Tablas bivariadas para muestra unificada

Pais vs resto de variables independientes

library(car)


# 28 de octubre 2013

#
# load('~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(28102013).RData')
load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(07112013).RData")

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
levels(disenio_urubra$variables$prevoms)
## [1] "1-SinCavi" "2-conCavi"
table(disenio_urubra$variables$cpodoms, disenio_urubra$variables$prevoms)
##     
##      1-SinCavi 2-conCavi
##   0       1105         0
##   1          0       495
##   2          0       404
##   3          0       259
##   4          0       217
##   5          0       108
##   6          0        38
##   7          0        22
##   8          0        14
##   9          0        12
##   10         0         3
##   11         0         3
##   14         0         1
##   15         0         1
tabla2p <- svyby(~sexoinv, ~pais, disenio_urubra, svymean, keep.var = TRUE, 
    na.rm = TRUE, deff = TRUE)
round(tabla2p[, 2:4] * 100, 1)
##     sexoinv1-M sexoinv2-F se.sexoinv1-M
## Bra       50.8       49.2           1.3
## Uru       51.8       48.2           1.8
svychisq(~sexoinv + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~sexoinv + pais, disenio_urubra, statistic = "Wald") 
## F = 0.1911, ndf = 1, ddf = 81, p-value = 0.6631


tabla3p <- svyby(~socioecon4cat, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla3p[, 2:4] * 100, 1)
##     socioecon4cat1-alto socioecon4cat2-medio-alto
## Bra                  11                      24.4
## Uru                  17                      41.6
##     socioecon4cat3-medio-bajo
## Bra                      54.9
## Uru                      21.4
svychisq(~socioecon4cat + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~socioecon4cat + pais, disenio_urubra, statistic = "Wald") 
## F = 27.79, ndf = 3, ddf = 81, p-value = 1.864e-12


tabla4p <- svyby(~socioecon3cat, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla4p[, 2:4] * 100, 1)
##     socioecon3cat1-alto socioecon3cat2-medio socioecon3cat3-bajo
## Bra                11.0                 79.3                 9.7
## Uru                31.4                 48.6                20.0
svychisq(~socioecon3cat + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~socioecon3cat + pais, disenio_urubra, statistic = "Wald") 
## F = 31, ndf = 2, ddf = 81, p-value = 1.005e-10


tabla5p <- svyby(~escolmaerecat23cat, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla5p[, 2:4] * 100, 1)
##     escolmaerecat23cat1-college-university escolmaerecat23cat2-high school
## Bra                                   16.6                            34.3
## Uru                                   25.3                            50.6
##     escolmaerecat23cat3-elementary school
## Bra                                  49.1
## Uru                                  24.2
svychisq(~escolmaerecat23cat + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~escolmaerecat23cat + pais, disenio_urubra, statistic = "Wald") 
## F = 12.43, ndf = 2, ddf = 81, p-value = 1.965e-05



tabla5ap <- svyby(~escolmae13cat, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla5ap[, 2:4] * 100, 1)
##     escolmae13cat1-college-university escolmae13cat2-high school
## Bra                               9.7                       32.0
## Uru                              16.7                       23.3
##     escolmae13cat3-Elementary School
## Bra                             58.3
## Uru                             59.9
svychisq(~escolmae13cat + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~escolmae13cat + pais, disenio_urubra, statistic = "Wald") 
## F = 2.732, ndf = 2, ddf = 81, p-value = 0.07107

tabla6p <- svyby(~freqescovacat, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla6p[, 2:4] * 100, 1)
##     freqescovacat1-menos de 1 vez al d<ed>a freqescovacat2-veces al d<ed>a
## Bra                                    21.4                           44.9
## Uru                                    18.1                           34.0
##     freqescovacat3-veces al d<ed>a
## Bra                           33.7
## Uru                           47.9
svychisq(~freqescovacat + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~freqescovacat + pais, disenio_urubra, statistic = "Wald") 
## F = 10.06, ndf = 2, ddf = 81, p-value = 0.0001256

tabla7p <- svyby(~usocreme, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla7p[, 2:4] * 100, 1)
##     usocreme1-Si usocreme2-No se.usocreme1-Si
## Bra         98.2          1.8             0.4
## Uru         98.2          1.8             0.6
svychisq(~usocreme + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~usocreme + pais, disenio_urubra, statistic = "Wald") 
## F = 3e-04, ndf = 1, ddf = 81, p-value = 0.9857

tabla8p <- svyby(~visidentcatonde, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla8p[, 2:4] * 100, 1)
##     visidentcatonde1-Convenio particular visidentcatonde2-Publico
## Bra                                 49.0                     30.4
## Uru                                 61.8                     26.5
##     visidentcatonde3-Nunca fue al dentista
## Bra                                   20.6
## Uru                                   11.8
svychisq(~visidentcatonde + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~visidentcatonde + pais, disenio_urubra, statistic = "Wald") 
## F = 3.583, ndf = 2, ddf = 81, p-value = 0.03227

tabla9p <- svyby(~visiquando, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla9p[, 2:4] * 100, 1)
##     visiquando1- menos de 1 a<f1>o visiquando2- m<e1>s de 2 a<f1>os
## Bra                           56.6                             22.8
## Uru                           74.4                             14.0
##     visiquando3- nunca fue
## Bra                   20.6
## Uru                   11.6
svychisq(~visiquando + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~visiquando + pais, disenio_urubra, statistic = "Wald") 
## F = 6.084, ndf = 2, ddf = 81, p-value = 0.003455

tabla10p <- svyby(~fluorprof, ~pais, disenio_urubra, svymean, na.rm = TRUE, 
    deff = TRUE)
round(tabla10p[, 2:4] * 100, 1)
##     fluorprof1-Si fluorprof2-No se.fluorprof1-Si
## Bra          64.9          35.1              2.3
## Uru          62.7          37.3              3.2
svychisq(~fluorprof + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~fluorprof + pais, disenio_urubra, statistic = "Wald") 
## F = 0.3345, ndf = 1, ddf = 81, p-value = 0.5646

tabla11p <- svyby(~isg20, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla11p[, 2:4] * 100, 1)
##     isg201- <=20 isg202- 20 a 60 isg203- >=60
## Bra          2.1            66.6         31.4
## Uru         48.0            44.7          7.3
svychisq(~isg20 + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~isg20 + pais, disenio_urubra, statistic = "Wald") 
## F = 58.68, ndf = 2, ddf = 81, p-value < 2.2e-16

tabla12p <- svyby(~isg45, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla12p[, 2:4] * 100, 1)
##     isg451- <=45 isg452- 45 a 60 isg453- >=60
## Bra         34.5            34.1         31.4
## Uru         79.7            13.0          7.3
svychisq(~isg45 + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~isg45 + pais, disenio_urubra, statistic = "Wald") 
## F = 38.26, ndf = 2, ddf = 81, p-value = 2.003e-12

tabla13p <- svyby(~tipoesc, ~pais, disenio_urubra, svymean, na.rm = TRUE, deff = TRUE)
round(tabla13p[, 2:4] * 100, 1)
##     tipoesc1-Particular tipoesc2-Publica se.tipoesc1-Particular
## Bra                22.0             78.0                    7.4
## Uru                26.8             73.2                    8.6
svychisq(~tipoesc + pais, disenio_urubra, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~tipoesc + pais, disenio_urubra, statistic = "Wald") 
## F = 0.1797, ndf = 1, ddf = 81, p-value = 0.6728