Dataset

load("Ozone Data with Region.RData")

pop <- read_excel("Population/Population County.xlsx")
pop12<-pop%>%filter(Year==2012)

Process

Scenario A

A<-df4%>%
  filter(Year==2012,between(Max.Ozone,75,75+0.905))

unique(A$GEOID)%>%length() 
## [1] 349
unique(A$Date..Local.)%>%length() 
## [1] 160
A<-left_join(A,pop12,by=c("GEOID"="fips"))

A.pop<-A%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) # ALL OZONE LEVEL IS 75, So i think it have same kind of drought
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
A.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 349 × 3
##    GEOID    Pop    Sumpop
##    <chr>  <dbl>     <dbl>
##  1 01049   70.9 132814089
##  2 01073  658.  132814089
##  3 01089  343.  132814089
##  4 04005  136.  132814089
##  5 04007   53.0 132814089
##  6 04012   20.5 132814089
##  7 04013 3948.  132814089
##  8 04017  107.  132814089
##  9 04021  382.  132814089
## 10 04027  203.  132814089
## # ℹ 339 more rows
### A2
A2<-df4%>%
  filter(Year==2012,between(Max.Ozone,70,70+0.905))

unique(A2$GEOID)%>%length()
## [1] 517
unique(A2$Date..Local.)%>%length() 
## [1] 196
A2<-left_join(A2,pop12,by=c("GEOID"="fips"))

A2.pop<-A2%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) # ALL OZONE LEVEL IS 70
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(A2.pop)

A2.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 517 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01033  54.6 178745925
##  2 01051  80.2 178745925
##  3 01073 658.  178745925
##  4 01089 343.  178745925
##  5 01097 414.  178745925
##  6 01103 120.  178745925
##  7 04003 132.  178745925
##  8 04005 136.  178745925
##  9 04007  53.0 178745925
## 10 04012  20.5 178745925
## # ℹ 507 more rows
###A3

A3<-df4%>%
  filter(Year==2012,between(Max.Ozone,51,51+0.905))

unique(A3$GEOID)%>%length() 
## [1] 772
unique(A3$Date..Local.)%>%length() 
## [1] 320
A3<-left_join(A3,pop12,by=c("GEOID"="fips"))

A3.pop<-A3%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) # ALL OZONE LEVEL IS 51
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(A3.pop)

A3.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 772 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01003 190.  225735053
##  2 01033  54.6 225735053
##  3 01049  70.9 225735053
##  4 01051  80.2 225735053
##  5 01055 104.  225735053
##  6 01069 103.  225735053
##  7 01073 658.  225735053
##  8 01089 343.  225735053
##  9 01097 414.  225735053
## 10 01101 229.  225735053
## # ℹ 762 more rows

Scenario B

B<-df4%>%
  filter(Year==2012,between(Max.Ozone,75,75+0.905)|between(Max.Ozone,75,75+1.693))

unique(B$GEOID)%>%length() 
## [1] 442
unique(B$Date..Local.)%>%length() 
## [1] 172
B<-left_join(B,pop12,by=c("GEOID"="fips"))

B.pop<-B%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) # ALL OZONE LEVEL IS 75, So i think it have same kind of drought
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
B.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 442 × 3
##    GEOID    Pop    Sumpop
##    <chr>  <dbl>     <dbl>
##  1 01049   70.9 158680441
##  2 01073  658.  158680441
##  3 01089  343.  158680441
##  4 01103  120.  158680441
##  5 01117  201.  158680441
##  6 04003  132.  158680441
##  7 04005  136.  158680441
##  8 04007   53.0 158680441
##  9 04012   20.5 158680441
## 10 04013 3948.  158680441
## # ℹ 432 more rows
### B2
B2<-df4%>%
  filter(Year==2012,between(Max.Ozone,70,70+0.905)|between(Max.Ozone,70,70+1.693))

unique(B2$GEOID)%>%length() 
## [1] 606
unique(B2$Date..Local.)%>%length() 
## [1] 204
B2<-left_join(B2,pop12,by=c("GEOID"="fips"))

B2.pop<-B2%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) 
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(B2.pop)

B2.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 606 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01033  54.6 198796234
##  2 01049  70.9 198796234
##  3 01051  80.2 198796234
##  4 01073 658.  198796234
##  5 01089 343.  198796234
##  6 01097 414.  198796234
##  7 01103 120.  198796234
##  8 01113  57.5 198796234
##  9 04003 132.  198796234
## 10 04005 136.  198796234
## # ℹ 596 more rows
###B3

B3<-df4%>%
  filter(Year==2012,between(Max.Ozone,51,51+0.905)|between(Max.Ozone,51,51+1.693))

unique(B3$GEOID)%>%length()
## [1] 775
unique(B3$Date..Local.)%>%length() 
## [1] 337
B3<-left_join(B3,pop12,by=c("GEOID"="fips"))

B3.pop<-B3%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) 
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(B3.pop)

B3.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 775 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01003 190.  225894339
##  2 01033  54.6 225894339
##  3 01049  70.9 225894339
##  4 01051  80.2 225894339
##  5 01055 104.  225894339
##  6 01069 103.  225894339
##  7 01073 658.  225894339
##  8 01089 343.  225894339
##  9 01097 414.  225894339
## 10 01101 229.  225894339
## # ℹ 765 more rows

Scenario C

C<-df4%>%
  filter(Year==2012,between(Max.Ozone,75,75+2.598)|between(Max.Ozone,75,75+1.693))

unique(C$GEOID)%>%length() 
## [1] 488
unique(C$Date..Local.)%>%length() 
## [1] 179
C<-left_join(C,pop12,by=c("GEOID"="fips"))

C.pop<-C%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) # ALL OZONE LEVEL IS 75, So i think it have same kind of drought
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
C.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 488 × 3
##    GEOID    Pop    Sumpop
##    <chr>  <dbl>     <dbl>
##  1 01049   70.9 172255515
##  2 01073  658.  172255515
##  3 01089  343.  172255515
##  4 01103  120.  172255515
##  5 01117  201.  172255515
##  6 04003  132.  172255515
##  7 04005  136.  172255515
##  8 04007   53.0 172255515
##  9 04012   20.5 172255515
## 10 04013 3948.  172255515
## # ℹ 478 more rows
### C2
C2<-df4%>%
  filter(Year==2012,between(Max.Ozone,70,70+2.598)|between(Max.Ozone,70,70+1.693))

unique(C2$GEOID)%>%length() 
## [1] 637
unique(C2$Date..Local.)%>%length() 
## [1] 205
C2<-left_join(C2,pop12,by=c("GEOID"="fips"))

C2.pop<-C2%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) 
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(C2.pop)

C2.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 637 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01003 190.  202848364
##  2 01033  54.6 202848364
##  3 01049  70.9 202848364
##  4 01051  80.2 202848364
##  5 01073 658.  202848364
##  6 01089 343.  202848364
##  7 01097 414.  202848364
##  8 01103 120.  202848364
##  9 01113  57.5 202848364
## 10 04003 132.  202848364
## # ℹ 627 more rows
###C3

C3<-df4%>%
  filter(Year==2012,between(Max.Ozone,51,51+2.598)|between(Max.Ozone,51,51+1.693))

unique(C3$GEOID)%>%length()
## [1] 776
unique(C3$Date..Local.)%>%length() 
## [1] 340
C3<-left_join(C3,pop12,by=c("GEOID"="fips"))

C3.pop<-C3%>%
  distinct(GEOID,MonitorID,.keep_all = T)%>%
  group_by(GEOID,MonitorID,Max.Ozone)%>%
  summarise(pop=value) 
## `summarise()` has grouped output by 'GEOID', 'MonitorID'. You can override
## using the `.groups` argument.
View(C3.pop)

C3.pop%>%
  group_by(GEOID)%>%
  summarise(Pop=mean(pop))%>%
  mutate(Sumpop=sum(Pop,na.rm = T)*1000) 
## # A tibble: 776 × 3
##    GEOID   Pop    Sumpop
##    <chr> <dbl>     <dbl>
##  1 01003 190.  226634039
##  2 01033  54.6 226634039
##  3 01049  70.9 226634039
##  4 01051  80.2 226634039
##  5 01055 104.  226634039
##  6 01069 103.  226634039
##  7 01073 658.  226634039
##  8 01089 343.  226634039
##  9 01097 414.  226634039
## 10 01101 229.  226634039
## # ℹ 766 more rows