library(haven)
hprice1<-read_dta("C:/Users/Walter Alemán/Desktop/UES V/ECONOMETRIA/Ejercicios/hprice1.dta")
head(hprice1, n=6)
## # A tibble: 6 × 10
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 300 349. 4 6126 2438 1 5.70 5.86 8.72 7.80
## 2 370 352. 3 9903 2076 1 5.91 5.86 9.20 7.64
## 3 191 218. 3 5200 1374 0 5.25 5.38 8.56 7.23
## 4 195 232. 3 4600 1448 1 5.27 5.45 8.43 7.28
## 5 373 319. 4 6095 2514 1 5.92 5.77 8.72 7.83
## 6 466. 414. 5 8566 2754 1 6.14 6.03 9.06 7.92
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
Estima_HP1<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(Estima_HP1, title = "Estimador de Hprice1", type = "text")
##
## Estimador de Hprice1
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(stargazer)
X_mat<-model.matrix(Estima_HP1)
stargazer(head(X_mat, n=6), type = "text")
##
## =================================
## (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1 1 6,126 2,438 4
## 2 1 9,903 2,076 3
## 3 1 5,200 1,374 3
## 4 1 4,600 1,448 3
## 5 1 6,095 2,514 4
## 6 1 8,566 2,754 5
## ---------------------------------
XX_mat<-t(X_mat)%*%X_mat
stargazer(XX_mat, type = "text")
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
library(stargazer)
options(scipen = 9999)
Sn<-solve(diag(sqrt(diag(XX_mat))))
stargazer(Sn, type = "text")
##
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
library(stargazer)
XX_norm<-(Sn%*%XX_mat)%*%Sn
stargazer(XX_norm, type = "text", digits = 4)
##
## ===========================
## 1 0.6655 0.9617 0.9736
## 0.6655 1 0.6776 0.6712
## 0.9617 0.6776 1 0.9696
## 0.9736 0.6712 0.9696 1
## ---------------------------
library(stargazer)
#Autovalores
lambdas<-eigen(XX_norm, symmetric = TRUE)
stargazer(lambdas$values, type = "text")
##
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
k<-sqrt(max(lambdas$values)/min(lambdas$values))
print(k)
## [1] 11.86778
library(mctest)
X_mat<-model.matrix(Estima_HP1)
mctest(mod = Estima_HP1)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
library(olsrr)
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
## rivers
ols_eigen_cindex(model = Estima_HP1)
## Eigenvalue Condition Index intercept lotsize sqrft bdrms
## 1 3.48158596 1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380 2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083 9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941 11.867781 0.516954804 0.0000308514 0.173697079 0.975025872
library(stargazer)
Zn<-scale(X_mat[,-1])
stargazer(head(Zn, n=6), type = "text")
##
## =======================
## lotsize sqrft bdrms
## -----------------------
## 1 -0.284 0.735 0.513
## 2 0.087 0.108 -0.675
## 3 -0.375 -1.108 -0.675
## 4 -0.434 -0.980 -0.675
## 5 -0.287 0.867 0.513
## 6 -0.045 1.283 1.702
## -----------------------
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R, type = "text", digits = 4)
##
## =============================
## lotsize sqrft bdrms
## -----------------------------
## lotsize 1 0.1838 0.1363
## sqrft 0.1838 1 0.5315
## bdrms 0.1363 0.5315 1
## -----------------------------
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931
m<-ncol(X_mat[,-1])
n<-nrow(X_mat[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
gl<-m*(m-1)/2
VC<-qchisq(p = 0.95, df = gl)
print(VC)
## [1] 7.814728
library(fastGraph)
alpha_sig<-0.05
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
gl<-m*(m-1)/2
VC<-qchisq(p = 0.95, df = gl)
shadeDist(chi_FG, ddist = "dchisq",
parm1 = gl,
lower.tail = FALSE,xmin = 0,
sub=paste("VC:", round(VC,2)," ","chi_FG:", round(chi_FG,2)))
### Como se oberva en la grafica
library(mctest)
mctest::omcdiag(mod = Estima_HP1)
##
## Call:
## mctest::omcdiag(mod = Estima_HP1)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
library(psych)
FG_test<-cortest.bartlett(X_mat[,-1])
## R was not square, finding R from data
print(FG_test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores) %>% mutate(VIF = 1/(1-R.cuadrado.regresores))
## R.cuadrado.regresores VIF
## 1 0.0 1
## 2 0.5 2
## 3 0.8 5
## 4 0.9 10
print(R)
## lotsize sqrft bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft 0.1838422 1.0000000 0.5314736
## bdrms 0.1363256 0.5314736 1.0000000
inversa_R<-solve(R)
print(inversa_R)
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
VIFs<-diag(inversa_R)
print(VIFs)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(performance)
VIFs<-multicollinearity(x = Estima_HP1, verbose = FALSE)
VIFs
## # Check for Multicollinearity
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## lotsize 1.04 [1.00, 11.02] 1.02 0.96 [0.09, 1.00]
## sqrft 1.42 [1.18, 1.98] 1.19 0.70 [0.51, 0.85]
## bdrms 1.40 [1.17, 1.95] 1.18 0.72 [0.51, 0.86]
plot(VIFs)
## Variable `Component` is not in your data frame :/
## 3.3 Cálculo de los VIF’s usando “car”
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:psych':
##
## logit
ViFs_car<-vif(Estima_HP1)
print(ViFs_car)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(mod = Estima_HP1, vif = 2)