50110_sc2g4_c
##  Min.   :0.000   Min.   :0.000   Min.   : 0.000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.: 4.000   1st Qu.:1.0000  
##  Median :1.000   Median :0.000   Median : 7.000   Median :1.0000  
##  Mean   :0.506   Mean   :0.405   Mean   : 7.251   Mean   :0.8963  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:10.000   3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :1.000   Max.   :20.000   Max.   :1.0000  
##  NA's   :5876    NA's   :5930    NA's   :414      NA's   :911     
##  mag5d041_sc2g4_c   mag4q101_c       mag4r021_c     mag5v271_sc2g4_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5625   Mean   :0.1294   Mean   :0.3981   Mean   :0.2612  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :952      NA's   :1502     NA's   :974      NA's   :1389    
##    mag4q011_c       mag4r071_c       mag4d131_c     mag5q231_sc2g4_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.1617   Mean   :0.2926   Mean   :0.9274   Mean   :0.2743  
##  3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1132     NA's   :1087     NA's   :900      NA's   :1757    
##  mag5q301_sc2g4_c   mag4v121_c     mag5d051_sc2g4_c   mag4q060_c    
##  Min.   :0.000    Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000    1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.000    Median :1.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.295    Mean   :0.5171   Mean   :0.7966   Mean   :0.0921  
##  3rd Qu.:1.000    3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000    Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1007     NA's   :1024     NA's   :1036     NA's   :1857    
##    mag4d031_c     mag5q140_sc2g4_c   mag4v111_c       mag4r041_c    
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3896   Mean   :0.5172   Mean   :0.1284   Mean   :0.9037  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1219     NA's   :2067     NA's   :2190     NA's   :1426    
##    mag4r042_c       mag4q051_c      mag4q091_c      mag4q092_c    
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.000   Median :1.000   Median :1.0000  
##  Mean   :0.6587   Mean   :0.734   Mean   :0.683   Mean   :0.5041  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.000   Max.   :1.0000  
##  NA's   :1740     NA's   :1588    NA's   :1971    NA's   :2462    
##    mag4d14s_c    mag5v071_sc2g4_c mag5r191_sc2g4_c   mag4d081_c    
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:4.000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :5.000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :4.338   Mean   :0.8063   Mean   :0.3582   Mean   :0.7817  
##  3rd Qu.:5.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :5.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :2371    NA's   :2407     NA's   :2686     NA's   :2780    
##      math4            mag4_sc2        mag4_sc1u        mag4_sc2u     
##  Min.   :-4.9051   Min.   :0.4916   Min.   :-0.285   Min.   :0.4916  
##  1st Qu.:-0.6839   1st Qu.:0.5107   1st Qu.: 3.936   1st Qu.:0.5107  
##  Median : 0.0569   Median :0.5435   Median : 4.677   Median :0.5435  
##  Mean   : 0.0022   Mean   :0.5817   Mean   : 4.622   Mean   :0.5817  
##  3rd Qu.: 0.7742   3rd Qu.:0.6133   3rd Qu.: 5.394   3rd Qu.:0.6133  
##  Max.   : 4.8841   Max.   :1.8822   Max.   : 9.504   Max.   :1.8821  
##  NA's   :849       NA's   :849      NA's   :849      NA's   :849     
##  reg5012s_sc2g4_c reg50130_sc2g4_c reg50140_sc2g4_c reg50150_sc2g4_c
##  Min.   :0.000    Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:2.000    1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :2.000    Median :1.0000   Median :1.0000   Median :1.0000  
##  Mean   :1.595    Mean   :0.7644   Mean   :0.7003   Mean   :0.5857  
##  3rd Qu.:2.000    3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :2.000    Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1387     NA's   :929      NA's   :1115     NA's   :1042    
##  reg5016s_sc2g4_c reg50170_sc2g4_c reg50210_sc2g4_c reg50220_sc2g4_c
##  Min.   :0.000    Min.   :0.0000   Min.   :0.000    Min.   :0.000   
##  1st Qu.:2.000    1st Qu.:0.0000   1st Qu.:1.000    1st Qu.:0.000   
##  Median :4.000    Median :0.0000   Median :1.000    Median :0.000   
##  Mean   :3.484    Mean   :0.2522   Mean   :0.856    Mean   :0.481   
##  3rd Qu.:5.000    3rd Qu.:1.0000   3rd Qu.:1.000    3rd Qu.:1.000   
##  Max.   :5.000    Max.   :1.0000   Max.   :1.000    Max.   :1.000   
##  NA's   :1624     NA's   :1015     NA's   :952      NA's   :1228    
##  reg50230_sc2g4_c reg50240_sc2g4_c reg50250_sc2g4_c reg5026s_sc2g4_c
##  Min.   :0.000    Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:1.000    1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.000    Median :1.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.814    Mean   :0.6919   Mean   :0.5978   Mean   :0.2471  
##  3rd Qu.:1.000    3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000    Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1054     NA's   :1099     NA's   :1179     NA's   :1791    
##  reg50310_sc2g4_c reg50320_sc2g4_c reg50330_sc2g4_c reg50340_sc2g4_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000   
##  1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:1.0000   1st Qu.:0.000   
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :1.000   
##  Mean   :0.7893   Mean   :0.8285   Mean   :0.8354   Mean   :0.679   
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000   
##  NA's   :1384     NA's   :1408     NA's   :1414     NA's   :1629    
##  reg50350_sc2g4_c reg50360_sc2g4_c reg50370_sc2g4_c reg50410_sc2g4_c
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.5399   Mean   :0.7794   Mean   :0.6323   Mean   :0.4963  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##  NA's   :1584     NA's   :1749     NA's   :1907     NA's   :2433    
##  reg5042s_sc2g4_c reg50430_sc2g4_c reg50440_sc2g4_c reg5045s_sc2g4_c
##  Min.   :0.000    Min.   :0.0000   Min.   :0.0000   Min.   :0.000   
##  1st Qu.:2.000    1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   
##  Median :3.000    Median :0.0000   Median :0.0000   Median :2.000   
##  Mean   :2.207    Mean   :0.2319   Mean   :0.3546   Mean   :1.303   
##  3rd Qu.:3.000    3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:2.000   
##  Max.   :3.000    Max.   :1.0000   Max.   :1.0000   Max.   :2.000   
##  NA's   :2652     NA's   :2894     NA's   :3049     NA's   :3109    
##  reg50460_sc2g4_c reg50510_sc2g4_c reg5052s_sc2g4_c reg50530_sc2g4_c
##  Min.   :0.000    Min.   :0.000    Min.   :0.000    Min.   :0.000   
##  1st Qu.:0.000    1st Qu.:0.000    1st Qu.:2.000    1st Qu.:0.000   
##  Median :0.000    Median :1.000    Median :3.000    Median :0.000   
##  Mean   :0.409    Mean   :0.736    Mean   :2.361    Mean   :0.355   
##  3rd Qu.:1.000    3rd Qu.:1.000    3rd Qu.:3.000    3rd Qu.:1.000   
##  Max.   :1.000    Max.   :1.000    Max.   :3.000    Max.   :1.000   
##  NA's   :3322     NA's   :3557     NA's   :3875     NA's   :3990    
##  reg50540_sc2g4_c reg5055s_sc2g4_c reg50560_sc2g4_c reg50570_sc2g4_c
##  Min.   :0.000    Min.   :0.000    Min.   :0.000    Min.   :0.000   
##  1st Qu.:0.000    1st Qu.:1.000    1st Qu.:0.000    1st Qu.:0.000   
##  Median :1.000    Median :2.000    Median :0.000    Median :1.000   
##  Mean   :0.596    Mean   :1.656    Mean   :0.416    Mean   :0.513   
##  3rd Qu.:1.000    3rd Qu.:3.000    3rd Qu.:1.000    3rd Qu.:1.000   
##  Max.   :1.000    Max.   :3.000    Max.   :1.000    Max.   :1.000   
##  NA's   :4003     NA's   :4294     NA's   :4268     NA's   :4248    
##    reg4_sc1u         reg4_sc2u       ex20100.3.x    ID_cc.3.y        
##  Min.   :-5.6656   Min.   :0.3780   Min.   :1     Min.   :1.003e+09  
##  1st Qu.:-1.5096   1st Qu.:0.4317   1st Qu.:1     1st Qu.:1.003e+09  
##  Median :-0.5944   Median :0.5027   Median :1     Median :1.003e+09  
##  Mean   :-0.5964   Mean   :0.5598   Mean   :1     Mean   :1.003e+09  
##  3rd Qu.: 0.2583   3rd Qu.:0.6256   3rd Qu.:1     3rd Qu.:1.003e+09  
##  Max.   : 3.8394   Max.   :2.0914   Max.   :1     Max.   :1.003e+09  
##  NA's   :851       NA's   :851      NA's   :879   NA's   :879        
##      mig_t        e76212y_D.3        sex_t        ex20100.4.x  
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1     
##  1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1     
##  Median :3.000   Median :3.000   Median :2.000   Median :1     
##  Mean   :2.929   Mean   :3.342   Mean   :1.949   Mean   :1     
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:1     
##  Max.   :3.000   Max.   :5.000   Max.   :2.000   Max.   :1     
##  NA's   :1075    NA's   :1167    NA's   :1048    NA's   :2014  
##    ID_cc.4.y           e400000.4      e76212y_D.4      e762110.4    
##  Min.   :1.003e+09   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.003e+09   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :1.003e+09   Median :3.000   Median :3.000   Median :2.000  
##  Mean   :1.003e+09   Mean   :2.914   Mean   :3.305   Mean   :1.939  
##  3rd Qu.:1.003e+09   3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:2.000  
##  Max.   :1.003e+09   Max.   :3.000   Max.   :5.000   Max.   :2.000  
##  NA's   :2014        NA's   :5014    NA's   :2400    NA's   :2233   
##   ex20100.5.x     ID_cc.5.y           e400000.5      e76212y_D.5   
##  Min.   :1      Min.   :1.003e+10   Min.   :1.000   Min.   :2.000  
##  1st Qu.:1      1st Qu.:1.003e+10   1st Qu.:3.000   1st Qu.:2.000  
##  Median :1      Median :1.003e+10   Median :3.000   Median :3.000  
##  Mean   :1      Mean   :1.003e+10   Mean   :2.918   Mean   :3.344  
##  3rd Qu.:1      3rd Qu.:1.003e+10   3rd Qu.:3.000   3rd Qu.:4.000  
##  Max.   :1      Max.   :1.003e+10   Max.   :3.000   Max.   :5.000  
##  NA's   :3936   NA's   :3936        NA's   :4050    NA's   :4085   
##    e762110.5      ex20100.6.x     ID_cc.6.y           e400000.6   
##  Min.   :1.000   Min.   :1      Min.   :1.003e+10   Min.   :3     
##  1st Qu.:2.000   1st Qu.:1      1st Qu.:1.003e+10   1st Qu.:3     
##  Median :2.000   Median :1      Median :1.003e+10   Median :3     
##  Mean   :1.901   Mean   :1      Mean   :1.003e+10   Mean   :3     
##  3rd Qu.:2.000   3rd Qu.:1      3rd Qu.:1.003e+10   3rd Qu.:3     
##  Max.   :2.000   Max.   :1      Max.   :1.003e+10   Max.   :3     
##  NA's   :4047    NA's   :4206   NA's   :4206        NA's   :6312  
##   e76212y_D.6      e762110.6        ID_cc.3           ex20100.3.y 
##  Min.   :2.000   Min.   :1.000   Min.   :1.003e+09   Min.   :1    
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.003e+09   1st Qu.:1    
##  Median :3.000   Median :2.000   Median :1.003e+09   Median :1    
##  Mean   :3.275   Mean   :1.919   Mean   :1.003e+09   Mean   :1    
##  3rd Qu.:4.000   3rd Qu.:2.000   3rd Qu.:1.003e+09   3rd Qu.:1    
##  Max.   :5.000   Max.   :2.000   Max.   :1.003e+09   Max.   :1    
##  NA's   :4313    NA's   :4294    NA's   :879         NA's   :879  
##    sen_class        mig_class        ses_class         ID_cc.4         
##  Min.   : 0.000   Min.   :  0.00   Min.   :  0.00   Min.   :1.003e+09  
##  1st Qu.: 5.000   1st Qu.:  8.00   1st Qu.:  8.00   1st Qu.:1.003e+09  
##  Median : 7.000   Median : 21.00   Median : 17.00   Median :1.003e+09  
##  Mean   : 9.664   Mean   : 26.55   Mean   : 20.72   Mean   :1.003e+09  
##  3rd Qu.:12.000   3rd Qu.: 40.00   3rd Qu.: 29.00   3rd Qu.:1.003e+09  
##  Max.   :88.000   Max.   :100.00   Max.   :100.00   Max.   :1.003e+09  
##  NA's   :4507     NA's   :1388     NA's   :2490     NA's   :2014       
##   ex20100.4.y    e19001c_D.4        ID_cc.5           ex20100.5.y  
##  Min.   :1      Min.   : 0.000   Min.   :1.003e+10   Min.   :1     
##  1st Qu.:1      1st Qu.: 5.000   1st Qu.:1.003e+10   1st Qu.:1     
##  Median :1      Median : 7.000   Median :1.003e+10   Median :1     
##  Mean   :1      Mean   : 9.638   Mean   :1.003e+10   Mean   :1     
##  3rd Qu.:1      3rd Qu.:13.000   3rd Qu.:1.003e+10   3rd Qu.:1     
##  Max.   :1      Max.   :35.000   Max.   :1.003e+10   Max.   :1     
##  NA's   :2014   NA's   :4929     NA's   :3936        NA's   :3936  
##   e451000_D.5      e79201c_D.5       ID_cc.6           ex20100.6.y  
##  Min.   :  0.00   Min.   : 0.00   Min.   :1.003e+10   Min.   :1     
##  1st Qu.:  8.00   1st Qu.: 8.00   1st Qu.:1.003e+10   1st Qu.:1     
##  Median : 19.00   Median :17.00   Median :1.003e+10   Median :1     
##  Mean   : 25.67   Mean   :19.66   Mean   :1.003e+10   Mean   :1     
##  3rd Qu.: 38.00   3rd Qu.:29.00   3rd Qu.:1.003e+10   3rd Qu.:1     
##  Max.   :100.00   Max.   :96.00   Max.   :1.003e+10   Max.   :1     
##  NA's   :4045     NA's   :4541    NA's   :4206        NA's   :4206  
##    birthday_c     testday_c        age_c           age_p            edu       
##  Min.   :2004   Min.   :2014   Min.   :6.083   Min.   :18.00   Min.   : 9.00  
##  1st Qu.:2006   1st Qu.:2014   1st Qu.:7.420   1st Qu.:35.00   1st Qu.:13.00  
##  Median :2006   Median :2014   Median :7.671   Median :39.00   Median :15.00  
##  Mean   :2006   Mean   :2014   Mean   :7.729   Mean   :39.07   Mean   :14.92  
##  3rd Qu.:2006   3rd Qu.:2014   3rd Qu.:8.000   3rd Qu.:43.00   3rd Qu.:18.00  
##  Max.   :2008   Max.   :2014   Max.   :9.503   Max.   :66.00   Max.   :18.00  
##  NA's   :1      NA's   :62     NA's   :63      NA's   :1464    NA's   :1070   
##     language          read2Z.V1       reasoningZ.V1         eduZ.V1     
##  Min.   :0.0000   Min.   :-1.7030   Min.   :-2.58924   Min.   :-2.5416  
##  1st Qu.:0.0000   1st Qu.:-0.7635   1st Qu.:-0.29552   1st Qu.:-0.8242  
##  Median :0.0000   Median :-0.0589   Median : 0.08677   Median : 0.0345  
##  Mean   :0.1875   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000  
##  3rd Qu.:0.0000   3rd Qu.: 0.6457   3rd Qu.: 0.46906   3rd Qu.: 1.3225  
##  Max.   :1.0000   Max.   : 2.9945   Max.   : 1.99821   Max.   : 1.3225  
##  NA's   :1557     NA's   :414       NA's   :238        NA's   :1070
###select outcome data
datoutcome <- select(data7, ID_t, ID_e, ID_i.4, math2, read2, read2Z)
datoutcome$data7.ID_t <- datoutcome$ID_t
summary(datoutcome)
##       ID_t              ID_e             ID_i.4            math2         
##  Min.   :2000568   Min.   :1011403   Min.   :1002555   Min.   :-4.54340  
##  1st Qu.:3005629   1st Qu.:1011639   1st Qu.:1002646   1st Qu.:-0.79733  
##  Median :3007578   Median :1011849   Median :1002743   Median :-0.02631  
##  Mean   :2924479   Mean   :1011871   Mean   :1002740   Mean   : 0.00461  
##  3rd Qu.:3017798   3rd Qu.:1012126   3rd Qu.:1002835   3rd Qu.: 0.76733  
##  Max.   :3023458   Max.   :1012342   Max.   :1002928   Max.   : 4.35296  
##                    NA's   :823                         NA's   :173       
##      read2            read2Z.V1       data7.ID_t     
##  Min.   : 0.000   Min.   :-1.7030   Min.   :2000568  
##  1st Qu.: 4.000   1st Qu.:-0.7635   1st Qu.:3005629  
##  Median : 7.000   Median :-0.0589   Median :3007578  
##  Mean   : 7.251   Mean   : 0.0000   Mean   :2924479  
##  3rd Qu.:10.000   3rd Qu.: 0.6457   3rd Qu.:3017798  
##  Max.   :20.000   Max.   : 2.9945   Max.   :3023458  
##  NA's   :414      NA's   :414
###multiple imputation
dataMI <- data.frame(data7$ID_t, data7$sex_c, data7$age_c, 
                     data7$reasoning, data7$reasoningZ, data7$math_grade, data7$reading_grade, 
                     data7$judgMA1, data7$judgRE1,                      
                     data7$edu, data7$eduZ, data7$language, data7$sen,
                     data7$judgMA1T, data7$judgRE1T)
summary(dataMI)
##    data7.ID_t       data7.sex_c     data7.age_c    data7.reasoning 
##  Min.   :2000568   Min.   :1.000   Min.   :6.083   Min.   : 0.000  
##  1st Qu.:3005629   1st Qu.:1.000   1st Qu.:7.420   1st Qu.: 6.000  
##  Median :3007578   Median :2.000   Median :7.671   Median : 7.000  
##  Mean   :2924479   Mean   :1.511   Mean   :7.729   Mean   : 6.773  
##  3rd Qu.:3017798   3rd Qu.:2.000   3rd Qu.:8.000   3rd Qu.: 8.000  
##  Max.   :3023458   Max.   :2.000   Max.   :9.503   Max.   :12.000  
##                    NA's   :1       NA's   :63      NA's   :238     
##  data7.reasoningZ   data7.math_grade data7.reading_grade data7.judgMA1  
##  Min.   :-2.58924   Min.   :1.00     Min.   :1.00        Min.   :1.000  
##  1st Qu.:-0.29552   1st Qu.:1.00     1st Qu.:2.00        1st Qu.:3.000  
##  Median : 0.08677   Median :2.00     Median :2.00        Median :3.000  
##  Mean   : 0.00000   Mean   :1.97     Mean   :2.08        Mean   :3.577  
##  3rd Qu.: 0.46906   3rd Qu.:2.00     3rd Qu.:3.00        3rd Qu.:4.000  
##  Max.   : 1.99821   Max.   :5.00     Max.   :6.00        Max.   :5.000  
##  NA's   :238        NA's   :2768     NA's   :2773        NA's   :1015   
##  data7.judgRE1     data7.edu       data7.eduZ      data7.language  
##  Min.   :1.000   Min.   : 9.00   Min.   :-2.5416   Min.   :0.0000  
##  1st Qu.:3.000   1st Qu.:13.00   1st Qu.:-0.8242   1st Qu.:0.0000  
##  Median :3.000   Median :15.00   Median : 0.0345   Median :0.0000  
##  Mean   :3.346   Mean   :14.92   Mean   : 0.0000   Mean   :0.1875  
##  3rd Qu.:4.000   3rd Qu.:18.00   3rd Qu.: 1.3225   3rd Qu.:0.0000  
##  Max.   :5.000   Max.   :18.00   Max.   : 1.3225   Max.   :1.0000  
##  NA's   :1063    NA's   :1070    NA's   :1070      NA's   :1557    
##    data7.sen     data7.judgMA1T data7.judgRE1T 
##  Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:3.00   1st Qu.:3.000  
##  Median :1.000   Median :3.00   Median :3.000  
##  Mean   :1.028   Mean   :3.32   Mean   :3.197  
##  3rd Qu.:1.000   3rd Qu.:4.00   3rd Qu.:4.000  
##  Max.   :2.000   Max.   :5.00   Max.   :5.000  
##  NA's   :78      NA's   :1043   NA's   :949
library(mice)
## 
## Attache Paket: 'mice'
## Das folgende Objekt ist maskiert 'package:stats':
## 
##     filter
## Die folgenden Objekte sind maskiert von 'package:base':
## 
##     cbind, rbind
pMIss <- function(x){sum(is.na(x))/length(x)*100}
apply(dataMI, 2, pMIss)
##          data7.ID_t         data7.sex_c         data7.age_c     data7.reasoning 
##          0.00000000          0.01577287          0.99369085          3.75394322 
##    data7.reasoningZ    data7.math_grade data7.reading_grade       data7.judgMA1 
##          3.75394322         43.65930599         43.73817035         16.00946372 
##       data7.judgRE1           data7.edu          data7.eduZ      data7.language 
##         16.76656151         16.87697161         16.87697161         24.55835962 
##           data7.sen      data7.judgMA1T      data7.judgRE1T 
##          1.23028391         16.45110410         14.96845426
apply(dataMI, 1, pMIss)
##    [1] 13.333333  0.000000  0.000000  0.000000 46.666667  0.000000 46.666667
##    [8]  0.000000  0.000000 46.666667 13.333333  0.000000 46.666667  0.000000
##   [15]  0.000000  0.000000  0.000000  0.000000 20.000000  0.000000  0.000000
##   [22] 46.666667  0.000000 20.000000  6.666667  0.000000  0.000000  0.000000
##   [29]  0.000000  0.000000  0.000000 40.000000  0.000000 20.000000 20.000000
##   [36] 33.333333 20.000000 20.000000 20.000000 33.333333 20.000000 20.000000
##   [43] 20.000000 33.333333  0.000000  0.000000  0.000000  0.000000  0.000000
##   [50]  0.000000 46.666667 20.000000 13.333333  0.000000 20.000000 13.333333
##   [57]  0.000000  0.000000  0.000000  0.000000  6.666667 46.666667  0.000000
##   [64]  0.000000  0.000000  0.000000  6.666667  0.000000  0.000000 46.666667
##   [71]  0.000000 26.666667 26.666667 13.333333 20.000000  0.000000 46.666667
##   [78] 13.333333 46.666667 13.333333 26.666667  0.000000  0.000000 20.000000
##   [85]  0.000000 20.000000 20.000000  0.000000 13.333333  0.000000 20.000000
##   [92] 20.000000  0.000000 20.000000  0.000000 13.333333 13.333333  0.000000
##   [99]  0.000000  0.000000 40.000000 13.333333 13.333333 46.666667 33.333333
##  [106] 46.666667 13.333333 20.000000 13.333333 46.666667  0.000000  0.000000
##  [113] 46.666667  0.000000 13.333333 13.333333  0.000000 13.333333 20.000000
##  [120]  0.000000 20.000000 60.000000  0.000000  0.000000  0.000000  0.000000
##  [127]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667
##  [134] 20.000000  6.666667 60.000000  0.000000 26.666667 46.666667 33.333333
##  [141] 13.333333  0.000000  0.000000  0.000000 46.666667 46.666667  0.000000
##  [148]  0.000000 46.666667 46.666667 20.000000 13.333333 46.666667 20.000000
##  [155] 13.333333 46.666667 46.666667 20.000000 46.666667 46.666667 33.333333
##  [162] 20.000000 46.666667  0.000000  0.000000 46.666667  0.000000  0.000000
##  [169]  0.000000 13.333333  0.000000 20.000000 46.666667 46.666667  6.666667
##  [176] 46.666667 20.000000 20.000000 26.666667 20.000000 33.333333 20.000000
##  [183] 46.666667  0.000000  0.000000 46.666667  0.000000  0.000000 13.333333
##  [190] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000 60.000000
##  [197] 13.333333 46.666667  0.000000  0.000000 26.666667 20.000000  0.000000
##  [204] 20.000000 46.666667  0.000000  0.000000  0.000000 40.000000  6.666667
##  [211]  0.000000  0.000000  0.000000 13.333333  0.000000 13.333333 20.000000
##  [218] 20.000000 13.333333  0.000000 13.333333  0.000000  6.666667  0.000000
##  [225] 20.000000  0.000000 46.666667  0.000000  0.000000  0.000000  0.000000
##  [232] 13.333333 13.333333 20.000000 13.333333 13.333333 20.000000 13.333333
##  [239] 20.000000 13.333333 13.333333 13.333333 20.000000 33.333333  0.000000
##  [246] 26.666667 53.333333  0.000000  0.000000 13.333333 20.000000  0.000000
##  [253] 26.666667 20.000000  0.000000 13.333333 46.666667  0.000000 46.666667
##  [260]  0.000000 13.333333 26.666667 13.333333 40.000000 40.000000 40.000000
##  [267] 26.666667 26.666667 40.000000 26.666667 40.000000 40.000000  6.666667
##  [274] 33.333333  0.000000  0.000000 46.666667  0.000000 26.666667 20.000000
##  [281] 60.000000 13.333333 13.333333 26.666667 13.333333 13.333333 13.333333
##  [288] 13.333333 13.333333  0.000000 13.333333 13.333333 13.333333 13.333333
##  [295] 46.666667 13.333333 13.333333 13.333333 13.333333  0.000000 20.000000
##  [302]  6.666667 53.333333  6.666667 20.000000  6.666667 40.000000 13.333333
##  [309]  0.000000 33.333333 46.666667 40.000000 46.666667 60.000000 46.666667
##  [316] 40.000000 33.333333 26.666667 33.333333 40.000000 13.333333 13.333333
##  [323]  0.000000  0.000000  0.000000 26.666667  0.000000 13.333333  6.666667
##  [330]  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000 13.333333
##  [337] 13.333333  0.000000  0.000000 46.666667 20.000000 46.666667 13.333333
##  [344] 13.333333 46.666667 20.000000 13.333333 26.666667 40.000000 46.666667
##  [351] 20.000000  0.000000  0.000000 13.333333  6.666667 13.333333  6.666667
##  [358]  0.000000 13.333333 13.333333  0.000000  0.000000 13.333333  0.000000
##  [365]  0.000000 20.000000  0.000000 13.333333 13.333333  0.000000  0.000000
##  [372] 13.333333 20.000000  0.000000  0.000000 13.333333 26.666667 20.000000
##  [379] 20.000000 20.000000 20.000000  0.000000  0.000000  0.000000 20.000000
##  [386]  0.000000  0.000000  0.000000  0.000000 46.666667 13.333333 13.333333
##  [393] 20.000000  0.000000 20.000000  0.000000  0.000000  0.000000  0.000000
##  [400] 20.000000 46.666667  0.000000  0.000000 13.333333  0.000000  0.000000
##  [407] 46.666667  0.000000  0.000000 20.000000 13.333333 20.000000 13.333333
##  [414]  0.000000 13.333333  0.000000 20.000000 13.333333  0.000000  0.000000
##  [421]  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000 20.000000
##  [428] 20.000000 33.333333 13.333333 33.333333  0.000000  0.000000  0.000000
##  [435]  0.000000  0.000000 13.333333 20.000000  0.000000 46.666667  0.000000
##  [442] 20.000000 20.000000 13.333333 13.333333 26.666667 13.333333 20.000000
##  [449]  0.000000 20.000000 20.000000 46.666667  0.000000  0.000000 13.333333
##  [456]  0.000000  0.000000  6.666667 13.333333 13.333333  0.000000 13.333333
##  [463]  0.000000  0.000000  6.666667  0.000000  0.000000  0.000000  0.000000
##  [470] 20.000000  0.000000  0.000000 20.000000  0.000000  0.000000 20.000000
##  [477]  0.000000 13.333333  0.000000  0.000000 20.000000 13.333333 13.333333
##  [484]  0.000000  0.000000  6.666667 26.666667 26.666667 46.666667 20.000000
##  [491] 20.000000 20.000000 53.333333 20.000000 13.333333  0.000000 60.000000
##  [498]  0.000000 46.666667 13.333333  0.000000  0.000000  0.000000 13.333333
##  [505] 13.333333 26.666667 20.000000 46.666667 13.333333 13.333333  0.000000
##  [512]  0.000000  0.000000 13.333333  0.000000 13.333333 20.000000  0.000000
##  [519]  0.000000  0.000000 46.666667  0.000000  0.000000 26.666667  0.000000
##  [526] 40.000000 13.333333  0.000000 13.333333  0.000000  6.666667  0.000000
##  [533]  0.000000  6.666667  0.000000 13.333333  0.000000  0.000000 46.666667
##  [540]  0.000000  0.000000 53.333333  0.000000  6.666667 26.666667  6.666667
##  [547] 13.333333  0.000000 20.000000 20.000000  6.666667  0.000000  0.000000
##  [554] 13.333333  0.000000 13.333333  0.000000 13.333333 26.666667  6.666667
##  [561] 40.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
##  [568]  6.666667  0.000000  0.000000  0.000000 13.333333 33.333333 46.666667
##  [575]  0.000000  0.000000  6.666667 13.333333  0.000000  0.000000 20.000000
##  [582] 13.333333 46.666667  0.000000 20.000000 46.666667  0.000000 13.333333
##  [589] 13.333333 13.333333 13.333333 13.333333 46.666667  6.666667  0.000000
##  [596] 13.333333 20.000000 13.333333 13.333333 13.333333 13.333333 13.333333
##  [603] 13.333333  6.666667 46.666667 46.666667 13.333333 40.000000 26.666667
##  [610] 13.333333 13.333333 13.333333  0.000000  0.000000 13.333333  0.000000
##  [617] 13.333333  0.000000 13.333333 20.000000 13.333333 13.333333 20.000000
##  [624]  0.000000 13.333333 13.333333 46.666667 46.666667 20.000000 46.666667
##  [631]  0.000000  0.000000 20.000000 33.333333  0.000000  0.000000  0.000000
##  [638]  0.000000 33.333333  0.000000 13.333333 13.333333 26.666667  0.000000
##  [645] 26.666667 20.000000 46.666667 46.666667 20.000000  6.666667 46.666667
##  [652] 20.000000 20.000000  6.666667 13.333333 13.333333 20.000000  0.000000
##  [659]  0.000000  0.000000 13.333333 13.333333 60.000000 13.333333 13.333333
##  [666] 20.000000 13.333333 13.333333 60.000000 13.333333 13.333333 46.666667
##  [673] 13.333333 20.000000  0.000000  6.666667 20.000000 46.666667 13.333333
##  [680] 20.000000 46.666667 13.333333  0.000000  0.000000  0.000000 13.333333
##  [687]  0.000000 46.666667 46.666667  0.000000  0.000000 13.333333  0.000000
##  [694]  0.000000  0.000000 20.000000  0.000000 13.333333  0.000000 20.000000
##  [701] 13.333333  0.000000 46.666667 13.333333  0.000000  0.000000  0.000000
##  [708] 20.000000  0.000000 13.333333 13.333333 20.000000  0.000000  0.000000
##  [715] 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000
##  [722]  0.000000 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333
##  [729] 13.333333 40.000000 13.333333 26.666667 13.333333 13.333333  0.000000
##  [736] 13.333333 20.000000 40.000000  6.666667 13.333333  6.666667  0.000000
##  [743] 13.333333 13.333333  0.000000  0.000000  0.000000 13.333333 33.333333
##  [750] 20.000000 13.333333  0.000000 20.000000 26.666667  0.000000 13.333333
##  [757]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
##  [764] 20.000000 13.333333  0.000000  0.000000  0.000000  0.000000 20.000000
##  [771] 46.666667  6.666667 46.666667  0.000000 46.666667 13.333333 20.000000
##  [778]  0.000000  0.000000 46.666667  0.000000 20.000000  0.000000  0.000000
##  [785]  0.000000 13.333333 46.666667  0.000000 13.333333  0.000000 13.333333
##  [792] 13.333333 13.333333 20.000000 46.666667 13.333333 46.666667 40.000000
##  [799] 13.333333 13.333333 13.333333 13.333333 13.333333 46.666667 20.000000
##  [806] 13.333333 46.666667  0.000000 26.666667 46.666667 13.333333  0.000000
##  [813]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 20.000000
##  [820]  0.000000  0.000000 46.666667 13.333333 20.000000 13.333333 33.333333
##  [827] 20.000000 46.666667 46.666667 33.333333  6.666667  0.000000  0.000000
##  [834]  0.000000 13.333333 13.333333 13.333333  0.000000 13.333333 46.666667
##  [841] 20.000000  0.000000  0.000000 46.666667  0.000000 13.333333  0.000000
##  [848] 46.666667 13.333333  6.666667 20.000000 46.666667 46.666667 20.000000
##  [855]  0.000000 13.333333  0.000000  0.000000  0.000000 46.666667 13.333333
##  [862] 46.666667 13.333333 46.666667 46.666667 26.666667 60.000000 33.333333
##  [869] 40.000000 46.666667 26.666667 46.666667 13.333333 13.333333 20.000000
##  [876] 53.333333 60.000000 20.000000 46.666667 20.000000 20.000000  0.000000
##  [883]  0.000000  0.000000  0.000000 46.666667 20.000000  6.666667  0.000000
##  [890]  0.000000  0.000000  6.666667  0.000000 13.333333  0.000000  0.000000
##  [897]  0.000000 13.333333 20.000000  0.000000  0.000000 13.333333  0.000000
##  [904] 13.333333  0.000000  0.000000  0.000000  0.000000 13.333333 20.000000
##  [911]  6.666667 20.000000  0.000000  0.000000  0.000000  0.000000  0.000000
##  [918]  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333 40.000000
##  [925]  0.000000  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000
##  [932]  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000  0.000000
##  [939] 13.333333 20.000000 20.000000  0.000000  0.000000  0.000000  0.000000
##  [946]  6.666667  0.000000 13.333333 40.000000 13.333333 13.333333 13.333333
##  [953] 46.666667 20.000000  0.000000 20.000000 20.000000 13.333333 40.000000
##  [960] 20.000000 46.666667  0.000000  6.666667  0.000000 46.666667 46.666667
##  [967] 13.333333 46.666667  0.000000  0.000000 20.000000  0.000000 26.666667
##  [974]  0.000000 13.333333 13.333333 13.333333 13.333333 13.333333  0.000000
##  [981] 20.000000 13.333333 20.000000 13.333333  0.000000  0.000000 20.000000
##  [988] 46.666667  0.000000 13.333333 20.000000 40.000000  0.000000  0.000000
##  [995]  0.000000 60.000000  0.000000 20.000000  0.000000  0.000000  0.000000
## [1002] 46.666667 13.333333 20.000000  6.666667 46.666667 26.666667 20.000000
## [1009] 46.666667  0.000000  0.000000 20.000000  0.000000 13.333333 13.333333
## [1016]  0.000000 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000
## [1023]  0.000000  0.000000  0.000000  0.000000 26.666667  0.000000  0.000000
## [1030] 20.000000 20.000000 13.333333  0.000000 46.666667  0.000000 26.666667
## [1037] 13.333333  0.000000 13.333333  0.000000  0.000000  0.000000 13.333333
## [1044] 13.333333 20.000000  0.000000  0.000000 13.333333  6.666667  6.666667
## [1051]  6.666667  6.666667 13.333333 20.000000 53.333333 20.000000 53.333333
## [1058] 46.666667 46.666667  0.000000  0.000000  6.666667 26.666667 13.333333
## [1065]  0.000000 13.333333 46.666667  0.000000 20.000000  0.000000 46.666667
## [1072] 26.666667  0.000000 20.000000 20.000000  0.000000 26.666667 46.666667
## [1079]  0.000000 40.000000  0.000000 13.333333  0.000000  0.000000  0.000000
## [1086]  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000
## [1093] 46.666667 13.333333 46.666667  0.000000  0.000000 13.333333  0.000000
## [1100] 46.666667 20.000000  0.000000 46.666667 26.666667  0.000000  0.000000
## [1107] 13.333333  0.000000  0.000000  0.000000  0.000000 13.333333  6.666667
## [1114] 33.333333  0.000000 46.666667 60.000000  6.666667  0.000000 46.666667
## [1121]  0.000000 20.000000  0.000000  0.000000 13.333333 20.000000  0.000000
## [1128] 20.000000 13.333333 26.666667  0.000000  0.000000  0.000000 26.666667
## [1135] 53.333333  0.000000  0.000000 46.666667 13.333333  6.666667 20.000000
## [1142]  0.000000 33.333333 13.333333  0.000000  0.000000 40.000000  0.000000
## [1149] 46.666667 13.333333 20.000000 13.333333 33.333333 13.333333 20.000000
## [1156] 20.000000 13.333333  0.000000  0.000000 46.666667  0.000000  0.000000
## [1163] 46.666667 20.000000 13.333333 26.666667 13.333333  0.000000 13.333333
## [1170]  0.000000  0.000000  0.000000 13.333333  0.000000 26.666667 26.666667
## [1177] 20.000000 13.333333  0.000000  0.000000  0.000000 13.333333  0.000000
## [1184] 46.666667 13.333333  0.000000  0.000000 46.666667 46.666667 46.666667
## [1191]  0.000000  0.000000  0.000000 33.333333  0.000000  0.000000 13.333333
## [1198]  0.000000  0.000000 20.000000 20.000000 13.333333  0.000000 20.000000
## [1205]  0.000000 46.666667 46.666667  0.000000  0.000000  0.000000  0.000000
## [1212] 13.333333 46.666667 13.333333  0.000000  0.000000 13.333333  0.000000
## [1219] 13.333333  0.000000 13.333333  0.000000 20.000000  0.000000 13.333333
## [1226]  0.000000  6.666667 20.000000 13.333333 53.333333 13.333333  0.000000
## [1233] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [1240]  0.000000 46.666667  0.000000 40.000000  0.000000  0.000000 20.000000
## [1247] 46.666667  0.000000 20.000000 13.333333  0.000000 20.000000  0.000000
## [1254]  0.000000 13.333333 20.000000 13.333333  0.000000 26.666667  0.000000
## [1261]  0.000000  0.000000  0.000000  6.666667 46.666667 13.333333  0.000000
## [1268]  0.000000  0.000000 13.333333  6.666667  6.666667  0.000000 46.666667
## [1275]  0.000000  0.000000 20.000000 40.000000  0.000000  0.000000  0.000000
## [1282] 13.333333  0.000000  0.000000 13.333333  0.000000 20.000000  0.000000
## [1289] 40.000000  0.000000  0.000000  0.000000  0.000000 13.333333  6.666667
## [1296]  0.000000  0.000000  0.000000  0.000000  0.000000 40.000000  0.000000
## [1303] 20.000000 46.666667  0.000000 13.333333  0.000000  6.666667 13.333333
## [1310]  0.000000  6.666667 20.000000  0.000000  0.000000  0.000000 13.333333
## [1317]  6.666667  0.000000 13.333333  0.000000  0.000000 13.333333 13.333333
## [1324]  0.000000  0.000000 13.333333 46.666667  0.000000  0.000000  0.000000
## [1331] 13.333333 46.666667  0.000000 13.333333 20.000000  6.666667 46.666667
## [1338]  0.000000 46.666667 26.666667  0.000000 13.333333  0.000000  6.666667
## [1345]  0.000000  0.000000  0.000000  0.000000  6.666667  0.000000  0.000000
## [1352] 13.333333 40.000000 13.333333 13.333333  0.000000 13.333333  0.000000
## [1359]  0.000000  0.000000 46.666667 13.333333  0.000000  0.000000  0.000000
## [1366] 13.333333  0.000000 13.333333 13.333333 13.333333  0.000000 26.666667
## [1373] 46.666667  0.000000  0.000000  0.000000 46.666667 20.000000  0.000000
## [1380] 20.000000  6.666667 13.333333  0.000000  0.000000  0.000000  6.666667
## [1387] 40.000000 33.333333 46.666667 20.000000  0.000000  0.000000 13.333333
## [1394]  0.000000  6.666667 13.333333 46.666667  0.000000 13.333333  0.000000
## [1401]  0.000000  6.666667  0.000000 60.000000  0.000000  0.000000  6.666667
## [1408]  0.000000  0.000000 13.333333 46.666667  0.000000 20.000000  0.000000
## [1415]  0.000000  0.000000 13.333333 13.333333 20.000000  0.000000 13.333333
## [1422]  0.000000  0.000000 13.333333  6.666667  0.000000 20.000000 20.000000
## [1429] 20.000000 20.000000 20.000000  6.666667 20.000000  6.666667 20.000000
## [1436]  6.666667  0.000000  0.000000  0.000000  0.000000  6.666667  0.000000
## [1443] 26.666667 40.000000 46.666667 13.333333  0.000000  0.000000  6.666667
## [1450]  0.000000  0.000000 46.666667  0.000000  0.000000 26.666667  6.666667
## [1457] 13.333333 26.666667 13.333333 13.333333 13.333333 20.000000  0.000000
## [1464]  0.000000 13.333333  0.000000  0.000000 46.666667 40.000000  0.000000
## [1471]  0.000000  6.666667  0.000000  6.666667 13.333333  0.000000  0.000000
## [1478]  6.666667 26.666667 13.333333  0.000000  0.000000 13.333333 20.000000
## [1485] 26.666667  0.000000  0.000000  0.000000 46.666667  0.000000  0.000000
## [1492] 26.666667 53.333333 33.333333 33.333333  0.000000  0.000000 46.666667
## [1499] 20.000000  6.666667 13.333333  6.666667  0.000000 46.666667  0.000000
## [1506]  0.000000  6.666667 20.000000 46.666667 13.333333 46.666667 20.000000
## [1513] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000 40.000000
## [1520] 20.000000  0.000000  0.000000 13.333333 13.333333  0.000000 13.333333
## [1527] 13.333333 13.333333 13.333333 33.333333 13.333333 20.000000 46.666667
## [1534] 46.666667 13.333333 20.000000 13.333333 20.000000 13.333333 13.333333
## [1541]  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000
## [1548]  0.000000  0.000000  0.000000  0.000000  0.000000 33.333333 13.333333
## [1555]  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000
## [1562] 20.000000  0.000000  0.000000 33.333333 13.333333  0.000000 20.000000
## [1569]  0.000000 13.333333  0.000000 46.666667  0.000000  0.000000  0.000000
## [1576]  0.000000  0.000000  0.000000  6.666667 13.333333  0.000000  0.000000
## [1583]  0.000000 46.666667  0.000000  0.000000 20.000000  0.000000  0.000000
## [1590] 13.333333 46.666667  0.000000 46.666667  0.000000 20.000000 46.666667
## [1597] 46.666667 26.666667 13.333333 13.333333 13.333333 33.333333 20.000000
## [1604] 20.000000  0.000000 13.333333  6.666667  0.000000 46.666667 46.666667
## [1611] 46.666667  0.000000  0.000000 40.000000 13.333333 13.333333 13.333333
## [1618]  0.000000  0.000000  0.000000  0.000000 26.666667  0.000000  0.000000
## [1625]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  6.666667
## [1632] 20.000000  0.000000 20.000000  0.000000  6.666667  0.000000  0.000000
## [1639] 13.333333  0.000000 13.333333  0.000000 40.000000  0.000000 46.666667
## [1646]  0.000000  6.666667 13.333333 40.000000  0.000000  0.000000 13.333333
## [1653]  0.000000  0.000000 20.000000  0.000000  0.000000 46.666667 26.666667
## [1660]  0.000000 46.666667 13.333333  0.000000  0.000000 13.333333  0.000000
## [1667]  0.000000  0.000000  0.000000 46.666667  0.000000  0.000000 13.333333
## [1674]  0.000000 46.666667 13.333333 46.666667  0.000000 40.000000  0.000000
## [1681]  0.000000  0.000000  0.000000 46.666667 13.333333 46.666667 13.333333
## [1688] 46.666667 46.666667 46.666667 20.000000  6.666667  6.666667  0.000000
## [1695]  0.000000 33.333333  0.000000  0.000000 13.333333  0.000000  0.000000
## [1702] 46.666667  0.000000 26.666667  0.000000 46.666667  0.000000 33.333333
## [1709] 13.333333  0.000000 13.333333  0.000000  0.000000 13.333333 20.000000
## [1716]  0.000000 46.666667  0.000000  0.000000  0.000000 20.000000 13.333333
## [1723]  0.000000 20.000000  0.000000  0.000000  0.000000  0.000000 20.000000
## [1730]  0.000000 46.666667  6.666667  0.000000  0.000000  6.666667  0.000000
## [1737]  0.000000  0.000000  0.000000 13.333333  0.000000 20.000000 13.333333
## [1744]  0.000000 13.333333 40.000000 46.666667  0.000000  0.000000  0.000000
## [1751]  0.000000  0.000000  0.000000  0.000000  0.000000  6.666667  0.000000
## [1758]  0.000000  0.000000 13.333333  6.666667  6.666667  0.000000  0.000000
## [1765]  0.000000  0.000000  6.666667 13.333333  6.666667 13.333333  0.000000
## [1772] 13.333333  0.000000  0.000000 26.666667  0.000000 46.666667  0.000000
## [1779]  0.000000  0.000000 13.333333 46.666667  0.000000 13.333333  0.000000
## [1786] 40.000000 46.666667  6.666667 46.666667  0.000000 20.000000  0.000000
## [1793]  0.000000  0.000000 26.666667  0.000000 13.333333 13.333333 13.333333
## [1800]  0.000000 13.333333 20.000000 46.666667 20.000000 13.333333 20.000000
## [1807] 20.000000 20.000000 20.000000 13.333333  0.000000 13.333333 13.333333
## [1814]  0.000000 13.333333 26.666667 46.666667 46.666667  0.000000 40.000000
## [1821] 13.333333  0.000000 13.333333  0.000000  0.000000 46.666667  0.000000
## [1828]  0.000000 46.666667  6.666667  0.000000  0.000000  6.666667 53.333333
## [1835]  0.000000  6.666667  0.000000 13.333333  0.000000  0.000000  0.000000
## [1842]  0.000000  0.000000 13.333333 13.333333  0.000000 13.333333 46.666667
## [1849]  0.000000  0.000000  0.000000 13.333333 13.333333  0.000000 46.666667
## [1856]  0.000000 13.333333  0.000000 13.333333 13.333333 46.666667  0.000000
## [1863]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [1870] 13.333333  0.000000 13.333333 13.333333 20.000000 46.666667 13.333333
## [1877] 13.333333  0.000000 13.333333 20.000000 13.333333 13.333333 13.333333
## [1884] 20.000000  0.000000  0.000000 46.666667 46.666667  6.666667  0.000000
## [1891] 60.000000  0.000000  6.666667 13.333333 46.666667 13.333333  0.000000
## [1898] 46.666667 26.666667 13.333333  6.666667 20.000000  0.000000  0.000000
## [1905]  0.000000  6.666667  0.000000 46.666667  0.000000 20.000000  6.666667
## [1912] 53.333333 53.333333  6.666667 13.333333 13.333333 20.000000 20.000000
## [1919]  0.000000 40.000000  0.000000 13.333333 13.333333  0.000000 46.666667
## [1926]  0.000000 13.333333  0.000000  6.666667 26.666667  6.666667 13.333333
## [1933]  0.000000 13.333333  0.000000  0.000000 13.333333 13.333333  0.000000
## [1940]  0.000000 13.333333  6.666667 20.000000  0.000000 13.333333 13.333333
## [1947] 13.333333 46.666667  0.000000 46.666667  0.000000  0.000000  0.000000
## [1954]  0.000000  0.000000  0.000000  0.000000 13.333333 13.333333  0.000000
## [1961] 13.333333  0.000000 13.333333  0.000000 20.000000  0.000000 46.666667
## [1968] 33.333333 20.000000  0.000000 13.333333 13.333333  0.000000 60.000000
## [1975] 46.666667 13.333333 26.666667  6.666667  0.000000 46.666667 46.666667
## [1982]  0.000000 40.000000 13.333333 46.666667 13.333333 46.666667 13.333333
## [1989]  0.000000  0.000000 20.000000 13.333333  0.000000  0.000000 13.333333
## [1996]  0.000000 13.333333  0.000000 20.000000 20.000000 20.000000 46.666667
## [2003]  0.000000  0.000000 46.666667  0.000000 60.000000 13.333333  0.000000
## [2010]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [2017]  0.000000  0.000000 46.666667  0.000000  0.000000  0.000000  6.666667
## [2024]  0.000000  6.666667  0.000000 20.000000  0.000000  0.000000  0.000000
## [2031]  0.000000 13.333333  0.000000 46.666667 60.000000 20.000000  0.000000
## [2038]  0.000000 46.666667 46.666667  0.000000 33.333333  6.666667 33.333333
## [2045] 33.333333 33.333333  0.000000  0.000000  0.000000  0.000000 13.333333
## [2052]  0.000000 13.333333  0.000000 46.666667 13.333333 26.666667  6.666667
## [2059] 13.333333  0.000000  0.000000 20.000000 13.333333 26.666667 13.333333
## [2066]  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000  0.000000
## [2073] 13.333333  0.000000  0.000000 20.000000 20.000000  6.666667  6.666667
## [2080] 40.000000  6.666667  6.666667 20.000000  6.666667 33.333333  6.666667
## [2087]  6.666667  0.000000  0.000000  0.000000  6.666667  0.000000  0.000000
## [2094] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [2101] 46.666667  0.000000  0.000000 33.333333  6.666667  0.000000 20.000000
## [2108]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [2115] 13.333333 13.333333  0.000000 13.333333  0.000000 13.333333 46.666667
## [2122] 53.333333  0.000000 60.000000 13.333333  0.000000 26.666667 13.333333
## [2129]  6.666667  0.000000  0.000000 13.333333 13.333333 53.333333  0.000000
## [2136] 13.333333  6.666667 46.666667 20.000000 46.666667 46.666667 20.000000
## [2143] 60.000000 46.666667 53.333333 20.000000  0.000000 20.000000  6.666667
## [2150] 20.000000  6.666667  6.666667 20.000000 26.666667 46.666667 46.666667
## [2157] 13.333333 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000
## [2164] 40.000000 26.666667 26.666667 40.000000 46.666667 40.000000 46.666667
## [2171]  0.000000  0.000000  6.666667  6.666667 46.666667  0.000000  0.000000
## [2178]  0.000000 13.333333 13.333333 40.000000 20.000000 13.333333  0.000000
## [2185]  0.000000 20.000000 13.333333  0.000000 13.333333  0.000000 26.666667
## [2192] 13.333333 13.333333  0.000000  0.000000 46.666667  0.000000 33.333333
## [2199]  0.000000  0.000000  0.000000  0.000000 20.000000  0.000000  6.666667
## [2206] 13.333333 20.000000  0.000000  0.000000 13.333333 13.333333  0.000000
## [2213]  0.000000  6.666667  0.000000  0.000000  0.000000  0.000000 13.333333
## [2220] 13.333333 13.333333  0.000000 13.333333 20.000000  0.000000 13.333333
## [2227] 13.333333 46.666667  0.000000 13.333333  0.000000 26.666667  0.000000
## [2234]  0.000000  0.000000 13.333333  0.000000  6.666667  6.666667  6.666667
## [2241] 20.000000  6.666667  6.666667  6.666667  6.666667  6.666667 13.333333
## [2248] 46.666667  0.000000 40.000000 26.666667 13.333333  0.000000  0.000000
## [2255] 46.666667  0.000000 46.666667 13.333333 60.000000 26.666667 40.000000
## [2262]  0.000000 46.666667  0.000000 46.666667  0.000000 13.333333  0.000000
## [2269] 46.666667  0.000000  0.000000  0.000000 20.000000 13.333333  0.000000
## [2276]  6.666667 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000
## [2283] 20.000000  6.666667  0.000000  0.000000  6.666667 46.666667 13.333333
## [2290]  0.000000 13.333333  0.000000  0.000000 13.333333 46.666667 13.333333
## [2297] 13.333333 46.666667 46.666667  0.000000  6.666667  0.000000  0.000000
## [2304] 13.333333  0.000000  0.000000  0.000000 20.000000  0.000000  0.000000
## [2311]  0.000000  0.000000  0.000000  6.666667  0.000000 20.000000  0.000000
## [2318]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [2325] 13.333333 13.333333 26.666667 46.666667 46.666667 13.333333 20.000000
## [2332] 20.000000 13.333333 13.333333 13.333333  0.000000 46.666667 26.666667
## [2339] 13.333333  0.000000 20.000000 46.666667 13.333333  6.666667 20.000000
## [2346] 20.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [2353]  0.000000  6.666667  0.000000  0.000000  0.000000  0.000000 46.666667
## [2360]  0.000000  0.000000 26.666667  0.000000  0.000000  0.000000 13.333333
## [2367] 46.666667  0.000000 13.333333 13.333333 46.666667 13.333333 26.666667
## [2374] 13.333333 13.333333  0.000000 26.666667  0.000000 20.000000  0.000000
## [2381]  0.000000  0.000000  0.000000  0.000000 46.666667 13.333333  0.000000
## [2388]  0.000000  0.000000  0.000000  6.666667 13.333333  0.000000  0.000000
## [2395]  6.666667  0.000000  6.666667 13.333333 46.666667  6.666667  0.000000
## [2402] 33.333333 46.666667  0.000000 40.000000  0.000000 13.333333  0.000000
## [2409]  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000
## [2416]  0.000000 26.666667 13.333333  0.000000 13.333333  0.000000 13.333333
## [2423]  0.000000  0.000000 13.333333  0.000000  0.000000 46.666667  0.000000
## [2430]  0.000000 13.333333 13.333333 33.333333  0.000000  0.000000 20.000000
## [2437] 20.000000  0.000000 13.333333 33.333333 13.333333 60.000000  0.000000
## [2444]  0.000000  0.000000  0.000000 26.666667 33.333333  0.000000 40.000000
## [2451] 26.666667 40.000000 26.666667 26.666667  0.000000  0.000000  0.000000
## [2458] 20.000000  6.666667  0.000000  0.000000 13.333333 26.666667 40.000000
## [2465] 40.000000 13.333333 13.333333 13.333333 46.666667 13.333333  0.000000
## [2472]  0.000000  0.000000  0.000000  0.000000  0.000000  6.666667 46.666667
## [2479] 46.666667  0.000000 60.000000 46.666667 13.333333  0.000000 13.333333
## [2486]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [2493] 46.666667  0.000000  0.000000 40.000000 26.666667 20.000000  0.000000
## [2500]  0.000000  0.000000 13.333333 40.000000 40.000000 13.333333 40.000000
## [2507] 46.666667 40.000000 40.000000 46.666667 40.000000 40.000000 46.666667
## [2514] 46.666667 40.000000 40.000000 40.000000 40.000000 13.333333 46.666667
## [2521] 13.333333 20.000000 20.000000 20.000000 20.000000 46.666667 33.333333
## [2528] 20.000000  0.000000 13.333333 46.666667  0.000000 26.666667 13.333333
## [2535] 20.000000  0.000000  0.000000 20.000000 13.333333  0.000000 46.666667
## [2542]  0.000000 13.333333 13.333333 20.000000  0.000000 13.333333  6.666667
## [2549] 13.333333  6.666667 13.333333  0.000000  0.000000  0.000000  0.000000
## [2556] 20.000000 20.000000 13.333333  0.000000 26.666667  0.000000  0.000000
## [2563] 13.333333 40.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [2570]  0.000000  0.000000  0.000000  6.666667  0.000000  0.000000  0.000000
## [2577] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667
## [2584] 13.333333  0.000000 13.333333 13.333333 26.666667 53.333333  6.666667
## [2591] 46.666667  6.666667 20.000000 20.000000 13.333333 13.333333 20.000000
## [2598] 13.333333  0.000000  0.000000 13.333333  0.000000  0.000000  6.666667
## [2605]  0.000000 53.333333 13.333333 20.000000  0.000000  0.000000 13.333333
## [2612]  0.000000  0.000000 13.333333 20.000000  0.000000  6.666667  0.000000
## [2619]  0.000000  0.000000  0.000000 33.333333  0.000000  0.000000  0.000000
## [2626]  0.000000  0.000000  6.666667 40.000000 20.000000  0.000000 46.666667
## [2633]  0.000000 13.333333  0.000000 13.333333  0.000000  0.000000  0.000000
## [2640] 26.666667  0.000000  6.666667  0.000000  0.000000  0.000000 20.000000
## [2647]  0.000000  0.000000  0.000000 46.666667 46.666667 13.333333  0.000000
## [2654]  0.000000 13.333333 13.333333 26.666667 26.666667 13.333333 13.333333
## [2661] 20.000000 13.333333  0.000000 46.666667 13.333333 46.666667 13.333333
## [2668] 13.333333 20.000000  0.000000  0.000000  6.666667  0.000000  0.000000
## [2675]  0.000000 46.666667 46.666667 40.000000 20.000000  0.000000 13.333333
## [2682] 33.333333  6.666667 26.666667 13.333333  0.000000  6.666667  0.000000
## [2689]  6.666667  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [2696] 60.000000 46.666667 46.666667  0.000000  0.000000 26.666667 13.333333
## [2703] 20.000000 46.666667 46.666667 20.000000 20.000000 13.333333  0.000000
## [2710] 20.000000 13.333333  0.000000 13.333333 13.333333 13.333333 60.000000
## [2717] 13.333333 20.000000 13.333333  0.000000  0.000000  0.000000  0.000000
## [2724] 13.333333 33.333333  0.000000  0.000000  0.000000  0.000000 46.666667
## [2731]  0.000000 13.333333  0.000000  0.000000 46.666667  6.666667  0.000000
## [2738]  0.000000 13.333333 40.000000  0.000000 13.333333 20.000000  6.666667
## [2745]  0.000000  0.000000  0.000000 13.333333 26.666667  0.000000  0.000000
## [2752] 13.333333  0.000000  0.000000  0.000000 46.666667 13.333333  0.000000
## [2759]  0.000000  0.000000 46.666667  0.000000 20.000000  0.000000  0.000000
## [2766]  0.000000  0.000000 13.333333  0.000000 46.666667 40.000000  0.000000
## [2773] 13.333333 46.666667  0.000000  6.666667  0.000000 13.333333  0.000000
## [2780]  0.000000  0.000000 20.000000  0.000000  0.000000 20.000000 26.666667
## [2787]  0.000000 26.666667  0.000000 20.000000 60.000000  0.000000  0.000000
## [2794]  0.000000  0.000000 20.000000 46.666667 46.666667  0.000000 46.666667
## [2801]  0.000000  0.000000 20.000000 40.000000  0.000000  0.000000  0.000000
## [2808]  0.000000 40.000000 20.000000 20.000000  0.000000 13.333333 20.000000
## [2815] 20.000000 13.333333 13.333333 40.000000 13.333333 40.000000 13.333333
## [2822] 13.333333 13.333333  0.000000 13.333333 46.666667 40.000000 13.333333
## [2829] 13.333333 26.666667  0.000000 13.333333 46.666667  0.000000  0.000000
## [2836] 53.333333  0.000000 53.333333 13.333333 13.333333  0.000000  0.000000
## [2843]  0.000000  6.666667 20.000000  0.000000  0.000000  0.000000  0.000000
## [2850]  0.000000  0.000000 26.666667  0.000000 33.333333  0.000000  0.000000
## [2857]  0.000000 46.666667 13.333333  0.000000  0.000000 46.666667 40.000000
## [2864] 40.000000  0.000000  0.000000 13.333333  0.000000 46.666667  0.000000
## [2871] 13.333333 13.333333 33.333333  0.000000  6.666667  0.000000 20.000000
## [2878] 13.333333  0.000000 53.333333  0.000000  0.000000  0.000000 46.666667
## [2885] 13.333333  6.666667 20.000000  0.000000 33.333333  6.666667  6.666667
## [2892] 13.333333 13.333333 46.666667 13.333333  6.666667 13.333333  0.000000
## [2899]  0.000000 13.333333 20.000000  0.000000  0.000000  0.000000  0.000000
## [2906] 46.666667 46.666667  6.666667  0.000000 46.666667 13.333333  0.000000
## [2913] 46.666667 20.000000 13.333333 40.000000  0.000000 46.666667 13.333333
## [2920] 20.000000 46.666667 20.000000  0.000000 46.666667  0.000000  0.000000
## [2927]  0.000000  0.000000 26.666667  0.000000  6.666667 20.000000 53.333333
## [2934]  6.666667  6.666667 53.333333 53.333333  6.666667 20.000000  6.666667
## [2941] 60.000000  0.000000 26.666667 20.000000 13.333333  0.000000 46.666667
## [2948]  0.000000  6.666667  6.666667  0.000000 26.666667  6.666667 26.666667
## [2955]  6.666667 53.333333  6.666667  6.666667  6.666667  6.666667 53.333333
## [2962]  6.666667  0.000000 20.000000  0.000000  0.000000  0.000000  0.000000
## [2969] 13.333333 20.000000  0.000000 13.333333  0.000000 13.333333 46.666667
## [2976] 20.000000 13.333333 46.666667 13.333333 20.000000 13.333333 13.333333
## [2983] 20.000000 20.000000 13.333333 40.000000  0.000000  0.000000 13.333333
## [2990] 26.666667 20.000000 13.333333  0.000000  0.000000  0.000000  0.000000
## [2997]  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000 13.333333
## [3004] 13.333333  0.000000  0.000000 13.333333 13.333333  0.000000 13.333333
## [3011] 46.666667  0.000000 13.333333  0.000000 46.666667 46.666667 20.000000
## [3018] 13.333333  0.000000  0.000000 20.000000 46.666667 13.333333  0.000000
## [3025]  0.000000 46.666667  0.000000 46.666667  0.000000 13.333333  0.000000
## [3032]  0.000000 13.333333  0.000000 40.000000  0.000000 20.000000 13.333333
## [3039]  6.666667 13.333333  0.000000  0.000000  0.000000 13.333333  0.000000
## [3046] 13.333333  0.000000  0.000000  0.000000 20.000000 13.333333  0.000000
## [3053] 13.333333  0.000000 13.333333  0.000000  0.000000  0.000000 46.666667
## [3060]  0.000000 26.666667 13.333333  0.000000  0.000000  0.000000  0.000000
## [3067]  0.000000  0.000000  6.666667  6.666667 26.666667  6.666667 20.000000
## [3074]  0.000000  0.000000  0.000000 13.333333  0.000000 13.333333 13.333333
## [3081] 13.333333 46.666667  6.666667  6.666667  6.666667 13.333333  6.666667
## [3088]  6.666667  6.666667 46.666667  6.666667  6.666667 46.666667 13.333333
## [3095]  0.000000 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000
## [3102] 20.000000  6.666667  0.000000  0.000000  0.000000  0.000000 13.333333
## [3109] 13.333333  0.000000 13.333333 13.333333  6.666667 13.333333 60.000000
## [3116]  0.000000  0.000000 13.333333  0.000000  0.000000 13.333333 13.333333
## [3123]  0.000000 20.000000  0.000000  0.000000  0.000000 13.333333 46.666667
## [3130] 13.333333 33.333333 20.000000 13.333333  0.000000 26.666667 26.666667
## [3137] 46.666667 26.666667  6.666667 46.666667 13.333333  0.000000 13.333333
## [3144]  0.000000 13.333333  0.000000  0.000000  0.000000  0.000000 20.000000
## [3151] 13.333333 13.333333 26.666667 46.666667  0.000000 46.666667 13.333333
## [3158] 33.333333 46.666667 40.000000 13.333333 46.666667 13.333333 46.666667
## [3165] 46.666667 20.000000  0.000000 46.666667  0.000000  0.000000  0.000000
## [3172]  0.000000 46.666667 26.666667  0.000000  0.000000  0.000000  0.000000
## [3179] 13.333333  0.000000 13.333333 13.333333  6.666667  0.000000 13.333333
## [3186] 13.333333  0.000000  0.000000 26.666667  0.000000  0.000000  0.000000
## [3193] 13.333333 13.333333 20.000000  0.000000  0.000000  0.000000  0.000000
## [3200]  0.000000 46.666667 46.666667 20.000000 13.333333 13.333333 20.000000
## [3207] 46.666667 46.666667  0.000000 46.666667 20.000000 46.666667 26.666667
## [3214]  0.000000 40.000000  0.000000 20.000000  0.000000 20.000000  0.000000
## [3221] 33.333333 13.333333 46.666667  0.000000  0.000000  0.000000 20.000000
## [3228] 60.000000  0.000000 20.000000 40.000000 46.666667 46.666667 20.000000
## [3235]  0.000000 13.333333  0.000000  6.666667 20.000000 13.333333  0.000000
## [3242]  6.666667  0.000000  0.000000 40.000000 26.666667  0.000000 13.333333
## [3249] 13.333333  0.000000  0.000000 20.000000  6.666667  0.000000  0.000000
## [3256]  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000
## [3263] 13.333333  0.000000  0.000000  6.666667  0.000000  0.000000 26.666667
## [3270] 26.666667  0.000000 46.666667 13.333333 13.333333  0.000000  0.000000
## [3277] 13.333333 20.000000  0.000000 26.666667 13.333333 13.333333  0.000000
## [3284]  0.000000  0.000000  6.666667  0.000000  6.666667 13.333333  0.000000
## [3291]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [3298]  0.000000 13.333333 13.333333 13.333333  0.000000 13.333333 13.333333
## [3305]  0.000000 13.333333 13.333333 13.333333 46.666667  0.000000  0.000000
## [3312]  0.000000 20.000000  0.000000 20.000000  0.000000  0.000000  0.000000
## [3319]  0.000000 53.333333  0.000000 20.000000 13.333333 26.666667 13.333333
## [3326] 26.666667  0.000000 20.000000 46.666667 46.666667 13.333333 20.000000
## [3333] 13.333333 46.666667 46.666667 13.333333 13.333333  0.000000  0.000000
## [3340] 26.666667 13.333333  0.000000  0.000000 13.333333  0.000000  6.666667
## [3347] 40.000000  0.000000 13.333333  0.000000 20.000000  6.666667 46.666667
## [3354] 46.666667 13.333333 20.000000 13.333333 26.666667 46.666667 46.666667
## [3361] 46.666667  0.000000  0.000000 20.000000 46.666667 13.333333  0.000000
## [3368] 46.666667 46.666667 26.666667 13.333333 20.000000  0.000000  0.000000
## [3375] 20.000000 20.000000 13.333333 46.666667  0.000000  0.000000 20.000000
## [3382]  0.000000 13.333333  0.000000 13.333333  0.000000  6.666667 20.000000
## [3389] 46.666667  6.666667 46.666667  0.000000  0.000000 33.333333 20.000000
## [3396] 13.333333 13.333333 40.000000 60.000000 13.333333 20.000000 46.666667
## [3403] 13.333333  6.666667 60.000000  0.000000 13.333333  0.000000  0.000000
## [3410] 40.000000 20.000000 26.666667  0.000000  0.000000  0.000000  0.000000
## [3417]  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000  0.000000
## [3424]  0.000000 33.333333  0.000000 13.333333 46.666667 33.333333 46.666667
## [3431] 13.333333  0.000000 13.333333  6.666667 20.000000 13.333333  0.000000
## [3438]  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000
## [3445] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667
## [3452] 40.000000 40.000000 26.666667 40.000000 33.333333 46.666667 40.000000
## [3459] 26.666667 13.333333  6.666667 53.333333 46.666667 26.666667  0.000000
## [3466]  0.000000  6.666667  0.000000  6.666667 20.000000  0.000000  0.000000
## [3473] 46.666667 46.666667  0.000000  0.000000 20.000000  0.000000  0.000000
## [3480]  0.000000  0.000000  0.000000  0.000000  0.000000 20.000000  0.000000
## [3487]  0.000000  6.666667  0.000000  0.000000  0.000000 13.333333  0.000000
## [3494]  0.000000  0.000000  0.000000  0.000000 13.333333 46.666667 13.333333
## [3501]  0.000000 13.333333 20.000000 13.333333  0.000000 13.333333  0.000000
## [3508] 13.333333 13.333333  0.000000 13.333333  0.000000 46.666667  0.000000
## [3515] 20.000000 20.000000  0.000000  0.000000  0.000000 20.000000  0.000000
## [3522]  0.000000  0.000000 13.333333 46.666667 20.000000  0.000000 46.666667
## [3529] 20.000000 26.666667  0.000000  0.000000 46.666667  0.000000  0.000000
## [3536] 13.333333  0.000000 46.666667 46.666667  0.000000 20.000000 40.000000
## [3543]  0.000000 20.000000 13.333333 20.000000  0.000000 40.000000 20.000000
## [3550] 46.666667 46.666667 20.000000 20.000000 13.333333 46.666667  0.000000
## [3557]  0.000000  0.000000  0.000000  0.000000 13.333333 13.333333 20.000000
## [3564] 13.333333 13.333333 26.666667 13.333333 46.666667  0.000000  0.000000
## [3571] 20.000000 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000
## [3578]  0.000000 13.333333 13.333333  6.666667  0.000000  6.666667  0.000000
## [3585]  0.000000 13.333333  0.000000 13.333333 13.333333  0.000000 33.333333
## [3592] 46.666667 46.666667  0.000000 20.000000  0.000000 46.666667  0.000000
## [3599] 13.333333  0.000000 46.666667 20.000000  6.666667 26.666667  0.000000
## [3606] 53.333333 13.333333 26.666667  6.666667  0.000000  0.000000 13.333333
## [3613] 13.333333  6.666667  6.666667 60.000000 13.333333 13.333333 20.000000
## [3620] 26.666667 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000
## [3627]  0.000000  0.000000  0.000000  0.000000 26.666667  0.000000 20.000000
## [3634]  0.000000 13.333333  0.000000  0.000000  0.000000 20.000000  0.000000
## [3641]  0.000000 46.666667  6.666667 13.333333  0.000000  0.000000 26.666667
## [3648]  0.000000  0.000000  0.000000 20.000000 46.666667 20.000000 13.333333
## [3655] 13.333333  0.000000  0.000000  0.000000  0.000000 13.333333 13.333333
## [3662]  0.000000 20.000000 26.666667  0.000000 13.333333  0.000000 20.000000
## [3669] 13.333333 13.333333  0.000000 13.333333  0.000000 13.333333 13.333333
## [3676] 13.333333  0.000000  0.000000  0.000000 40.000000  0.000000 26.666667
## [3683] 53.333333 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000
## [3690]  0.000000  0.000000 13.333333 26.666667 13.333333 13.333333 13.333333
## [3697] 13.333333 13.333333 13.333333 13.333333 26.666667 13.333333 20.000000
## [3704] 13.333333 13.333333 46.666667 46.666667 13.333333  6.666667  6.666667
## [3711] 53.333333  6.666667  0.000000  0.000000 26.666667 13.333333  0.000000
## [3718]  0.000000  0.000000  0.000000 13.333333 13.333333 13.333333 20.000000
## [3725]  0.000000  0.000000  0.000000  0.000000 13.333333 13.333333  0.000000
## [3732] 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333 20.000000
## [3739]  6.666667  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [3746]  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000
## [3753] 20.000000  0.000000 13.333333 20.000000  0.000000 13.333333 20.000000
## [3760] 40.000000 13.333333  0.000000  0.000000 20.000000 33.333333  6.666667
## [3767]  0.000000 20.000000  0.000000 20.000000 33.333333 13.333333  0.000000
## [3774] 13.333333 13.333333 46.666667  0.000000 13.333333  0.000000 20.000000
## [3781] 20.000000  0.000000 40.000000 26.666667 13.333333  0.000000  0.000000
## [3788]  0.000000  6.666667 13.333333  0.000000  0.000000  0.000000 20.000000
## [3795] 20.000000  0.000000 46.666667  0.000000 40.000000  0.000000 20.000000
## [3802] 46.666667 13.333333 13.333333 13.333333 53.333333  0.000000  0.000000
## [3809] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [3816]  0.000000 13.333333 13.333333 13.333333 13.333333 13.333333  0.000000
## [3823] 13.333333 26.666667  0.000000  0.000000  0.000000 13.333333 13.333333
## [3830]  6.666667  0.000000 20.000000 20.000000 20.000000 13.333333  6.666667
## [3837]  0.000000  0.000000  0.000000 20.000000  0.000000  0.000000 20.000000
## [3844]  0.000000 60.000000  0.000000 13.333333 46.666667 13.333333  0.000000
## [3851] 46.666667 40.000000 46.666667 46.666667  6.666667  6.666667 13.333333
## [3858]  6.666667  6.666667  6.666667 53.333333 53.333333  6.666667  6.666667
## [3865]  6.666667  6.666667 20.000000  6.666667  0.000000  0.000000  0.000000
## [3872]  0.000000  0.000000 20.000000  0.000000 20.000000  0.000000  0.000000
## [3879]  6.666667  0.000000  0.000000 46.666667 26.666667  0.000000 46.666667
## [3886] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667
## [3893] 13.333333  0.000000 40.000000 46.666667  0.000000 20.000000 20.000000
## [3900]  6.666667 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333
## [3907] 20.000000  6.666667  6.666667 13.333333  6.666667  6.666667  0.000000
## [3914]  0.000000  0.000000 13.333333 13.333333 13.333333 13.333333 20.000000
## [3921]  0.000000  6.666667  0.000000  6.666667  0.000000  0.000000  0.000000
## [3928] 13.333333  0.000000  0.000000  0.000000 13.333333 13.333333 13.333333
## [3935]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [3942] 13.333333  0.000000  0.000000  0.000000  0.000000 13.333333 46.666667
## [3949]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [3956] 46.666667  0.000000  0.000000  0.000000 13.333333 46.666667  0.000000
## [3963] 13.333333 46.666667 46.666667  0.000000  0.000000 13.333333 20.000000
## [3970]  0.000000 46.666667 13.333333 20.000000 20.000000 13.333333  0.000000
## [3977] 20.000000  0.000000 46.666667 13.333333  0.000000  0.000000  0.000000
## [3984]  0.000000 20.000000  0.000000  0.000000  0.000000  6.666667 13.333333
## [3991]  0.000000 20.000000 46.666667 20.000000  0.000000 46.666667 60.000000
## [3998]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000 46.666667
## [4005] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000 20.000000
## [4012]  0.000000  0.000000  0.000000  0.000000 13.333333 13.333333  0.000000
## [4019]  0.000000  0.000000  0.000000 26.666667  0.000000  0.000000 20.000000
## [4026] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4033]  0.000000  0.000000 13.333333 53.333333 53.333333 20.000000 53.333333
## [4040] 53.333333 53.333333 33.333333 20.000000  6.666667 53.333333 53.333333
## [4047]  6.666667  6.666667  6.666667 33.333333 46.666667 46.666667 46.666667
## [4054]  6.666667 46.666667 46.666667  6.666667 26.666667  0.000000  0.000000
## [4061]  6.666667 13.333333  0.000000  0.000000 13.333333  0.000000  0.000000
## [4068]  0.000000 13.333333  0.000000 46.666667  0.000000 46.666667 46.666667
## [4075]  6.666667  0.000000 20.000000 13.333333  0.000000 13.333333  0.000000
## [4082] 13.333333 13.333333 20.000000 13.333333  0.000000  0.000000  0.000000
## [4089]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000 13.333333
## [4096] 33.333333  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [4103]  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000 33.333333
## [4110] 26.666667  0.000000 13.333333  0.000000  0.000000 13.333333  0.000000
## [4117] 20.000000 46.666667  6.666667 13.333333 46.666667  0.000000 13.333333
## [4124]  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000
## [4131]  0.000000 13.333333  0.000000  0.000000  0.000000 26.666667 13.333333
## [4138]  0.000000 46.666667 13.333333  0.000000  0.000000  0.000000 13.333333
## [4145]  0.000000  0.000000 20.000000  0.000000 13.333333  0.000000 46.666667
## [4152] 13.333333 13.333333 46.666667  0.000000  0.000000  6.666667 13.333333
## [4159] 13.333333 13.333333 26.666667  0.000000  0.000000  6.666667  6.666667
## [4166]  6.666667  6.666667  6.666667  0.000000  6.666667  6.666667 20.000000
## [4173]  0.000000  0.000000 13.333333  0.000000  0.000000 46.666667  0.000000
## [4180] 13.333333  0.000000  0.000000  0.000000  6.666667 13.333333 13.333333
## [4187]  0.000000  0.000000  0.000000  6.666667 13.333333  0.000000  0.000000
## [4194]  0.000000  0.000000  0.000000  0.000000 46.666667 46.666667 13.333333
## [4201]  0.000000 26.666667  0.000000  0.000000  0.000000  0.000000 13.333333
## [4208] 13.333333  0.000000 13.333333 46.666667  0.000000  0.000000  0.000000
## [4215]  0.000000 46.666667 26.666667  0.000000 13.333333 13.333333 20.000000
## [4222]  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000
## [4229]  0.000000  0.000000  0.000000  0.000000 40.000000 13.333333 20.000000
## [4236] 13.333333 46.666667  0.000000 13.333333  0.000000  0.000000  0.000000
## [4243]  6.666667 13.333333 20.000000 20.000000 13.333333  0.000000 20.000000
## [4250] 33.333333 13.333333 13.333333 13.333333 13.333333  0.000000  0.000000
## [4257] 13.333333  0.000000 46.666667  0.000000  0.000000  0.000000 13.333333
## [4264]  0.000000 20.000000  6.666667  0.000000  0.000000  0.000000  0.000000
## [4271]  0.000000  0.000000  0.000000  6.666667 13.333333  0.000000 26.666667
## [4278] 20.000000  6.666667 26.666667 60.000000  0.000000 40.000000 46.666667
## [4285]  0.000000  6.666667 13.333333  0.000000  0.000000 13.333333  0.000000
## [4292]  0.000000  0.000000 46.666667  0.000000  0.000000 46.666667  0.000000
## [4299] 13.333333  0.000000 20.000000  0.000000  0.000000  6.666667  0.000000
## [4306]  0.000000 20.000000 13.333333 20.000000 20.000000  0.000000 46.666667
## [4313]  6.666667  0.000000 26.666667 13.333333  0.000000  0.000000  0.000000
## [4320] 20.000000 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000
## [4327]  0.000000  0.000000 13.333333  0.000000  0.000000 26.666667  6.666667
## [4334]  0.000000 20.000000 46.666667 20.000000 40.000000  0.000000  0.000000
## [4341]  0.000000 13.333333  0.000000 13.333333  0.000000  0.000000  6.666667
## [4348] 20.000000  0.000000  0.000000  0.000000 20.000000  0.000000  0.000000
## [4355] 46.666667  0.000000  0.000000  0.000000  0.000000 46.666667  6.666667
## [4362]  0.000000  0.000000 13.333333  0.000000 20.000000 26.666667  0.000000
## [4369] 13.333333 13.333333  0.000000 20.000000  0.000000  6.666667  6.666667
## [4376]  6.666667  6.666667  6.666667 20.000000  6.666667 20.000000  6.666667
## [4383]  6.666667 20.000000  6.666667  6.666667 13.333333 13.333333 13.333333
## [4390] 13.333333 13.333333  6.666667 13.333333 13.333333  0.000000 13.333333
## [4397]  0.000000 13.333333 20.000000 46.666667  0.000000 20.000000  0.000000
## [4404] 20.000000 13.333333 20.000000  0.000000 13.333333  6.666667  0.000000
## [4411] 33.333333  0.000000 13.333333  0.000000 20.000000 13.333333  0.000000
## [4418] 20.000000  0.000000 46.666667  0.000000  0.000000 46.666667  0.000000
## [4425]  0.000000  0.000000 13.333333  0.000000 20.000000 20.000000 13.333333
## [4432]  0.000000  0.000000 13.333333 46.666667 13.333333 13.333333  0.000000
## [4439]  0.000000  0.000000 26.666667 13.333333  0.000000 13.333333  0.000000
## [4446] 20.000000  0.000000 20.000000 46.666667  0.000000  0.000000 20.000000
## [4453] 20.000000 46.666667  0.000000 46.666667 20.000000 13.333333 46.666667
## [4460] 40.000000  0.000000 46.666667 46.666667  0.000000 46.666667  6.666667
## [4467]  6.666667  0.000000  6.666667  6.666667 53.333333 13.333333  6.666667
## [4474] 20.000000 13.333333  6.666667 13.333333  6.666667  0.000000  0.000000
## [4481]  0.000000 20.000000  0.000000  6.666667  0.000000 53.333333  6.666667
## [4488]  0.000000 13.333333 46.666667 46.666667 33.333333  6.666667  0.000000
## [4495] 60.000000 20.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4502] 13.333333 13.333333  0.000000 20.000000 13.333333  0.000000  0.000000
## [4509]  0.000000 20.000000 20.000000  0.000000  0.000000  0.000000 13.333333
## [4516] 13.333333  0.000000 13.333333  0.000000 13.333333 13.333333 13.333333
## [4523] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [4530]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4537] 20.000000 13.333333 13.333333  0.000000 33.333333 33.333333  0.000000
## [4544] 46.666667 13.333333  0.000000  0.000000 13.333333 20.000000 13.333333
## [4551]  0.000000  0.000000  0.000000  0.000000  0.000000  6.666667 26.666667
## [4558]  0.000000  0.000000 26.666667 13.333333  0.000000  0.000000 13.333333
## [4565] 20.000000  6.666667  6.666667 13.333333  0.000000  0.000000  6.666667
## [4572]  0.000000  0.000000  0.000000 20.000000  0.000000 13.333333 13.333333
## [4579]  0.000000 13.333333  0.000000 13.333333 13.333333 13.333333  6.666667
## [4586] 13.333333 13.333333 20.000000 13.333333 13.333333 13.333333 13.333333
## [4593] 13.333333 20.000000  0.000000  6.666667  0.000000  0.000000 20.000000
## [4600] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4607] 20.000000 13.333333 13.333333 13.333333 33.333333 13.333333  0.000000
## [4614]  0.000000 13.333333 13.333333 46.666667  0.000000 46.666667  0.000000
## [4621] 46.666667  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000
## [4628] 46.666667  6.666667 13.333333  0.000000  0.000000  0.000000 46.666667
## [4635]  0.000000 20.000000  0.000000  0.000000  6.666667  0.000000  0.000000
## [4642] 13.333333 46.666667  0.000000 13.333333 26.666667 13.333333 26.666667
## [4649] 13.333333 46.666667 40.000000  0.000000  0.000000 13.333333  0.000000
## [4656] 33.333333  0.000000 13.333333  0.000000 13.333333 20.000000 20.000000
## [4663] 13.333333 13.333333 13.333333 13.333333 13.333333 46.666667 13.333333
## [4670]  0.000000  0.000000 20.000000  0.000000 13.333333  0.000000 13.333333
## [4677]  0.000000  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000
## [4684]  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000  0.000000
## [4691] 20.000000  6.666667  0.000000  0.000000  0.000000  0.000000 46.666667
## [4698] 26.666667 13.333333  0.000000  0.000000  0.000000 20.000000  0.000000
## [4705] 40.000000 46.666667 46.666667 46.666667 46.666667 46.666667 46.666667
## [4712] 46.666667  0.000000  0.000000  0.000000 20.000000 33.333333  0.000000
## [4719]  0.000000 13.333333 13.333333 13.333333 13.333333  0.000000 20.000000
## [4726] 13.333333  0.000000  0.000000 13.333333 40.000000 13.333333 46.666667
## [4733] 20.000000  0.000000  0.000000  6.666667 20.000000  0.000000  0.000000
## [4740] 13.333333  0.000000  6.666667 33.333333  6.666667 26.666667 13.333333
## [4747]  0.000000 13.333333  0.000000  0.000000  0.000000  0.000000  6.666667
## [4754] 13.333333  0.000000  0.000000 20.000000  0.000000  0.000000  0.000000
## [4761]  6.666667  6.666667 13.333333  0.000000  0.000000 13.333333  0.000000
## [4768]  0.000000  0.000000 13.333333 13.333333  0.000000  0.000000 20.000000
## [4775]  0.000000  6.666667  0.000000  0.000000  0.000000 13.333333 20.000000
## [4782]  0.000000 13.333333  0.000000 13.333333  0.000000  0.000000  0.000000
## [4789]  0.000000 13.333333  0.000000  0.000000 13.333333  0.000000  0.000000
## [4796] 40.000000 46.666667 13.333333  0.000000 46.666667  0.000000  0.000000
## [4803] 13.333333 20.000000 13.333333 26.666667 20.000000  0.000000 20.000000
## [4810]  0.000000  0.000000  0.000000  0.000000 46.666667  0.000000 13.333333
## [4817] 13.333333 46.666667 13.333333  0.000000 13.333333  0.000000  0.000000
## [4824] 13.333333  0.000000  0.000000  0.000000 13.333333 20.000000 20.000000
## [4831]  0.000000  0.000000 26.666667  0.000000  0.000000  0.000000 13.333333
## [4838]  0.000000 13.333333  0.000000  0.000000  0.000000  6.666667  6.666667
## [4845]  6.666667  6.666667  6.666667  6.666667  6.666667  6.666667 26.666667
## [4852] 13.333333  6.666667  6.666667  6.666667  6.666667 20.000000  0.000000
## [4859] 20.000000  0.000000 13.333333  0.000000  0.000000  0.000000  6.666667
## [4866]  0.000000  0.000000 60.000000  0.000000 13.333333  0.000000  0.000000
## [4873] 20.000000  0.000000  6.666667  0.000000 13.333333  0.000000 13.333333
## [4880] 13.333333 13.333333  0.000000  0.000000  0.000000 13.333333  0.000000
## [4887]  0.000000 13.333333  0.000000  0.000000 46.666667 46.666667 13.333333
## [4894]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4901] 13.333333  6.666667 13.333333  0.000000  0.000000  0.000000 46.666667
## [4908] 20.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [4915]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [4922]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4929] 33.333333  6.666667  0.000000 46.666667 26.666667  0.000000  0.000000
## [4936]  0.000000 13.333333  0.000000  6.666667  6.666667 13.333333 20.000000
## [4943] 13.333333 20.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [4950] 13.333333  0.000000 46.666667  0.000000  0.000000  0.000000 46.666667
## [4957] 13.333333  0.000000 46.666667 13.333333 46.666667  0.000000  0.000000
## [4964]  0.000000  0.000000 46.666667 13.333333 20.000000 20.000000 20.000000
## [4971] 20.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [4978] 26.666667 20.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [4985]  6.666667  0.000000  0.000000 20.000000 13.333333 13.333333 13.333333
## [4992] 13.333333 26.666667 13.333333  0.000000 20.000000 13.333333 13.333333
## [4999]  0.000000  6.666667 46.666667  0.000000 46.666667  6.666667 46.666667
## [5006] 13.333333 13.333333 13.333333  0.000000 13.333333 13.333333 20.000000
## [5013] 13.333333  0.000000 40.000000 20.000000 13.333333 46.666667  0.000000
## [5020] 13.333333  0.000000  0.000000  0.000000  0.000000 26.666667  0.000000
## [5027] 20.000000  0.000000 20.000000  0.000000  0.000000 20.000000  0.000000
## [5034] 20.000000  0.000000 53.333333 40.000000 13.333333  0.000000  0.000000
## [5041] 20.000000 13.333333 53.333333  0.000000  0.000000  0.000000 26.666667
## [5048]  0.000000  0.000000  0.000000 20.000000  0.000000 33.333333 20.000000
## [5055]  0.000000 13.333333  0.000000 13.333333 13.333333 20.000000  0.000000
## [5062] 13.333333  0.000000  0.000000 13.333333  0.000000  0.000000 13.333333
## [5069] 13.333333 26.666667  0.000000 20.000000 60.000000 13.333333  0.000000
## [5076] 46.666667  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [5083] 20.000000 13.333333 20.000000  0.000000 20.000000  0.000000  0.000000
## [5090] 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333  0.000000
## [5097]  0.000000 13.333333  0.000000 33.333333 46.666667 13.333333 13.333333
## [5104]  0.000000 13.333333 20.000000  0.000000  0.000000  0.000000  6.666667
## [5111]  0.000000 46.666667 20.000000 46.666667 26.666667 13.333333 20.000000
## [5118]  0.000000 13.333333 13.333333 46.666667 13.333333 13.333333  0.000000
## [5125]  0.000000 46.666667  0.000000  0.000000 20.000000 13.333333 13.333333
## [5132] 33.333333  6.666667 20.000000  0.000000  6.666667 13.333333 40.000000
## [5139]  0.000000  0.000000 13.333333  0.000000  0.000000  6.666667  0.000000
## [5146] 20.000000  0.000000 20.000000  0.000000 20.000000 13.333333  0.000000
## [5153] 13.333333  0.000000  0.000000  0.000000  6.666667 20.000000  0.000000
## [5160]  0.000000  0.000000 13.333333 13.333333  0.000000  0.000000  0.000000
## [5167]  6.666667 13.333333  0.000000  0.000000  0.000000  0.000000 46.666667
## [5174] 46.666667 46.666667 13.333333  0.000000  0.000000 26.666667 20.000000
## [5181]  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000 20.000000
## [5188] 46.666667 13.333333 26.666667 46.666667  0.000000 46.666667 13.333333
## [5195]  0.000000  0.000000 40.000000  0.000000  0.000000 13.333333  0.000000
## [5202] 13.333333  0.000000  0.000000 26.666667 40.000000  0.000000 26.666667
## [5209]  0.000000  6.666667  0.000000  0.000000  0.000000  0.000000  0.000000
## [5216]  0.000000  0.000000 13.333333  0.000000 13.333333 60.000000 20.000000
## [5223]  0.000000 13.333333  0.000000 13.333333  6.666667  0.000000  0.000000
## [5230]  0.000000  6.666667  0.000000 13.333333  0.000000 13.333333 13.333333
## [5237]  0.000000  0.000000  0.000000 46.666667  0.000000  0.000000  0.000000
## [5244] 20.000000 20.000000 33.333333  0.000000  0.000000 13.333333  0.000000
## [5251] 13.333333  0.000000  0.000000 26.666667  0.000000 13.333333  0.000000
## [5258]  0.000000  0.000000 20.000000  0.000000  0.000000 46.666667  0.000000
## [5265]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [5272]  0.000000  0.000000 13.333333  0.000000  0.000000  0.000000 13.333333
## [5279]  0.000000  0.000000  0.000000 46.666667 20.000000 13.333333  0.000000
## [5286] 13.333333  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [5293]  0.000000  0.000000  0.000000  0.000000  0.000000 20.000000 13.333333
## [5300]  0.000000  6.666667  0.000000 46.666667  0.000000  0.000000  0.000000
## [5307] 46.666667  0.000000 13.333333 13.333333 20.000000  0.000000 13.333333
## [5314] 20.000000  0.000000 20.000000 60.000000 46.666667  0.000000  0.000000
## [5321] 26.666667 20.000000  0.000000  0.000000  6.666667  0.000000  0.000000
## [5328] 40.000000  0.000000  6.666667 20.000000  0.000000  0.000000  0.000000
## [5335]  0.000000  0.000000  0.000000 53.333333 13.333333 26.666667 46.666667
## [5342] 13.333333  6.666667  0.000000 33.333333  0.000000 46.666667  0.000000
## [5349]  0.000000  6.666667  0.000000 20.000000 46.666667  0.000000 13.333333
## [5356]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000  6.666667
## [5363]  0.000000 46.666667 40.000000  0.000000 20.000000 20.000000  0.000000
## [5370] 46.666667 20.000000 13.333333  0.000000  0.000000  0.000000  0.000000
## [5377] 20.000000  0.000000  0.000000 20.000000 13.333333 13.333333 40.000000
## [5384]  0.000000  0.000000  0.000000  0.000000  6.666667 13.333333  0.000000
## [5391]  0.000000 13.333333  0.000000 13.333333  6.666667 26.666667 13.333333
## [5398] 60.000000  0.000000 20.000000  0.000000  0.000000 46.666667 13.333333
## [5405]  0.000000 20.000000  0.000000 20.000000  0.000000  0.000000  0.000000
## [5412]  0.000000  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [5419]  0.000000 20.000000 13.333333  0.000000  0.000000  0.000000 60.000000
## [5426] 53.333333 26.666667  0.000000 33.333333  0.000000  0.000000 13.333333
## [5433]  0.000000 13.333333  0.000000  0.000000 13.333333 20.000000 20.000000
## [5440] 46.666667 46.666667 40.000000  0.000000  0.000000 26.666667  0.000000
## [5447]  0.000000 13.333333  6.666667  0.000000 13.333333 13.333333 46.666667
## [5454] 46.666667 20.000000  0.000000 46.666667 13.333333  0.000000 46.666667
## [5461]  6.666667  0.000000  0.000000  0.000000 13.333333  0.000000  0.000000
## [5468]  0.000000  0.000000 33.333333 46.666667  6.666667 33.333333  0.000000
## [5475]  0.000000  0.000000  0.000000 40.000000  0.000000 46.666667  0.000000
## [5482]  0.000000 26.666667 46.666667 20.000000 20.000000 13.333333  0.000000
## [5489] 33.333333  0.000000 20.000000 13.333333  6.666667 13.333333  0.000000
## [5496]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## [5503] 20.000000  0.000000  0.000000  0.000000  0.000000  0.000000 13.333333
## [5510] 20.000000 13.333333 20.000000  0.000000  6.666667 13.333333 26.666667
## [5517]  0.000000 46.666667 26.666667 13.333333 60.000000 13.333333 13.333333
## [5524] 13.333333 26.666667 13.333333 20.000000 13.333333 20.000000 13.333333
## [5531] 13.333333 60.000000 13.333333 13.333333 60.000000 26.666667 13.333333
## [5538] 33.333333 13.333333 20.000000 13.333333 13.333333 13.333333 26.666667
## [5545] 60.000000 46.666667 33.333333 60.000000 13.333333 13.333333 26.666667
## [5552] 40.000000 13.333333 13.333333 13.333333 13.333333 60.000000 60.000000
## [5559] 13.333333 60.000000 60.000000 13.333333 13.333333 26.666667 66.666667
## [5566] 60.000000 26.666667 26.666667 60.000000 26.666667 60.000000 26.666667
## [5573] 33.333333 13.333333 60.000000 13.333333 13.333333 13.333333 13.333333
## [5580] 33.333333 20.000000 13.333333 46.666667 26.666667 13.333333 13.333333
## [5587] 13.333333 40.000000 13.333333 53.333333 13.333333 13.333333 60.000000
## [5594] 60.000000 13.333333 13.333333 20.000000 13.333333 13.333333 60.000000
## [5601] 13.333333 13.333333 26.666667 13.333333 60.000000 26.666667 60.000000
## [5608] 33.333333 60.000000 13.333333 26.666667 13.333333 13.333333 13.333333
## [5615] 13.333333 26.666667 26.666667 26.666667 13.333333 13.333333 13.333333
## [5622] 33.333333 20.000000 60.000000 33.333333 26.666667 13.333333 13.333333
## [5629] 13.333333 60.000000 33.333333 13.333333 53.333333 60.000000 33.333333
## [5636] 13.333333 60.000000 13.333333 60.000000 46.666667 60.000000 26.666667
## [5643] 60.000000 20.000000 26.666667 33.333333 26.666667 13.333333 40.000000
## [5650] 20.000000 13.333333 26.666667 13.333333 26.666667 13.333333 60.000000
## [5657] 26.666667 60.000000 20.000000 26.666667 33.333333 26.666667 20.000000
## [5664] 40.000000 26.666667 26.666667 33.333333 13.333333 13.333333 13.333333
## [5671] 13.333333 13.333333 26.666667 13.333333 13.333333 13.333333 53.333333
## [5678] 26.666667 33.333333 13.333333 13.333333 13.333333 46.666667 13.333333
## [5685] 26.666667 20.000000 13.333333 33.333333 26.666667 60.000000 60.000000
## [5692] 13.333333 26.666667 13.333333 13.333333 40.000000 26.666667 26.666667
## [5699] 26.666667 13.333333 26.666667 13.333333 13.333333 13.333333 60.000000
## [5706] 26.666667 33.333333 20.000000 13.333333 60.000000 13.333333 13.333333
## [5713] 26.666667 26.666667 60.000000 13.333333 13.333333 13.333333 13.333333
## [5720] 13.333333 20.000000 13.333333 33.333333 13.333333 13.333333 46.666667
## [5727] 33.333333 13.333333 26.666667 13.333333 60.000000 26.666667 26.666667
## [5734] 60.000000 26.666667 13.333333 26.666667 13.333333 13.333333 20.000000
## [5741] 13.333333 40.000000 13.333333 13.333333 13.333333 13.333333 13.333333
## [5748] 40.000000 13.333333 60.000000 60.000000 73.333333 26.666667 20.000000
## [5755] 60.000000 13.333333 13.333333 60.000000 13.333333 13.333333 53.333333
## [5762] 13.333333 26.666667 26.666667 13.333333 13.333333 26.666667 13.333333
## [5769] 13.333333 20.000000 26.666667 26.666667 26.666667 33.333333 26.666667
## [5776] 60.000000 13.333333 13.333333 26.666667 13.333333 13.333333 26.666667
## [5783] 60.000000 60.000000 13.333333 40.000000 33.333333 33.333333 26.666667
## [5790] 13.333333 13.333333 13.333333 13.333333 33.333333 13.333333 13.333333
## [5797] 26.666667 26.666667 13.333333 40.000000 13.333333 33.333333 13.333333
## [5804] 60.000000 13.333333 60.000000 33.333333 13.333333 26.666667 26.666667
## [5811] 13.333333 13.333333 60.000000 13.333333 26.666667 13.333333 46.666667
## [5818] 13.333333 20.000000 13.333333 13.333333 26.666667 33.333333 13.333333
## [5825] 26.666667 13.333333 60.000000 26.666667 13.333333 26.666667 13.333333
## [5832] 13.333333 26.666667 26.666667 33.333333 13.333333 40.000000 26.666667
## [5839] 53.333333 40.000000 60.000000 60.000000 46.666667 26.666667 13.333333
## [5846] 26.666667 60.000000 20.000000 26.666667 46.666667 46.666667 13.333333
## [5853] 13.333333 60.000000 26.666667 26.666667 13.333333 13.333333 33.333333
## [5860] 13.333333 33.333333 26.666667 26.666667 26.666667 26.666667 26.666667
## [5867] 13.333333 60.000000 13.333333 26.666667 13.333333 13.333333 13.333333
## [5874] 26.666667 20.000000 13.333333 13.333333 26.666667 40.000000 26.666667
## [5881] 13.333333 13.333333 33.333333 26.666667 13.333333 26.666667 33.333333
## [5888] 33.333333 13.333333 13.333333 13.333333 13.333333 13.333333 60.000000
## [5895] 53.333333 13.333333 13.333333 33.333333 26.666667 53.333333 26.666667
## [5902] 33.333333 20.000000 13.333333 13.333333 20.000000 26.666667 13.333333
## [5909] 26.666667 13.333333 13.333333 20.000000 26.666667 13.333333 13.333333
## [5916] 26.666667 13.333333 33.333333 13.333333 13.333333 13.333333 13.333333
## [5923] 33.333333 13.333333 46.666667 33.333333 33.333333 13.333333 26.666667
## [5930] 13.333333 60.000000 26.666667 26.666667 26.666667 33.333333 13.333333
## [5937] 60.000000 73.333333 33.333333 13.333333 13.333333 13.333333 33.333333
## [5944] 26.666667 26.666667 13.333333 13.333333 13.333333 26.666667 60.000000
## [5951] 13.333333 13.333333 13.333333 46.666667 13.333333 26.666667 33.333333
## [5958] 60.000000 26.666667 13.333333 60.000000 33.333333 33.333333 33.333333
## [5965] 13.333333 53.333333 13.333333 26.666667 33.333333 13.333333 13.333333
## [5972] 53.333333 13.333333 26.666667 13.333333 13.333333 53.333333 13.333333
## [5979] 26.666667 26.666667 13.333333 26.666667 40.000000 13.333333 26.666667
## [5986] 13.333333 13.333333 20.000000 26.666667 73.333333 26.666667 46.666667
## [5993] 26.666667 40.000000 46.666667 13.333333 13.333333 26.666667 13.333333
## [6000] 33.333333 33.333333 13.333333 60.000000 13.333333 26.666667 60.000000
## [6007] 33.333333 66.666667 13.333333 13.333333 13.333333 60.000000 26.666667
## [6014] 26.666667 26.666667 13.333333 26.666667 13.333333 13.333333 13.333333
## [6021] 46.666667 60.000000 13.333333 13.333333 26.666667 13.333333 13.333333
## [6028] 33.333333 26.666667 13.333333 13.333333 13.333333 33.333333 60.000000
## [6035] 13.333333 60.000000 40.000000 40.000000 33.333333 53.333333 13.333333
## [6042] 13.333333 13.333333 60.000000 26.666667 13.333333 60.000000 60.000000
## [6049] 40.000000 13.333333 13.333333 26.666667 26.666667 26.666667 73.333333
## [6056] 33.333333 13.333333 13.333333 33.333333 60.000000 13.333333 20.000000
## [6063] 13.333333 13.333333 13.333333 13.333333 20.000000 26.666667 33.333333
## [6070] 13.333333 13.333333 26.666667 13.333333 13.333333 26.666667 13.333333
## [6077] 13.333333 13.333333 26.666667 13.333333 53.333333 40.000000 13.333333
## [6084] 33.333333 13.333333 20.000000 13.333333 33.333333 20.000000 26.666667
## [6091] 13.333333 26.666667 13.333333 60.000000 26.666667 13.333333 13.333333
## [6098] 13.333333 40.000000 20.000000 60.000000 20.000000 13.333333 26.666667
## [6105] 26.666667 40.000000 13.333333 26.666667 60.000000 13.333333 60.000000
## [6112] 26.666667 13.333333 13.333333 60.000000 60.000000 26.666667 33.333333
## [6119] 13.333333 60.000000 53.333333 33.333333 26.666667 13.333333 60.000000
## [6126] 60.000000 33.333333 33.333333 40.000000 33.333333 13.333333 13.333333
## [6133] 13.333333 20.000000 26.666667 60.000000 13.333333 33.333333 13.333333
## [6140] 26.666667 26.666667 13.333333 13.333333 26.666667 40.000000 13.333333
## [6147] 60.000000 13.333333 26.666667 13.333333 26.666667 13.333333 13.333333
## [6154] 60.000000 60.000000 26.666667 33.333333 13.333333 46.666667 13.333333
## [6161] 60.000000 13.333333 60.000000 13.333333 13.333333 33.333333 60.000000
## [6168] 53.333333 13.333333 13.333333 26.666667 13.333333 13.333333 13.333333
## [6175] 26.666667 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333
## [6182] 26.666667 13.333333 13.333333 40.000000 26.666667 40.000000 20.000000
## [6189] 33.333333 60.000000 13.333333 13.333333 13.333333 13.333333 20.000000
## [6196] 33.333333 26.666667 13.333333 13.333333 13.333333 13.333333 13.333333
## [6203] 26.666667 13.333333 13.333333 13.333333 26.666667 13.333333 13.333333
## [6210] 33.333333 13.333333 13.333333 60.000000 20.000000 20.000000 26.666667
## [6217] 53.333333 60.000000 13.333333 13.333333 13.333333 53.333333 53.333333
## [6224] 13.333333 13.333333 13.333333 13.333333 60.000000 60.000000 13.333333
## [6231] 60.000000 13.333333 13.333333 20.000000 13.333333 20.000000 26.666667
## [6238] 26.666667 13.333333 33.333333 13.333333 26.666667 33.333333 40.000000
## [6245] 40.000000 60.000000 13.333333 60.000000 60.000000 26.666667 46.666667
## [6252] 13.333333 26.666667 20.000000 26.666667 60.000000 13.333333 13.333333
## [6259] 13.333333 26.666667 60.000000 26.666667 13.333333 26.666667 13.333333
## [6266] 46.666667 13.333333 33.333333 13.333333 13.333333 13.333333 60.000000
## [6273] 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333 13.333333
## [6280] 26.666667 26.666667 26.666667 13.333333 13.333333 60.000000 13.333333
## [6287] 13.333333 33.333333 33.333333 13.333333 26.666667 33.333333 33.333333
## [6294] 13.333333 26.666667 13.333333 33.333333 33.333333 13.333333 73.333333
## [6301] 13.333333 26.666667 26.666667 26.666667 13.333333 26.666667 13.333333
## [6308] 66.666667 60.000000 46.666667 13.333333 13.333333 26.666667 26.666667
## [6315] 26.666667 13.333333 13.333333 13.333333 20.000000 60.000000 20.000000
## [6322] 26.666667 13.333333 40.000000 13.333333 13.333333 13.333333 26.666667
## [6329] 46.666667 13.333333 60.000000 13.333333 33.333333 13.333333 26.666667
## [6336] 40.000000 26.666667 33.333333 13.333333 60.000000
#Plot1
md.pattern(dataMI)

##      data7.ID_t data7.sex_c data7.age_c data7.sen data7.reasoning
## 2462          1           1           1         1               1
## 13            1           1           1         1               1
## 6             1           1           1         1               1
## 981           1           1           1         1               1
## 171           1           1           1         1               1
## 1             1           1           1         1               1
## 455           1           1           1         1               1
## 15            1           1           1         1               1
## 1             1           1           1         1               1
## 10            1           1           1         1               1
## 2             1           1           1         1               1
## 15            1           1           1         1               1
## 19            1           1           1         1               1
## 14            1           1           1         1               1
## 1             1           1           1         1               1
## 6             1           1           1         1               1
## 1             1           1           1         1               1
## 91            1           1           1         1               1
## 20            1           1           1         1               1
## 8             1           1           1         1               1
## 8             1           1           1         1               1
## 1             1           1           1         1               1
## 1             1           1           1         1               1
## 2             1           1           1         1               1
## 1             1           1           1         1               1
## 1             1           1           1         1               1
## 3             1           1           1         1               1
## 4             1           1           1         1               1
## 94            1           1           1         1               1
## 109           1           1           1         1               1
## 30            1           1           1         1               1
## 506           1           1           1         1               1
## 2             1           1           1         1               1
## 4             1           1           1         1               1
## 1             1           1           1         1               1
## 15            1           1           1         1               1
## 21            1           1           1         1               1
## 9             1           1           1         1               1
## 2             1           1           1         1               1
## 2             1           1           1         1               1
## 2             1           1           1         1               1
## 396           1           1           1         1               1
## 2             1           1           1         1               1
## 3             1           1           1         1               1
## 178           1           1           1         1               1
## 21            1           1           1         1               1
## 73            1           1           1         1               1
## 3             1           1           1         1               1
## 2             1           1           1         1               1
## 2             1           1           1         1               1
## 8             1           1           1         1               1
## 5             1           1           1         1               1
## 4             1           1           1         1               1
## 1             1           1           1         1               1
## 1             1           1           1         1               1
## 2             1           1           1         1               1
## 3             1           1           1         1               1
## 16            1           1           1         1               1
## 1             1           1           1         1               1
## 18            1           1           1         1               1
## 17            1           1           1         1               1
## 7             1           1           1         1               1
## 97            1           1           1         1               1
## 90            1           1           1         1               0
## 2             1           1           1         1               0
## 30            1           1           1         1               0
## 8             1           1           1         1               0
## 24            1           1           1         1               0
## 1             1           1           1         1               0
## 2             1           1           1         1               0
## 1             1           1           1         1               0
## 1             1           1           1         1               0
## 4             1           1           1         1               0
## 3             1           1           1         1               0
## 37            1           1           1         1               0
## 11            1           1           1         1               0
## 1             1           1           1         1               0
## 6             1           1           1         1               0
## 3             1           1           1         1               0
## 5             1           1           1         1               0
## 19            1           1           1         0               1
## 21            1           1           1         0               1
## 1             1           1           1         0               1
## 6             1           1           1         0               1
## 1             1           1           1         0               1
## 3             1           1           1         0               1
## 1             1           1           1         0               1
## 6             1           1           1         0               1
## 4             1           1           1         0               1
## 1             1           1           1         0               1
## 1             1           1           1         0               1
## 1             1           1           1         0               1
## 3             1           1           1         0               1
## 6             1           1           1         0               1
## 3             1           1           1         0               1
## 20            1           1           0         1               1
## 16            1           1           0         1               1
## 1             1           1           0         1               1
## 2             1           1           0         1               1
## 1             1           1           0         1               1
## 1             1           1           0         1               1
## 5             1           1           0         1               1
## 4             1           1           0         1               1
## 2             1           1           0         1               1
## 1             1           1           0         1               1
## 6             1           1           0         1               0
## 2             1           1           0         1               0
## 1             1           1           0         1               0
## 1             1           1           0         0               1
## 1             1           0           1         1               1
##               0           1          63        78             238
##      data7.reasoningZ data7.judgRE1T data7.judgMA1 data7.judgMA1T data7.judgRE1
## 2462                1              1             1              1             1
## 13                  1              1             1              1             1
## 6                   1              1             1              1             1
## 981                 1              1             1              1             1
## 171                 1              1             1              1             1
## 1                   1              1             1              1             1
## 455                 1              1             1              1             1
## 15                  1              1             1              1             1
## 1                   1              1             1              1             1
## 10                  1              1             1              1             1
## 2                   1              1             1              1             1
## 15                  1              1             1              1             1
## 19                  1              1             1              1             0
## 14                  1              1             1              1             0
## 1                   1              1             1              1             0
## 6                   1              1             1              1             0
## 1                   1              1             1              1             0
## 91                  1              1             1              0             1
## 20                  1              1             1              0             1
## 8                   1              1             1              0             1
## 8                   1              1             1              0             1
## 1                   1              1             1              0             1
## 1                   1              1             1              0             0
## 2                   1              1             0              1             1
## 1                   1              1             0              1             1
## 1                   1              1             0              1             1
## 3                   1              1             0              1             0
## 4                   1              1             0              1             0
## 94                  1              1             0              1             0
## 109                 1              1             0              1             0
## 30                  1              1             0              1             0
## 506                 1              1             0              1             0
## 2                   1              1             0              0             0
## 4                   1              1             0              0             0
## 1                   1              1             0              0             0
## 15                  1              1             0              0             0
## 21                  1              0             1              1             1
## 9                   1              0             1              1             1
## 2                   1              0             1              1             1
## 2                   1              0             1              1             1
## 2                   1              0             1              1             1
## 396                 1              0             1              0             1
## 2                   1              0             1              0             1
## 3                   1              0             1              0             1
## 178                 1              0             1              0             1
## 21                  1              0             1              0             1
## 73                  1              0             1              0             1
## 3                   1              0             1              0             1
## 2                   1              0             1              0             1
## 2                   1              0             1              0             1
## 8                   1              0             1              0             1
## 5                   1              0             1              0             0
## 4                   1              0             1              0             0
## 1                   1              0             1              0             0
## 1                   1              0             1              0             0
## 2                   1              0             0              1             0
## 3                   1              0             0              1             0
## 16                  1              0             0              1             0
## 1                   1              0             0              0             0
## 18                  1              0             0              0             0
## 17                  1              0             0              0             0
## 7                   1              0             0              0             0
## 97                  1              0             0              0             0
## 90                  0              1             1              1             1
## 2                   0              1             1              1             1
## 30                  0              1             1              1             1
## 8                   0              1             1              1             1
## 24                  0              1             1              1             1
## 1                   0              1             1              1             1
## 2                   0              1             1              1             1
## 1                   0              1             1              0             1
## 1                   0              1             0              1             1
## 4                   0              1             0              1             0
## 3                   0              1             0              1             0
## 37                  0              1             0              1             0
## 11                  0              0             1              0             1
## 1                   0              0             1              0             1
## 6                   0              0             1              0             1
## 3                   0              0             1              0             1
## 5                   0              0             0              0             0
## 19                  1              1             1              1             1
## 21                  1              1             1              1             1
## 1                   1              1             1              1             1
## 6                   1              1             1              1             1
## 1                   1              1             0              1             0
## 3                   1              1             0              1             0
## 1                   1              1             0              1             0
## 6                   1              1             0              1             0
## 4                   1              0             1              0             1
## 1                   1              0             1              0             1
## 1                   1              0             1              0             1
## 1                   1              0             0              1             0
## 3                   1              0             0              0             0
## 6                   1              0             0              0             0
## 3                   1              0             0              0             0
## 20                  1              1             1              1             1
## 16                  1              1             1              1             1
## 1                   1              1             1              1             1
## 2                   1              1             1              1             1
## 1                   1              1             0              1             0
## 1                   1              1             0              1             0
## 5                   1              1             0              1             0
## 4                   1              0             1              0             1
## 2                   1              0             1              0             1
## 1                   1              0             1              0             1
## 6                   0              1             1              1             1
## 2                   0              1             1              1             1
## 1                   0              1             1              1             1
## 1                   1              0             0              0             0
## 1                   1              1             1              1             1
##                   238            949          1015           1043          1063
##      data7.edu data7.eduZ data7.language data7.math_grade data7.reading_grade
## 2462         1          1              1                1                   1
## 13           1          1              1                1                   0
## 6            1          1              1                0                   1
## 981          1          1              1                0                   0
## 171          1          1              0                1                   1
## 1            1          1              0                0                   1
## 455          1          1              0                0                   0
## 15           0          0              1                1                   1
## 1            0          0              1                0                   1
## 10           0          0              1                0                   0
## 2            0          0              0                1                   1
## 15           0          0              0                0                   0
## 19           1          1              1                1                   1
## 14           1          1              1                0                   0
## 1            1          1              0                1                   1
## 6            1          1              0                0                   0
## 1            0          0              0                0                   0
## 91           1          1              1                1                   1
## 20           1          1              1                0                   0
## 8            1          1              0                1                   1
## 8            1          1              0                0                   0
## 1            0          0              1                0                   0
## 1            1          1              1                1                   1
## 2            1          1              1                1                   1
## 1            1          1              1                0                   0
## 1            1          1              0                0                   0
## 3            1          1              1                1                   1
## 4            1          1              1                0                   0
## 94           0          0              1                1                   1
## 109          0          0              1                0                   0
## 30           0          0              0                1                   1
## 506          0          0              0                0                   0
## 2            0          0              1                1                   1
## 4            0          0              1                0                   0
## 1            0          0              0                1                   1
## 15           0          0              0                0                   0
## 21           1          1              1                1                   1
## 9            1          1              1                0                   0
## 2            1          1              0                1                   1
## 2            1          1              0                0                   0
## 2            0          0              1                0                   0
## 396          1          1              1                1                   1
## 2            1          1              1                1                   0
## 3            1          1              1                0                   1
## 178          1          1              1                0                   0
## 21           1          1              0                1                   1
## 73           1          1              0                0                   0
## 3            0          0              1                1                   1
## 2            0          0              1                0                   0
## 2            0          0              0                1                   1
## 8            0          0              0                0                   0
## 5            1          1              1                1                   1
## 4            1          1              1                0                   0
## 1            1          1              0                0                   0
## 1            0          0              1                0                   0
## 2            0          0              1                1                   1
## 3            0          0              1                0                   0
## 16           0          0              0                0                   0
## 1            1          1              1                0                   0
## 18           0          0              1                1                   1
## 17           0          0              1                0                   0
## 7            0          0              0                1                   1
## 97           0          0              0                0                   0
## 90           1          1              1                1                   1
## 2            1          1              1                1                   0
## 30           1          1              1                0                   0
## 8            1          1              0                1                   1
## 24           1          1              0                0                   0
## 1            0          0              1                1                   1
## 2            0          0              1                0                   0
## 1            1          1              0                0                   0
## 1            0          0              1                0                   0
## 4            0          0              1                1                   1
## 3            0          0              1                0                   0
## 37           0          0              0                0                   0
## 11           1          1              1                1                   1
## 1            1          1              1                0                   1
## 6            1          1              1                0                   0
## 3            1          1              0                0                   0
## 5            0          0              0                0                   0
## 19           1          1              1                1                   1
## 21           1          1              1                0                   0
## 1            1          1              0                1                   1
## 6            1          1              0                0                   0
## 1            0          0              1                1                   1
## 3            0          0              1                0                   0
## 1            0          0              0                1                   1
## 6            0          0              0                0                   0
## 4            1          1              1                1                   1
## 1            1          1              1                0                   0
## 1            1          1              0                0                   0
## 1            0          0              0                0                   0
## 3            0          0              1                1                   1
## 6            0          0              1                0                   0
## 3            0          0              0                0                   0
## 20           1          1              1                1                   1
## 16           1          1              1                0                   0
## 1            1          1              0                1                   1
## 2            1          1              0                0                   0
## 1            0          0              1                1                   1
## 1            0          0              1                0                   0
## 5            0          0              0                0                   0
## 4            1          1              1                1                   1
## 2            1          1              1                0                   0
## 1            1          1              0                0                   0
## 6            1          1              1                1                   1
## 2            1          1              1                0                   0
## 1            0          0              0                0                   0
## 1            0          0              1                1                   1
## 1            1          1              1                0                   0
##           1070       1070           1557             2768                2773
##           
## 2462     0
## 13       1
## 6        1
## 981      2
## 171      1
## 1        2
## 455      3
## 15       2
## 1        3
## 10       4
## 2        3
## 15       5
## 19       1
## 14       3
## 1        2
## 6        4
## 1        6
## 91       1
## 20       3
## 8        2
## 8        4
## 1        5
## 1        2
## 2        1
## 1        3
## 1        4
## 3        2
## 4        4
## 94       4
## 109      6
## 30       5
## 506      7
## 2        5
## 4        7
## 1        6
## 15       8
## 21       1
## 9        3
## 2        2
## 2        4
## 2        5
## 396      2
## 2        3
## 3        3
## 178      4
## 21       3
## 73       5
## 3        4
## 2        6
## 2        5
## 8        7
## 5        3
## 4        5
## 1        6
## 1        7
## 2        5
## 3        7
## 16       8
## 1        6
## 18       6
## 17       8
## 7        7
## 97       9
## 90       2
## 2        3
## 30       4
## 8        3
## 24       5
## 1        4
## 2        6
## 1        6
## 1        7
## 4        6
## 3        8
## 37       9
## 11       4
## 1        5
## 6        6
## 3        7
## 5       11
## 19       1
## 21       3
## 1        2
## 6        4
## 1        5
## 3        7
## 1        6
## 6        8
## 4        3
## 1        5
## 1        6
## 1        9
## 3        7
## 6        9
## 3       10
## 20       1
## 16       3
## 1        2
## 2        4
## 1        5
## 1        7
## 5        8
## 4        3
## 2        5
## 1        6
## 6        3
## 2        5
## 1        8
## 1        8
## 1        3
##      13926
#Plot2
library(VIM)
## Lade nötiges Paket: colorspace
## Lade nötiges Paket: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attache Paket: 'VIM'
## Das folgende Objekt ist maskiert 'package:datasets':
## 
##     sleep
aggr_plot <- aggr(dataMI, col=c('navyblue', 'red'), numbers = TRUE, sortVars = TRUE)
## Warning in plot.aggr(res, ...): not enough vertical space to display frequencies
## (too many combinations)

## 
##  Variables sorted by number of missings: 
##             Variable        Count
##  data7.reading_grade 0.4373817035
##     data7.math_grade 0.4365930599
##       data7.language 0.2455835962
##            data7.edu 0.1687697161
##           data7.eduZ 0.1687697161
##        data7.judgRE1 0.1676656151
##       data7.judgMA1T 0.1645110410
##        data7.judgMA1 0.1600946372
##       data7.judgRE1T 0.1496845426
##      data7.reasoning 0.0375394322
##     data7.reasoningZ 0.0375394322
##            data7.sen 0.0123028391
##          data7.age_c 0.0099369085
##          data7.sex_c 0.0001577287
##           data7.ID_t 0.0000000000
#Plot3
marginplot(dataMI[c(2,4)])

#Multiple Imputation
data_complete <- mice(dataMI, m=5, maxit=50, meth='cart', seed=NA)
## 
##  iter imp variable
##   1   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   1   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   1   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   1   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   1   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   2   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   2   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   2   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   2   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   2   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   3   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   3   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   3   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   3   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   3   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   4   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   4   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   4   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   4   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   4   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   5   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   5   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   5   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   5   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   5   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   6   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   6   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   6   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   6   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   6   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   7   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   7   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   7   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   7   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   7   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   8   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   8   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   8   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   8   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   8   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   9   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   9   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   9   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   9   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   9   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   10   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   10   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   10   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   10   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   10   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   11   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   11   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   11   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   11   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   11   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   12   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   12   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   12   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   12   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   12   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   13   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   13   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   13   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   13   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   13   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   14   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   14   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   14   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   14   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   14   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   15   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   15   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   15   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   15   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   15   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   16   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   16   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   16   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   16   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   16   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   17   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   17   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   17   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   17   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   17   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   18   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   18   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   18   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   18   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   18   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   19   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   19   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   19   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   19   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   19   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   20   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   20   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   20   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   20   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   20   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   21   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   21   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   21   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   21   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   21   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   22   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   22   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   22   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   22   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   22   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   23   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   23   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   23   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   23   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   23   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   24   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   24   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   24   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   24   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   24   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   25   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   25   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   25   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   25   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   25   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   26   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   26   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   26   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   26   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   26   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   27   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   27   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   27   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   27   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   27   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   28   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   28   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   28   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   28   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   28   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   29   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   29   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   29   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   29   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   29   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   30   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   30   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   30   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   30   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   30   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   31   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   31   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   31   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   31   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   31   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   32   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   32   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   32   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   32   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   32   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   33   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   33   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   33   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   33   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   33   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   34   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   34   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   34   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   34   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   34   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   35   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   35   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   35   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   35   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   35   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   36   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   36   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   36   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   36   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   36   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   37   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   37   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   37   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   37   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   37   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   38   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   38   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   38   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   38   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   38   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   39   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   39   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   39   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   39   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   39   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   40   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   40   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   40   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   40   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   40   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   41   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   41   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   41   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   41   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   41   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   42   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   42   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   42   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   42   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   42   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   43   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   43   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   43   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   43   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   43   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   44   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   44   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   44   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   44   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   44   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   45   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   45   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   45   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   45   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   45   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   46   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   46   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   46   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   46   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   46   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   47   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   47   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   47   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   47   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   47   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   48   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   48   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   48   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   48   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   48   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   49   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   49   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   49   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   49   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   49   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   50   1  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   50   2  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   50   3  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   50   4  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
##   50   5  data7.sex_c  data7.age_c  data7.reasoning  data7.math_grade  data7.reading_grade  data7.judgMA1  data7.judgRE1  data7.edu  data7.language  data7.sen  data7.judgMA1T  data7.judgRE1T
## Warning: Number of logged events: 2
summary(data_complete)
## Class: mids
## Number of multiple imputations:  5 
## Imputation methods:
##          data7.ID_t         data7.sex_c         data7.age_c     data7.reasoning 
##                  ""              "cart"              "cart"              "cart" 
##    data7.reasoningZ    data7.math_grade data7.reading_grade       data7.judgMA1 
##                  ""              "cart"              "cart"              "cart" 
##       data7.judgRE1           data7.edu          data7.eduZ      data7.language 
##              "cart"              "cart"                  ""              "cart" 
##           data7.sen      data7.judgMA1T      data7.judgRE1T 
##              "cart"              "cart"              "cart" 
## PredictorMatrix:
##                  data7.ID_t data7.sex_c data7.age_c data7.reasoning
## data7.ID_t                0           1           1               1
## data7.sex_c               1           0           1               1
## data7.age_c               1           1           0               1
## data7.reasoning           1           1           1               0
## data7.reasoningZ          0           0           0               0
## data7.math_grade          1           1           1               1
##                  data7.reasoningZ data7.math_grade data7.reading_grade
## data7.ID_t                      0                1                   1
## data7.sex_c                     0                1                   1
## data7.age_c                     0                1                   1
## data7.reasoning                 0                1                   1
## data7.reasoningZ                0                0                   0
## data7.math_grade                0                0                   1
##                  data7.judgMA1 data7.judgRE1 data7.edu data7.eduZ
## data7.ID_t                   1             1         1          0
## data7.sex_c                  1             1         1          0
## data7.age_c                  1             1         1          0
## data7.reasoning              1             1         1          0
## data7.reasoningZ             0             0         0          0
## data7.math_grade             1             1         1          0
##                  data7.language data7.sen data7.judgMA1T data7.judgRE1T
## data7.ID_t                    1         1              1              1
## data7.sex_c                   1         1              1              1
## data7.age_c                   1         1              1              1
## data7.reasoning               1         1              1              1
## data7.reasoningZ              0         0              0              0
## data7.math_grade              1         1              1              1
## Number of logged events:  2 
##   it im dep      meth              out
## 1  0  0     collinear data7.reasoningZ
## 2  0  0     collinear       data7.eduZ
data_complete <- complete(data_complete, 1)
summary(data_complete)
##    data7.ID_t       data7.sex_c     data7.age_c    data7.reasoning
##  Min.   :2000568   Min.   :1.000   Min.   :6.084   Min.   : 0.00  
##  1st Qu.:3005629   1st Qu.:1.000   1st Qu.:7.420   1st Qu.: 6.00  
##  Median :3007578   Median :2.000   Median :7.671   Median : 7.00  
##  Mean   :2924479   Mean   :1.511   Mean   :7.728   Mean   : 6.76  
##  3rd Qu.:3017798   3rd Qu.:2.000   3rd Qu.:8.000   3rd Qu.: 8.00  
##  Max.   :3023458   Max.   :2.000   Max.   :9.503   Max.   :12.00  
##                                                                   
##  data7.reasoningZ   data7.math_grade data7.reading_grade data7.judgMA1  
##  Min.   :-2.58924   Min.   :1.00     Min.   :1.000       Min.   :1.000  
##  1st Qu.:-0.29552   1st Qu.:2.00     1st Qu.:2.000       1st Qu.:3.000  
##  Median : 0.08677   Median :2.00     Median :2.000       Median :3.000  
##  Mean   : 0.00000   Mean   :2.06     Mean   :2.175       Mean   :3.558  
##  3rd Qu.: 0.46906   3rd Qu.:3.00     3rd Qu.:3.000       3rd Qu.:4.000  
##  Max.   : 1.99821   Max.   :5.00     Max.   :6.000       Max.   :5.000  
##  NA's   :238                                                            
##  data7.judgRE1     data7.edu       data7.eduZ      data7.language  
##  Min.   :1.000   Min.   : 9.00   Min.   :-2.5416   Min.   :0.0000  
##  1st Qu.:3.000   1st Qu.:13.00   1st Qu.:-0.8242   1st Qu.:0.0000  
##  Median :3.000   Median :15.00   Median : 0.0345   Median :0.0000  
##  Mean   :3.317   Mean   :14.86   Mean   : 0.0000   Mean   :0.1975  
##  3rd Qu.:4.000   3rd Qu.:18.00   3rd Qu.: 1.3225   3rd Qu.:0.0000  
##  Max.   :5.000   Max.   :18.00   Max.   : 1.3225   Max.   :1.0000  
##                                  NA's   :1070                      
##    data7.sen     data7.judgMA1T  data7.judgRE1T 
##  Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :1.000   Median :3.000   Median :3.000  
##  Mean   :1.028   Mean   :3.323   Mean   :3.201  
##  3rd Qu.:1.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :2.000   Max.   :5.000   Max.   :5.000  
## 
###Merge imputed data with outcome variables
data8 <- data_complete
data9 <- merge(data8, datoutcome, by = "data7.ID_t", all = T)

###Packages
library(lme4)
## Lade nötiges Paket: Matrix
## 
## Attache Paket: 'Matrix'
## Die folgenden Objekte sind maskiert von 'package:tidyr':
## 
##     expand, pack, unpack
library(multilevelTools)
library(lmerTest)
## 
## Attache Paket: 'lmerTest'
## Das folgende Objekt ist maskiert 'package:lme4':
## 
##     lmer
## Das folgende Objekt ist maskiert 'package:stats':
## 
##     step
library(extraoperators)
## 
## Attache Paket: 'extraoperators'
## Das folgende Objekt ist maskiert 'package:Hmisc':
## 
##     %nin%
library(JWileymisc)
## 
## Attache Paket: 'JWileymisc'
## Das folgende Objekt ist maskiert 'package:psych':
## 
##     cor2cov
###checking the distribution of the dependent variables
mathClass2 <- meanDecompose(math2 ~ ID_e, data = data9)
str(mathClass2, nchar.max = 30)
## List of 2
##  $ math2 by ID_e    :Classes 'data.table' and 'data.frame':  842 obs. of  2 variables:
##   ..$ ID_e: num [1:842] 1011931 1011916| __truncated__ ...
##   ..$ X   : num [1:842] 0.325 0.343 0.721 0.277 0.853 ...
##   ..- attr(*, ".internal.selfref")=<externalptr> 
##  $ math2 by residual:Classes 'data.table' and 'data.frame':  6340 obs. of  1 variable:
##   ..$ X: num [1:6340] 0.4426 -0.6637 | __truncated__ ...
##   ..- attr(*, ".internal.selfref")=<externalptr>
plot(testDistribution(mathClass2[["math2 by ID_e"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Between Classes Math2")

plot(testDistribution(mathClass2[["math2 by residual"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Within Classes Math2")

mathSchool2 <- meanDecompose(math2 ~ ID_i.4, data = data9)
str(mathSchool2, nchar.max = 30)
## List of 2
##  $ math2 by ID_i.4  :Classes 'data.table' and 'data.frame':  361 obs. of  2 variables:
##   ..$ ID_i.4: num [1:361] 1e+06 1e+06 1e+06 1e+06 1e+06 ...
##   ..$ X     : num [1:361] 0.3525 0.0112 0| __truncated__ ...
##   ..- attr(*, ".internal.selfref")=<externalptr> 
##  $ math2 by residual:Classes 'data.table' and 'data.frame':  6340 obs. of  1 variable:
##   ..$ X: num [1:6340] 0.415 -0.332 0.| __truncated__ ...
##   ..- attr(*, ".internal.selfref")=<externalptr>
plot(testDistribution(mathSchool2[["math2 by ID_i.4"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Between Schools Math2")

plot(testDistribution(mathSchool2[["math2 by residual"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Within Schools Math2")

readClass2 <- meanDecompose(read2 ~ ID_e, data = data9)
str(readClass2, nchar.max = 30)
## List of 2
##  $ read2 by ID_e    :Classes 'data.table' and 'data.frame':  842 obs. of  2 variables:
##   ..$ ID_e: num [1:842] 1011931 1011916| __truncated__ ...
##   ..$ X   : num [1:842] 7.33 5.33 9.5 8.25 10 ...
##   ..- attr(*, ".internal.selfref")=<externalptr> 
##  $ read2 by residual:Classes 'data.table' and 'data.frame':  6340 obs. of  1 variable:
##   ..$ X: num [1:6340] -3.33 -2.33 5.5 -3.25 4 ...
##   ..- attr(*, ".internal.selfref")=<externalptr>
plot(testDistribution(readClass2[["read2 by ID_e"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Between Classes Read2")

plot(testDistribution(readClass2[["read2 by residual"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Within Classes Read2")

readSchool2 <- meanDecompose(read2 ~ ID_i.4, data = data9)
str(readSchool2, nchar.max = 30)
## List of 2
##  $ read2 by ID_i.4  :Classes 'data.table' and 'data.frame':  361 obs. of  2 variables:
##   ..$ ID_i.4: num [1:361] 1e+06 1e+06 1e+06 1e+06 1e+06 ...
##   ..$ X     : num [1:361] 6.28 6.8 11.67 7.83 8.81 ...
##   ..- attr(*, ".internal.selfref")=<externalptr> 
##  $ read2 by residual:Classes 'data.table' and 'data.frame':  6340 obs. of  1 variable:
##   ..$ X: num [1:6340] -2.28 -3.8 3.33 -2.83 5.19 ...
##   ..- attr(*, ".internal.selfref")=<externalptr>
plot(testDistribution(readSchool2[["read2 by ID_i.4"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Between Schools Read2")

plot(testDistribution(readSchool2[["read2 by residual"]]$X,
                      extremevalues = "theoretical", ev.perc = .001),
     varlab = "Within Schools Read2")

####Correlations
library(dplyr)
library(psych)
datacor <- select(data9, data7.sex_c, data7.age_c, data7.sen, data7.language, data7.edu,
                  data7.judgMA1, data7.judgMA1T, data7.judgRE1, data7.judgRE1T,
                  math2, read2, data7.reasoning, data7.math_grade, data7.reading_grade)
cor(datacor, method= "pearson", use="complete.obs")
##                      data7.sex_c  data7.age_c   data7.sen data7.language
## data7.sex_c          1.000000000 -0.085251770 -0.04966675   -0.002574901
## data7.age_c         -0.085251770  1.000000000  0.07023478   -0.012404965
## data7.sen           -0.049666749  0.070234785  1.00000000    0.065050650
## data7.language      -0.002574901 -0.012404965  0.06505065    1.000000000
## data7.edu           -0.010838068 -0.112422950 -0.07898101   -0.247137619
## data7.judgMA1       -0.180018458  0.008543706 -0.07245685    0.046158899
## data7.judgMA1T      -0.147264937 -0.011034460 -0.13777890   -0.061669295
## data7.judgRE1        0.065830068 -0.046506510 -0.15013067   -0.025040330
## data7.judgRE1T       0.095795214 -0.038149278 -0.17372680   -0.131550033
## math2               -0.157031788  0.030639110 -0.12402208   -0.108459179
## read2                0.057336322  0.001263608 -0.10535352   -0.061169563
## data7.reasoning      0.067406159  0.006643082 -0.10197490   -0.032223374
## data7.math_grade     0.053138725  0.036938503  0.14969599    0.029816311
## data7.reading_grade -0.179173589  0.066650411  0.19584172    0.050068105
##                       data7.edu data7.judgMA1 data7.judgMA1T data7.judgRE1
## data7.sex_c         -0.01083807  -0.180018458    -0.14726494    0.06583007
## data7.age_c         -0.11242295   0.008543706    -0.01103446   -0.04650651
## data7.sen           -0.07898101  -0.072456855    -0.13777890   -0.15013067
## data7.language      -0.24713762   0.046158899    -0.06166929   -0.02504033
## data7.edu            1.00000000   0.091576968     0.23903350    0.18884574
## data7.judgMA1        0.09157697   1.000000000     0.43167770    0.28146002
## data7.judgMA1T       0.23903350   0.431677704     1.00000000    0.30279016
## data7.judgRE1        0.18884574   0.281460015     0.30279016    1.00000000
## data7.judgRE1T       0.31005907   0.233434034     0.63088443    0.44263042
## math2                0.28382071   0.360917597     0.48167670    0.25565276
## read2                0.22319762   0.181986810     0.36600110    0.38522698
## data7.reasoning      0.16396137   0.197181590     0.29966263    0.16043822
## data7.math_grade    -0.26097816  -0.385338506    -0.51575604   -0.30091013
## data7.reading_grade -0.26946816  -0.204229907    -0.40917938   -0.39444677
##                     data7.judgRE1T       math2        read2 data7.reasoning
## data7.sex_c             0.09579521 -0.15703179  0.057336322     0.067406159
## data7.age_c            -0.03814928  0.03063911  0.001263608     0.006643082
## data7.sen              -0.17372680 -0.12402208 -0.105353518    -0.101974901
## data7.language         -0.13155003 -0.10845918 -0.061169563    -0.032223374
## data7.edu               0.31005907  0.28382071  0.223197622     0.163961372
## data7.judgMA1           0.23343403  0.36091760  0.181986810     0.197181590
## data7.judgMA1T          0.63088443  0.48167670  0.366001096     0.299662626
## data7.judgRE1           0.44263042  0.25565276  0.385226977     0.160438216
## data7.judgRE1T          1.00000000  0.39611754  0.455006555     0.273672382
## math2                   0.39611754  1.00000000  0.456965530     0.392202345
## read2                   0.45500656  0.45696553  1.000000000     0.271856299
## data7.reasoning         0.27367238  0.39220235  0.271856299     1.000000000
## data7.math_grade       -0.44212816 -0.44498236 -0.337852749    -0.295924266
## data7.reading_grade    -0.52099262 -0.33935816 -0.404241655    -0.270696661
##                     data7.math_grade data7.reading_grade
## data7.sex_c               0.05313872         -0.17917359
## data7.age_c               0.03693850          0.06665041
## data7.sen                 0.14969599          0.19584172
## data7.language            0.02981631          0.05006810
## data7.edu                -0.26097816         -0.26946816
## data7.judgMA1            -0.38533851         -0.20422991
## data7.judgMA1T           -0.51575604         -0.40917938
## data7.judgRE1            -0.30091013         -0.39444677
## data7.judgRE1T           -0.44212816         -0.52099262
## math2                    -0.44498236         -0.33935816
## read2                    -0.33785275         -0.40424165
## data7.reasoning          -0.29592427         -0.27069666
## data7.math_grade          1.00000000          0.58397679
## data7.reading_grade       0.58397679          1.00000000
cor_test_mat <- corr.test(datacor)$p    
cor_test_mat                         
##                      data7.sex_c  data7.age_c    data7.sen data7.language
## data7.sex_c         0.000000e+00 5.567397e-11 4.974455e-04   1.000000e+00
## data7.age_c         1.988356e-12 0.000000e+00 8.037419e-13   1.000000e+00
## data7.sen           3.109034e-05 2.771524e-14 0.000000e+00   8.174426e-06
## data7.language      9.182890e-01 2.873955e-01 3.768728e-07   0.000000e+00
## data7.edu           4.832938e-01 8.090123e-21 2.456679e-12   1.862587e-96
## data7.judgMA1       1.931843e-42 9.311271e-01 6.877196e-12   8.291309e-04
## data7.judgMA1T      4.116223e-29 1.550669e-01 4.012854e-36   8.501077e-09
## data7.judgRE1       3.334195e-08 2.205071e-06 8.467291e-35   1.773508e-02
## data7.judgRE1T      1.707553e-14 3.809058e-05 1.226394e-49   1.390669e-28
## math2               3.763929e-31 6.564020e-02 2.949018e-26   1.839624e-20
## read2               9.030920e-06 9.494254e-01 5.680639e-17   2.603656e-06
## data7.reasoning     3.715648e-07 6.995700e-01 1.947178e-20   3.581196e-03
## data7.math_grade    2.104894e-04 4.098781e-05 3.154261e-36   8.681158e-03
## data7.reading_grade 5.004066e-45 3.877114e-10 3.287172e-57   2.996910e-06
##                         data7.edu data7.judgMA1 data7.judgMA1T data7.judgRE1
## data7.sex_c          1.000000e+00  8.306924e-41   1.564165e-27  7.668648e-07
## data7.age_c          2.831543e-19  1.000000e+00   1.000000e+00  4.410143e-05
## data7.sen            6.633033e-11  1.788071e-10   1.645270e-34  3.386916e-33
## data7.language       1.043049e-94  9.949571e-03   2.040258e-07  1.596157e-01
## data7.edu            0.000000e+00  1.644465e-13   2.753700e-89  1.460254e-55
## data7.judgMA1        5.304725e-15  0.000000e+00  3.439230e-299 8.385264e-121
## data7.judgMA1T       5.006727e-91 4.194183e-301   0.000000e+00 4.222265e-141
## data7.judgRE1        2.920508e-57 1.352462e-122  6.397371e-143  0.000000e+00
## data7.judgRE1T      1.907556e-153  3.558773e-88   0.000000e+00 6.745645e-316
## math2               5.863877e-126 5.268551e-192   0.000000e+00  1.020863e-99
## read2                3.641384e-68  1.237016e-44  1.356324e-187 9.631614e-210
## data7.reasoning      8.670391e-44  3.696573e-63  6.430458e-150  2.163169e-44
## data7.math_grade    3.353289e-106 2.421689e-239   0.000000e+00 3.133441e-139
## data7.reading_grade 1.524266e-117  1.470413e-73  1.433669e-284 6.938127e-246
##                     data7.judgRE1T         math2         read2 data7.reasoning
## data7.sex_c           5.122659e-13  1.467932e-29  1.535256e-04    8.174426e-06
## data7.age_c           5.713587e-04  5.251216e-01  1.000000e+00    1.000000e+00
## data7.sen             5.886690e-48  1.061646e-24  1.817805e-15    6.425687e-19
## data7.language        5.145476e-27  6.254722e-19  4.946946e-05    3.939316e-02
## data7.edu            1.316214e-151 3.694243e-124  1.893520e-66    3.814972e-42
## data7.judgMA1         1.921738e-86 3.846042e-190  5.690275e-43    1.885252e-61
## data7.judgMA1T        0.000000e+00  0.000000e+00 9.765532e-186   4.372711e-148
## data7.judgRE1        5.733798e-314  5.921005e-98 7.127394e-208    9.734263e-43
## data7.judgRE1T        0.000000e+00 8.307461e-249 2.536938e-302   1.090962e-125
## math2                1.051577e-250  0.000000e+00 1.426108e-293   8.093393e-235
## read2                3.056551e-304 1.760627e-295  0.000000e+00    1.466104e-97
## data7.reasoning      1.704628e-127 1.064920e-236  2.572113e-99    0.000000e+00
## data7.math_grade      0.000000e+00 3.062380e-309 1.386195e-158   3.706237e-144
## data7.reading_grade   0.000000e+00 2.172003e-180 1.269857e-235   5.147824e-122
##                     data7.math_grade data7.reading_grade
## data7.sex_c             2.736363e-03        2.351911e-43
## data7.age_c             5.738293e-04        9.692786e-09
## data7.sen               1.324790e-34        1.610714e-55
## data7.language          8.681158e-02        5.394437e-05
## data7.edu              1.978440e-104       9.145596e-116
## data7.judgMA1          1.864701e-237        7.793189e-72
## data7.judgMA1T          0.000000e+00       1.146935e-282
## data7.judgRE1          2.036736e-137       5.411739e-244
## data7.judgRE1T          0.000000e+00        0.000000e+00
## math2                  2.572399e-307       1.542122e-178
## read2                  9.703368e-157       9.523931e-234
## data7.reasoning        2.483179e-142       3.140173e-120
## data7.math_grade        0.000000e+00        0.000000e+00
## data7.reading_grade     0.000000e+00        0.000000e+00
####Cohen's Kappa
cohen.kappa(x=cbind(datacor$data7.judgMA1,datacor$data7.judgMA1T))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa  0.15     0.17  0.19
## weighted kappa    0.33     0.43  0.52
## 
##  Number of subjects = 6340
cohen.kappa(x=cbind(datacor$data7.judgRE1,datacor$data7.judgRE1T))
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
## 
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries 
##                  lower estimate upper
## unweighted kappa  0.14     0.15  0.17
## weighted kappa    0.31     0.43  0.56
## 
##  Number of subjects = 6340
###Model1: judgments in grade 1
##Unconditional, zero model
l3_ma2 <-
  lmer(math2 ~ 1 + (1|ID_e) + (1|ID_i.4), 
       data = data9, REML = FALSE, na.action=na.omit)
summary(l3_ma2)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: math2 ~ 1 + (1 | ID_e) + (1 | ID_i.4)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  16664.0  16690.3  -8328.0  16656.0     5372 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7149 -0.6667 -0.0512  0.6068  3.9478 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.07397  0.2720  
##  ID_i.4   (Intercept) 0.14941  0.3865  
##  Residual             1.17184  1.0825  
## Number of obs: 5376, groups:  ID_e, 833; ID_i.4, 336
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)   0.01433    0.02868 318.93748     0.5    0.618
l3_re2 <-
  lmer(read2Z ~ 1 + (1|ID_e) + (1|ID_i.4), 
       data = data9, REML = FALSE, na.action=na.omit)
summary(l3_re2)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: read2Z ~ 1 + (1 | ID_e) + (1 | ID_i.4)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  14307.3  14333.5  -7149.7  14299.3     5139 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2457 -0.6842 -0.1158  0.5353  3.3817 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.05881  0.2425  
##  ID_i.4   (Intercept) 0.07901  0.2811  
##  Residual             0.85818  0.9264  
## Number of obs: 5143, groups:  ID_e, 835; ID_i.4, 339
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)  -0.00152    0.02284 301.83099  -0.067    0.947
##Conditional model
#Background variables math
f_math2 <- lmer(math2~data7.age_c + data7.sex_c + data7.reasoningZ + 
                  data7.language + data7.sen + 
                  data7.eduZ + (1|ID_i.4) + (1|ID_e),
                data=data9, REML=F)
summary(f_math2)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2 ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  12218.0  12281.7  -6099.0  12198.0     4328 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5186 -0.6644 -0.0223  0.6160  4.4416 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.05554  0.2357  
##  ID_i.4   (Intercept) 0.07600  0.2757  
##  Residual             0.88679  0.9417  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         0.20640    0.33792 4321.71348   0.611 0.541359    
## data7.age_c         0.14359    0.04119 4321.58571   3.486 0.000495 ***
## data7.sex_c        -0.42200    0.02990 4206.97555 -14.113  < 2e-16 ***
## data7.reasoningZ    0.43109    0.01589 4294.15284  27.124  < 2e-16 ***
## data7.language     -0.09517    0.04016 4321.75059  -2.370 0.017840 *  
## data7.sen          -0.57581    0.10270 4296.20516  -5.607 2.19e-08 ***
## data7.eduZ          0.25969    0.01626 4305.24140  15.975  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn
## data7.age_c -0.936                                   
## data7.sex_c -0.240  0.093                            
## dat7.rsnngZ  0.004 -0.024 -0.068                     
## data7.langg -0.034  0.028  0.003 -0.015              
## data7.sen   -0.261 -0.060  0.061  0.086 -0.050       
## data7.eduZ  -0.142  0.121  0.056 -0.131  0.242  0.053
library(MuMIn)
r.squaredGLMM(f_math2)
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help page.
##            R2m       R2c
## [1,] 0.2462087 0.3435807
#centering the predictors
data9$data7.judgMA1_c <- data9$data7.judgMA1 - mean(data9$data7.judgMA1) 
data9$data7.judgMA1T_c <- data9$data7.judgMA1T - mean(data9$data7.judgMA1T) 
data9$data7.judgRE1_c <- data9$data7.judgRE1 - mean(data9$data7.judgRE1) 
data9$data7.judgRE1T_c <- data9$data7.judgRE1T - mean(data9$data7.judgRE1T) 

#standardized regression weight
data9$math2Z <- scale(data9$math2)
data9$data7.age_cZ <- scale(data9$data7.age_c)
data9$data7.sex_cZ <- scale(data9$data7.sex_c)
data9$data7.languageZ <- scale(data9$data7.language)
data9$data7.senZ <- scale(data9$data7.sen)
data9$data7.judgMA1T_cZ <- scale(data9$data7.judgMA1T_c)
data9$data7.judgMA1_cZ <- scale(data9$data7.judgMA1_c)

f_math2Z <- lmer(math2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                  data7.languageZ + data7.senZ + 
                  data7.eduZ + (1|ID_i.4) + (1|ID_e),
                data=data9, REML=F)
summary(f_math2Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10826.8  10890.5  -5403.4  10806.8     4328 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5186 -0.6644 -0.0223  0.6160  4.4416 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04030  0.2008  
##  ID_i.4   (Intercept) 0.05515  0.2348  
##  Residual             0.64349  0.8022  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         0.05363    0.02013  290.40208   2.664 0.008163 ** 
## data7.age_cZ        0.04698    0.01348 4321.58579   3.486 0.000495 ***
## data7.sex_cZ       -0.17971    0.01273 4206.97556 -14.113  < 2e-16 ***
## data7.reasoningZ    0.36722    0.01354 4294.15284  27.124  < 2e-16 ***
## data7.languageZ    -0.03228    0.01362 4321.75059  -2.370 0.017840 *  
## data7.senZ         -0.08125    0.01449 4296.20516  -5.607 2.19e-08 ***
## data7.eduZ          0.22121    0.01385 4305.24140  15.975  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ
## data7.ag_cZ  0.004                                     
## data7.sx_cZ  0.008  0.093                              
## dat7.rsnngZ -0.028 -0.024  -0.068                      
## data7.lnggZ  0.017  0.028   0.003  -0.015              
## data7.senZ   0.026 -0.060   0.061   0.086 -0.050       
## data7.eduZ   0.026  0.121   0.056  -0.131  0.242  0.053
r.squaredGLMM(f_math2Z)
##            R2m       R2c
## [1,] 0.2462087 0.3435807
#Background variables reading
f_read2 <- lmer(read2Z~data7.age_c + data7.sex_c + data7.reasoningZ + 
                  data7.language + data7.sen + 
                  data7.eduZ + (1|ID_i.4) + (1|ID_e),
                data=data9, REML=F)
summary(f_read2)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11672.3  11736.1  -5826.2  11652.3     4319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3529 -0.7078 -0.1336  0.5967  3.4235 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04711  0.2171  
##  ID_i.4   (Intercept) 0.05286  0.2299  
##  Residual             0.79370  0.8909  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      -1.472e-01  3.222e-01  4.308e+03  -0.457 0.647704    
## data7.age_c       6.912e-02  3.905e-02  4.310e+03   1.770 0.076791 .  
## data7.sex_c       1.026e-01  2.825e-02  4.218e+03   3.631 0.000286 ***
## data7.reasoningZ  2.066e-01  1.510e-02  4.301e+03  13.685  < 2e-16 ***
## data7.language   -1.147e-03  3.809e-02  4.316e+03  -0.030 0.975974    
## data7.sen        -4.981e-01  1.002e-01  4.304e+03  -4.971 6.92e-07 ***
## data7.eduZ        1.903e-01  1.531e-02  4.273e+03  12.430  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn
## data7.age_c -0.934                                   
## data7.sex_c -0.241  0.094                            
## dat7.rsnngZ  0.012 -0.033 -0.057                     
## data7.langg -0.040  0.036  0.001 -0.015              
## data7.sen   -0.279 -0.049  0.063  0.075 -0.047       
## data7.eduZ  -0.143  0.123  0.052 -0.130  0.241  0.051
r.squaredGLMM(f_read2)
##             R2m     R2c
## [1,] 0.09908674 0.19987
#standardized regression weight
data9$data7.judgRE1T_cZ <- scale(data9$data7.judgRE1T_c)
data9$data7.judgRE1_cZ <- scale(data9$data7.judgRE1_c)

f_read2Z <- lmer(read2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                  data7.languageZ + data7.senZ + 
                  data7.eduZ + (1|ID_i.4) + (1|ID_e),
                data=data9, REML=F)
summary(f_read2Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11672.3  11736.1  -5826.2  11652.3     4319 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3529 -0.7078 -0.1336  0.5967  3.4235 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04711  0.2171  
##  ID_i.4   (Intercept) 0.05286  0.2299  
##  Residual             0.79370  0.8909  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       2.948e-02  2.114e-02  2.900e+02   1.394 0.164277    
## data7.age_cZ      2.655e-02  1.500e-02  4.310e+03   1.770 0.076791 .  
## data7.sex_cZ      5.128e-02  1.412e-02  4.218e+03   3.631 0.000286 ***
## data7.reasoningZ  2.066e-01  1.510e-02  4.301e+03  13.685  < 2e-16 ***
## data7.languageZ  -4.567e-04  1.516e-02  4.316e+03  -0.030 0.975974    
## data7.senZ       -8.251e-02  1.660e-02  4.304e+03  -4.971 6.92e-07 ***
## data7.eduZ        1.903e-01  1.531e-02  4.273e+03  12.430  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ
## data7.ag_cZ  0.006                                     
## data7.sx_cZ  0.008  0.094                              
## dat7.rsnngZ -0.039 -0.033  -0.057                      
## data7.lnggZ  0.021  0.036   0.001  -0.015              
## data7.senZ   0.035 -0.049   0.063   0.075 -0.047       
## data7.eduZ   0.019  0.123   0.052  -0.130  0.241  0.051
r.squaredGLMM(f_read2Z)
##             R2m     R2c
## [1,] 0.09908674 0.19987
#Teacher judgments math
f_math2T1 <- lmer(math2~data7.age_c + data7.sex_c + data7.reasoningZ + 
                    data7.language + data7.sen + 
                    data7.eduZ + data7.judgMA1T_c +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_math2T1)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2 ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgMA1T_c + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11491.6  11561.7  -5734.8  11469.6     4327 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7311 -0.6457 -0.0199  0.5810  4.8897 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.06896  0.2626  
##  ID_i.4   (Intercept) 0.08438  0.2905  
##  Residual             0.73025  0.8545  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -0.21542    0.31044 4292.57515  -0.694 0.487764    
## data7.age_c         0.12892    0.03779 4290.13146   3.412 0.000652 ***
## data7.sex_c        -0.27221    0.02784 4168.91600  -9.777  < 2e-16 ***
## data7.reasoningZ    0.30566    0.01521 4276.75394  20.097  < 2e-16 ***
## data7.language     -0.09269    0.03683 4289.65031  -2.517 0.011886 *  
## data7.sen          -0.29782    0.09474 4270.21627  -3.144 0.001681 ** 
## data7.eduZ          0.17703    0.01521 4312.68621  11.638  < 2e-16 ***
## data7.judgMA1T_c    0.43681    0.01542 4264.14358  28.329  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ
## data7.age_c -0.934                                          
## data7.sex_c -0.245  0.089                                   
## dat7.rsnngZ  0.018 -0.020 -0.119                            
## data7.langg -0.032  0.027  0.004 -0.015                     
## data7.sen   -0.264 -0.062  0.080  0.051 -0.049              
## data7.eduZ  -0.129  0.119  0.019 -0.067  0.238  0.034       
## dt7.jdMA1T_ -0.053 -0.010  0.191 -0.289 -0.002  0.106 -0.187
r.squaredGLMM(f_math2T1)
##            R2m       R2c
## [1,] 0.3498183 0.4626535
f_math2T1Z <- lmer(math2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                    data7.languageZ + data7.senZ + 
                    data7.eduZ + data7.judgMA1T_cZ +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_math2T1Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgMA1T_cZ + (1 | ID_i.4) +  
##     (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10100.4  10170.5  -5039.2  10078.4     4327 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7311 -0.6457 -0.0199  0.5810  4.8897 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.05004  0.2237  
##  ID_i.4   (Intercept) 0.06123  0.2474  
##  Residual             0.52990  0.7279  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          0.03440    0.02027  288.19667   1.697 0.090697 .  
## data7.age_cZ         0.04218    0.01236 4290.13122   3.412 0.000652 ***
## data7.sex_cZ        -0.11592    0.01186 4168.91598  -9.777  < 2e-16 ***
## data7.reasoningZ     0.26038    0.01296 4276.75394  20.097  < 2e-16 ***
## data7.languageZ     -0.03144    0.01249 4289.65031  -2.517 0.011886 *  
## data7.senZ          -0.04203    0.01337 4270.21627  -3.144 0.001681 ** 
## data7.eduZ           0.15080    0.01296 4312.68621  11.638  < 2e-16 ***
## data7.judgMA1T_cZ    0.37519    0.01324 4264.14358  28.329  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ
## data7.ag_cZ  0.004                                            
## data7.sx_cZ  0.002  0.089                                     
## dat7.rsnngZ -0.014 -0.020  -0.119                             
## data7.lnggZ  0.015  0.027   0.004  -0.015                     
## data7.senZ   0.020 -0.062   0.080   0.051 -0.049              
## data7.eduZ   0.031  0.119   0.019  -0.067  0.238  0.034       
## dt7.jMA1T_Z -0.032 -0.010   0.191  -0.289 -0.002  0.106 -0.187
r.squaredGLMM(f_math2T1Z)
##            R2m       R2c
## [1,] 0.3498183 0.4626535
#Parent judgments math
f_math2P1 <- lmer(math2~data7.age_c + data7.sex_c + data7.reasoningZ + 
                    data7.language + data7.sen + 
                    data7.eduZ + data7.judgMA1_c +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_math2P1)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2 ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgMA1_c + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11730.6  11800.8  -5854.3  11708.6     4327 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5295 -0.6501 -0.0253  0.5981  4.6870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.05918  0.2433  
##  ID_i.4   (Intercept) 0.07438  0.2727  
##  Residual             0.78415  0.8855  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -0.05898    0.31939 4311.90742  -0.185 0.853493    
## data7.age_c         0.13274    0.03891 4311.49921   3.412 0.000651 ***
## data7.sex_c        -0.28601    0.02883 4204.47651  -9.921  < 2e-16 ***
## data7.reasoningZ    0.35572    0.01536 4290.65986  23.159  < 2e-16 ***
## data7.language     -0.16514    0.03806 4309.91867  -4.339 1.46e-05 ***
## data7.sen          -0.42991    0.09722 4287.54120  -4.422 1.00e-05 ***
## data7.eduZ          0.23836    0.01539 4309.92215  15.486  < 2e-16 ***
## data7.judgMA1_c     0.37780    0.01658 4206.71883  22.790  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ
## data7.age_c -0.935                                          
## data7.sex_c -0.242  0.089                                   
## dat7.rsnngZ  0.012 -0.021 -0.110                            
## data7.langg -0.030  0.028 -0.014  0.003                     
## data7.sen   -0.262 -0.061  0.073  0.069 -0.055              
## data7.eduZ  -0.139  0.121  0.043 -0.114  0.245  0.050       
## dt7.jdgMA1_ -0.039 -0.010  0.208 -0.214 -0.083  0.067 -0.058
r.squaredGLMM(f_math2P1)
##            R2m       R2c
## [1,] 0.3178146 0.4171002
f_math2P1Z <- lmer(math2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                    data7.languageZ + data7.senZ + 
                    data7.eduZ + data7.judgMA1_cZ +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_math2P1Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## math2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgMA1_cZ + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10339.4  10409.5  -5158.7  10317.4     4327 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5295 -0.6501 -0.0253  0.5981  4.6870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04295  0.2072  
##  ID_i.4   (Intercept) 0.05397  0.2323  
##  Residual             0.56901  0.7543  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         0.04716    0.01966  286.49297   2.399 0.017082 *  
## data7.age_cZ        0.04343    0.01273 4311.49931   3.412 0.000651 ***
## data7.sex_cZ       -0.12180    0.01228 4204.47652  -9.921  < 2e-16 ***
## data7.reasoningZ    0.30302    0.01308 4290.65986  23.159  < 2e-16 ***
## data7.languageZ    -0.05601    0.01291 4309.91867  -4.339 1.46e-05 ***
## data7.senZ         -0.06066    0.01372 4287.54121  -4.422 1.00e-05 ***
## data7.eduZ          0.20305    0.01311 4309.92215  15.486  < 2e-16 ***
## data7.judgMA1_cZ    0.28842    0.01266 4206.71883  22.790  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ
## data7.ag_cZ  0.004                                            
## data7.sx_cZ  0.005  0.089                                     
## dat7.rsnngZ -0.023 -0.021  -0.110                             
## data7.lnggZ  0.017  0.028  -0.014   0.003                     
## data7.senZ   0.024 -0.061   0.073   0.069 -0.055              
## data7.eduZ   0.026  0.121   0.043  -0.114  0.245  0.050       
## dt7.jdMA1_Z -0.013 -0.010   0.208  -0.214 -0.083  0.067 -0.058
r.squaredGLMM(f_math2P1Z)
##            R2m       R2c
## [1,] 0.3178146 0.4171002
#Adult judgments math
f_math2int1 <- lmer(math2~data7.age_c + data7.sex_c + data7.reasoningZ + 
                      data7.language + data7.sen + 
                      data7.eduZ + data7.judgMA1T_c + data7.judgMA1_c + 
                      (1|ID_i.4) + (1|ID_e),
                    data=data9)
summary(f_math2int1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## math2 ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgMA1T_c + data7.judgMA1_c +  
##     (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
## REML criterion at convergence: 11328.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6965 -0.6449 -0.0408  0.5822  4.9618 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.06427  0.2535  
##  ID_i.4   (Intercept) 0.08370  0.2893  
##  Residual             0.70034  0.8369  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -0.29633    0.30406 4284.58464  -0.975 0.329829    
## data7.age_c         0.12478    0.03701 4282.09736   3.372 0.000753 ***
## data7.sex_c        -0.21631    0.02756 4167.83119  -7.850 5.26e-15 ***
## data7.reasoningZ    0.28320    0.01498 4268.54663  18.906  < 2e-16 ***
## data7.language     -0.13701    0.03621 4279.66250  -3.784 0.000157 ***
## data7.sen          -0.26189    0.09279 4258.39345  -2.822 0.004790 ** 
## data7.eduZ          0.18024    0.01490 4305.75184  12.097  < 2e-16 ***
## data7.judgMA1T_c    0.34881    0.01636 4264.39311  21.320  < 2e-16 ***
## data7.judgMA1_c     0.23797    0.01705 4201.35071  13.955  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ d7.MA1T
## data7.age_c -0.933                                                  
## data7.sex_c -0.245  0.087                                           
## dat7.rsnngZ  0.020 -0.019 -0.133                                    
## data7.langg -0.030  0.027 -0.009 -0.006                             
## data7.sen   -0.264 -0.062  0.083  0.048 -0.051                      
## data7.eduZ  -0.129  0.119  0.021 -0.068  0.235  0.034               
## dt7.jdMA1T_ -0.041 -0.006  0.118 -0.224  0.032  0.087 -0.178        
## dt7.jdgMA1_ -0.020 -0.008  0.145 -0.107 -0.088  0.028  0.016 -0.385
r.squaredGLMM(f_math2int1)
##            R2m       R2c
## [1,] 0.3730509 0.4824125
f_math2int1Z <- lmer(math2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                      data7.languageZ + data7.senZ + 
                      data7.eduZ + data7.judgMA1T_cZ + data7.judgMA1_cZ + 
                      (1|ID_i.4) + (1|ID_e),
                    data=data9)
summary(f_math2int1Z)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## math2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgMA1T_cZ + data7.judgMA1_cZ +  
##     (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
## REML criterion at convergence: 9949.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6965 -0.6449 -0.0408  0.5822  4.9618 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04664  0.2160  
##  ID_i.4   (Intercept) 0.06074  0.2465  
##  Residual             0.50820  0.7129  
## Number of obs: 4338, groups:  ID_e, 811; ID_i.4, 333
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          0.03421    0.01996  285.66908   1.714 0.087681 .  
## data7.age_cZ         0.04083    0.01211 4282.09732   3.372 0.000753 ***
## data7.sex_cZ        -0.09212    0.01174 4167.83117  -7.850 5.26e-15 ***
## data7.reasoningZ     0.24124    0.01276 4268.54663  18.906  < 2e-16 ***
## data7.languageZ     -0.04647    0.01228 4279.66250  -3.784 0.000157 ***
## data7.senZ          -0.03696    0.01309 4258.39345  -2.822 0.004790 ** 
## data7.eduZ           0.15354    0.01269 4305.75184  12.097  < 2e-16 ***
## data7.judgMA1T_cZ    0.29961    0.01405 4264.39311  21.320  < 2e-16 ***
## data7.judgMA1_cZ     0.18167    0.01302 4201.35071  13.955  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ d7.MA1T
## data7.ag_cZ  0.004                                                    
## data7.sx_cZ  0.002  0.087                                             
## dat7.rsnngZ -0.014 -0.019  -0.133                                     
## data7.lnggZ  0.015  0.027  -0.009  -0.006                             
## data7.senZ   0.020 -0.062   0.083   0.048 -0.051                      
## data7.eduZ   0.031  0.119   0.021  -0.068  0.235  0.034               
## dt7.jMA1T_Z -0.029 -0.006   0.118  -0.224  0.032  0.087 -0.178        
## dt7.jdMA1_Z -0.001 -0.008   0.145  -0.107 -0.088  0.028  0.016 -0.385
r.squaredGLMM(f_math2int1Z)
##            R2m       R2c
## [1,] 0.3730509 0.4824125
library(car)
## Lade nötiges Paket: carData
## 
## Attache Paket: 'car'
## Das folgende Objekt ist maskiert 'package:psych':
## 
##     logit
## Das folgende Objekt ist maskiert 'package:dplyr':
## 
##     recode
linearHypothesis(f_math2int1Z,"data7.judgMA1_cZ = data7.judgMA1T_cZ")
## Linear hypothesis test
## 
## Hypothesis:
## - data7.judgMA1T_cZ  + data7.judgMA1_cZ = 0
## 
## Model 1: restricted model
## Model 2: math2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ + 
##     data7.senZ + data7.eduZ + data7.judgMA1T_cZ + data7.judgMA1_cZ + 
##     (1 | ID_i.4) + (1 | ID_e)
## 
##   Df  Chisq Pr(>Chisq)    
## 1                         
## 2  1 27.383  1.669e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Teacher's judgments reading
f_read2T1 <- lmer(read2Z~data7.age_c + data7.sex_c + data7.reasoningZ + 
                    data7.language + data7.sen +
                    data7.eduZ + data7.judgRE1T_c + 
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_read2T1)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgRE1T_c + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10835.3  10905.4  -5406.6  10813.3     4318 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9222 -0.6778 -0.0989  0.5738  4.3610 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.07244  0.2691  
##  ID_i.4   (Intercept) 0.05722  0.2392  
##  Residual             0.62965  0.7935  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -0.27749    0.29137 4259.24637  -0.952   0.3410    
## data7.age_c         0.05301    0.03532 4262.17254   1.501   0.1335    
## data7.sex_c         0.02443    0.02557 4142.17190   0.956   0.3393    
## data7.reasoningZ    0.10630    0.01401 4258.93265   7.590 3.92e-14 ***
## data7.language      0.05456    0.03450 4272.02127   1.582   0.1138    
## data7.sen          -0.18269    0.09126 4262.03134  -2.002   0.0454 *  
## data7.eduZ          0.07455    0.01438 4295.02325   5.183 2.28e-07 ***
## data7.judgRE1T_c    0.41380    0.01347 4263.30382  30.723  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ
## data7.age_c -0.933                                          
## data7.sex_c -0.237  0.095                                   
## dat7.rsnngZ  0.014 -0.027 -0.033                            
## data7.langg -0.040  0.033 -0.002 -0.028                     
## data7.sen   -0.277 -0.052  0.052  0.046 -0.040              
## data7.eduZ  -0.134  0.122  0.078 -0.060  0.219  0.022       
## dt7.jdRE1T_ -0.015 -0.015 -0.100 -0.227  0.052  0.115 -0.258
r.squaredGLMM(f_read2T1)
##            R2m       R2c
## [1,] 0.2460503 0.3747949
f_read2T1Z <- lmer(read2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                    data7.languageZ + data7.senZ +
                    data7.eduZ + data7.judgRE1T_cZ + 
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_read2T1Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgRE1T_cZ + (1 | ID_i.4) +  
##     (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10835.3  10905.4  -5406.6  10813.3     4318 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9222 -0.6778 -0.0989  0.5738  4.3610 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.07244  0.2691  
##  ID_i.4   (Intercept) 0.05722  0.2392  
##  Residual             0.62965  0.7935  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -8.012e-03  2.140e-02  3.029e+02  -0.374   0.7084    
## data7.age_cZ       2.036e-02  1.357e-02  4.262e+03   1.501   0.1335    
## data7.sex_cZ       1.222e-02  1.278e-02  4.142e+03   0.956   0.3393    
## data7.reasoningZ   1.063e-01  1.401e-02  4.259e+03   7.590 3.92e-14 ***
## data7.languageZ    2.172e-02  1.374e-02  4.272e+03   1.582   0.1138    
## data7.senZ        -3.026e-02  1.512e-02  4.262e+03  -2.002   0.0454 *  
## data7.eduZ         7.455e-02  1.438e-02  4.295e+03   5.183 2.28e-07 ***
## data7.judgRE1T_cZ  4.484e-01  1.460e-02  4.263e+03  30.723  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ
## data7.ag_cZ  0.006                                            
## data7.sx_cZ  0.013  0.095                                     
## dat7.rsnngZ -0.020 -0.027  -0.033                             
## data7.lnggZ  0.014  0.033  -0.002  -0.028                     
## data7.senZ   0.025 -0.052   0.052   0.046 -0.040              
## data7.eduZ   0.033  0.122   0.078  -0.060  0.219  0.022       
## dt7.jRE1T_Z -0.055 -0.015  -0.100  -0.227  0.052  0.115 -0.258
r.squaredGLMM(f_read2T1Z)
##            R2m       R2c
## [1,] 0.2460503 0.3747949
#Parents' judgments reading
f_read2P1 <- lmer(read2Z~data7.age_c + data7.sex_c + data7.reasoningZ + 
                    data7.language + data7.sen +
                    data7.eduZ + data7.judgRE1_c +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_read2P1)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgRE1_c + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11034.5  11104.6  -5506.2  11012.5     4318 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8874 -0.6940 -0.1099  0.5892  3.8019 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04894  0.2212  
##  ID_i.4   (Intercept) 0.05408  0.2325  
##  Residual             0.67610  0.8223  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -0.35019    0.29908 4296.79943  -1.171   0.2417    
## data7.age_c         0.06967    0.03624 4300.02026   1.922   0.0546 .  
## data7.sex_c         0.04896    0.02625 4194.23964   1.865   0.0623 .  
## data7.reasoningZ    0.16125    0.01411 4285.32849  11.432   <2e-16 ***
## data7.language     -0.03228    0.03537 4305.61666  -0.913   0.3614    
## data7.sen          -0.23973    0.09350 4289.22883  -2.564   0.0104 *  
## data7.eduZ          0.12710    0.01443 4292.73422   8.808   <2e-16 ***
## data7.judgRE1_c     0.43685    0.01661 4232.31438  26.303   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ
## data7.age_c -0.934                                          
## data7.sex_c -0.237  0.094                                   
## dat7.rsnngZ  0.015 -0.032 -0.047                            
## data7.langg -0.039  0.035  0.005 -0.011                     
## data7.sen   -0.280 -0.049  0.055  0.061 -0.050              
## data7.eduZ  -0.136  0.121  0.065 -0.106  0.243  0.034       
## dt7.jdgRE1_ -0.026  0.001 -0.078 -0.119 -0.034  0.106 -0.165
r.squaredGLMM(f_read2P1)
##            R2m      R2c
## [1,] 0.2141562 0.318061
f_read2P1Z <- lmer(read2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                    data7.languageZ + data7.senZ +
                    data7.eduZ + data7.judgRE1_cZ +
                    (1|ID_i.4) + (1|ID_e),
                  data=data9, REML=F)
summary(f_read2P1Z)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgRE1_cZ + (1 | ID_i.4) +      (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  11034.5  11104.6  -5506.2  11012.5     4318 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8874 -0.6940 -0.1099  0.5892  3.8019 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.04894  0.2212  
##  ID_i.4   (Intercept) 0.05408  0.2325  
##  Residual             0.67610  0.8223  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         0.00929    0.02060  292.43167   0.451   0.6524    
## data7.age_cZ        0.02676    0.01392 4300.02036   1.922   0.0546 .  
## data7.sex_cZ        0.02447    0.01312 4194.23963   1.865   0.0623 .  
## data7.reasoningZ    0.16125    0.01410 4285.32849  11.432   <2e-16 ***
## data7.languageZ    -0.01285    0.01408 4305.61666  -0.913   0.3614    
## data7.senZ         -0.03971    0.01549 4289.22883  -2.564   0.0104 *  
## data7.eduZ          0.12710    0.01443 4292.73422   8.808   <2e-16 ***
## data7.judgRE1_cZ    0.36228    0.01377 4232.31438  26.303   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ
## data7.ag_cZ  0.006                                            
## data7.sx_cZ  0.010  0.094                                     
## dat7.rsnngZ -0.032 -0.032  -0.047                             
## data7.lnggZ  0.021  0.035   0.005  -0.011                     
## data7.senZ   0.030 -0.049   0.055   0.061 -0.050              
## data7.eduZ   0.025  0.121   0.065  -0.106  0.243  0.034       
## dt7.jdRE1_Z -0.036  0.001  -0.078  -0.119 -0.034  0.106 -0.165
r.squaredGLMM(f_read2P1Z)
##            R2m      R2c
## [1,] 0.2141562 0.318061
#Adult judgments reading
f_read2int1 <- lmer(read2Z~data7.age_c + data7.sex_c + data7.reasoningZ + 
                      data7.language + data7.sen +
                      data7.eduZ + data7.judgRE1_c + data7.judgRE1T_c + 
                      (1|ID_i.4) + (1|ID_e),
                    data=data9, REML=F)
summary(f_read2int1)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
##   method [lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language +  
##     data7.sen + data7.eduZ + data7.judgRE1_c + data7.judgRE1T_c +  
##     (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
##      AIC      BIC   logLik deviance df.resid 
##  10560.5  10637.0  -5268.3  10536.5     4317 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0046 -0.6707 -0.0876  0.5668  3.9569 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.06585  0.2566  
##  ID_i.4   (Intercept) 0.05727  0.2393  
##  Residual             0.59049  0.7684  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      -3.808e-01  2.823e-01  4.259e+03  -1.349   0.1775    
## data7.age_c       5.671e-02  3.422e-02  4.262e+03   1.658   0.0975 .  
## data7.sex_c       6.715e-03  2.478e-02  4.141e+03   0.271   0.7864    
## data7.reasoningZ  9.888e-02  1.357e-02  4.257e+03   7.287 3.76e-13 ***
## data7.language    2.149e-02  3.347e-02  4.272e+03   0.642   0.5208    
## data7.sen        -8.280e-02  8.857e-02  4.260e+03  -0.935   0.3499    
## data7.eduZ        5.867e-02  1.397e-02  4.298e+03   4.201 2.71e-05 ***
## data7.judgRE1_c   2.875e-01  1.700e-02  4.208e+03  16.908  < 2e-16 ***
## data7.judgRE1T_c  3.201e-01  1.417e-02  4.271e+03  22.594  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_ dt7.s_ dt7.rZ dt7.ln dt7.sn dt7.dZ d7.RE1_
## data7.age_c -0.933                                                  
## data7.sex_c -0.236  0.095                                           
## dat7.rsnngZ  0.015 -0.027 -0.031                                    
## data7.langg -0.038  0.032  0.000 -0.026                             
## data7.sen   -0.278 -0.051  0.049  0.044 -0.044                      
## data7.eduZ  -0.132  0.121  0.080 -0.058  0.222  0.017               
## dt7.jdgRE1_ -0.021  0.006 -0.043 -0.032 -0.059  0.067 -0.067        
## dt7.jdRE1T_ -0.005 -0.016 -0.075 -0.196  0.071  0.079 -0.211 -0.391
r.squaredGLMM(f_read2int1)
##            R2m       R2c
## [1,] 0.2873785 0.4103291
f_read2int1Z <- lmer(read2Z~data7.age_cZ + data7.sex_cZ + data7.reasoningZ + 
                       data7.languageZ + data7.senZ + 
                       data7.eduZ + data7.judgRE1T_cZ + data7.judgRE1_cZ + 
                       (1|ID_i.4) + (1|ID_e),
                     data=data9)
summary(f_read2int1Z)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## read2Z ~ data7.age_cZ + data7.sex_cZ + data7.reasoningZ + data7.languageZ +  
##     data7.senZ + data7.eduZ + data7.judgRE1T_cZ + data7.judgRE1_cZ +  
##     (1 | ID_i.4) + (1 | ID_e)
##    Data: data9
## 
## REML criterion at convergence: 10596.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0016 -0.6699 -0.0868  0.5672  3.9527 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID_e     (Intercept) 0.06589  0.2567  
##  ID_i.4   (Intercept) 0.05777  0.2404  
##  Residual             0.59164  0.7692  
## Number of obs: 4329, groups:  ID_e, 811; ID_i.4, 335
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       -1.328e-02  2.099e-02  3.015e+02  -0.633   0.5273    
## data7.age_cZ       2.179e-02  1.316e-02  4.253e+03   1.656   0.0978 .  
## data7.sex_cZ       3.362e-03  1.240e-02  4.133e+03   0.271   0.7863    
## data7.reasoningZ   9.886e-02  1.358e-02  4.249e+03   7.278 4.02e-13 ***
## data7.languageZ    8.571e-03  1.334e-02  4.263e+03   0.643   0.5206    
## data7.senZ        -1.372e-02  1.469e-02  4.251e+03  -0.934   0.3502    
## data7.eduZ         5.865e-02  1.398e-02  4.289e+03   4.195 2.78e-05 ***
## data7.judgRE1T_cZ  3.470e-01  1.537e-02  4.262e+03  22.573  < 2e-16 ***
## data7.judgRE1_cZ   2.384e-01  1.411e-02  4.200e+03  16.891  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dt7.g_Z dt7.s_Z dt7.rZ dt7.lZ dt7.sZ dt7.dZ d7.RE1T
## data7.ag_cZ  0.006                                                    
## data7.sx_cZ  0.014  0.095                                             
## dat7.rsnngZ -0.020 -0.027  -0.031                                     
## data7.lnggZ  0.014  0.032   0.000  -0.026                             
## data7.senZ   0.024 -0.051   0.049   0.044 -0.044                      
## data7.eduZ   0.034  0.121   0.080  -0.058  0.222  0.017               
## dt7.jRE1T_Z -0.044 -0.016  -0.075  -0.196  0.071  0.079 -0.211        
## dt7.jdRE1_Z -0.014  0.006  -0.043  -0.032 -0.059  0.067 -0.067 -0.391
r.squaredGLMM(f_read2int1Z)
##           R2m      R2c
## [1,] 0.286891 0.410177
linearHypothesis(f_read2int1,"data7.judgRE1_c = data7.judgRE1T_c")
## Linear hypothesis test
## 
## Hypothesis:
## data7.judgRE1_c - data7.judgRE1T_c = 0
## 
## Model 1: restricted model
## Model 2: read2Z ~ data7.age_c + data7.sex_c + data7.reasoningZ + data7.language + 
##     data7.sen + data7.eduZ + data7.judgRE1_c + data7.judgRE1T_c + 
##     (1 | ID_i.4) + (1 | ID_e)
## 
##   Df  Chisq Pr(>Chisq)
## 1                     
## 2  1 1.5751     0.2095
#ICC/VPC math
InterceptSchoolM <- VarCorr(l3_ma2)$ID_i.4
InterceptClassM <- VarCorr(l3_ma2)$ID_e
ResidualVarM <- attr( VarCorr(l3_ma2), "sc")^2

ICCMath1 <- (InterceptClassM)/(InterceptClassM + InterceptSchoolM + ResidualVarM)
ICCMath1
##             (Intercept)
## (Intercept)  0.05301554
## attr(,"stddev")
## (Intercept) 
##   0.2719716 
## attr(,"correlation")
##             (Intercept)
## (Intercept)           1
ICCMath2 <- (InterceptSchoolM)/(InterceptClassM + InterceptSchoolM + ResidualVarM)
ICCMath2
##             (Intercept)
## (Intercept)   0.1070879
## attr(,"stddev")
## (Intercept) 
##    0.386538 
## attr(,"correlation")
##             (Intercept)
## (Intercept)           1
#ICC/VPC reading
InterceptSchoolR <- VarCorr(l3_re2)$ID_i.4
InterceptClassR <- VarCorr(l3_re2)$ID_e
ResidualVarR <- attr( VarCorr(l3_re2), "sc")^2

ICCRead1 <- (InterceptClassR)/(InterceptClassR + InterceptSchoolR + ResidualVarR)
ICCRead1
##             (Intercept)
## (Intercept)   0.0590495
## attr(,"stddev")
## (Intercept) 
##   0.2425144 
## attr(,"correlation")
##             (Intercept)
## (Intercept)           1
ICCRead2 <- (InterceptSchoolR)/(InterceptClassR + InterceptSchoolR + ResidualVarR)
ICCRead2
##             (Intercept)
## (Intercept)  0.07932714
## attr(,"stddev")
## (Intercept) 
##   0.2810867 
## attr(,"correlation")
##             (Intercept)
## (Intercept)           1