##FACTORIAL COMPLETO ##BLOQUES COMPLETOS Y AL AZAR
#FCBCA con anova y con ancova
set.seed(123)
#variable respuesta: conductancia estomatica
ce= c(
rnorm(n=15,mean=100,sd=10),
rnorm(n=15,mean=120,sd=12)
)
#variable 1: hora de evaluacion
hora=gl(2,15,30,labels=c(6,12))
#factor 2: iluminacion
ilum=gl(3,5,30,c("IB","IM","IA"))
#bloqueo: parcela
parc=gl(5,1,30,paste0("B", 1:5))
datos= data.frame(hora,ilum,parc,ce)
head(datos)
## hora ilum parc ce
## 1 6 IB B1 94.39524
## 2 6 IB B2 97.69823
## 3 6 IB B3 115.58708
## 4 6 IB B4 100.70508
## 5 6 IB B5 101.29288
## 6 6 IM B1 117.15065
analisis descriptivo
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.2
ggplot(datos)+
aes(y=ce)+
geom_boxplot()
ggplot(datos)+
aes(hora,ce)+
geom_boxplot()
ggplot(datos)+
aes(ilum,ce)+
geom_boxplot()
ggplot(datos)+
aes(parc,ce)+
geom_boxplot()
ggplot(datos)+
aes(ilum,ce,fill=hora)+
geom_boxplot()
ggplot(datos)+
aes(parc,ce,fill=hora)+
geom_col(position="dodge")+
facet_wrap(~ilum)
modelo \[y_{ijk}=\mu+\tau_{j}+\beta_{j}+(\tau\beta)_{ij}+\delta_{k}+\epsilon_{ijk}\]
\(i=1,2\) \(j=1,2,3\) \(k=1,2,...,5\)
#analisis de varianza
mod1=aov(ce~parc+hora+hora:ilum,datos)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## parc 4 262.4 65.6 0.462 0.76262
## hora 1 1805.8 1805.8 12.725 0.00193 **
## hora:ilum 4 306.2 76.6 0.539 0.70850
## Residuals 20 2838.4 141.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[H_2: \tau_6=\tau_{12}=0\] \[H_3: \beta_{B}=\beta_{M}=\beta_{A}=0\] hora:“unico factor uinfluyente”
resid=mod1$residuals
#Normalidad
shapiro.test(resid)
##
## Shapiro-Wilk normality test
##
## data: resid
## W = 0.96166, p-value = 0.3413
#los datos son normales
plot(resid)
datos$trt = interaction(datos$hora,
datos$ilum)
ggplot(datos)+
aes(trt, ce)+
geom_boxplot()
tapply(datos$ce, datos$trt, var)
## 6.IB 12.IB 6.IM 12.IM 6.IA 12.IA
## 65.77564 286.70940 135.37080 17.09574 40.89132 229.33821
datos$ce_log = log(datos$ce)
ggplot(datos)+
aes(trt, ce_log)+
geom_boxplot()
ce_log_var=tapply (datos$ce_log, datos$trt,var)
sort(ce_log_var)/min(ce_log_var)
## 12.IM 6.IA 6.IB 6.IM 12.IA 12.IB
## 1.000000 2.824160 4.346150 9.559637 12.433759 15.473325
modlog=aov(ce_log~parc+hora+hora:ilum,datos)
summary(modlog)
## Df Sum Sq Mean Sq F value Pr(>F)
## parc 4 0.02122 0.00530 0.467 0.75939
## hora 1 0.14615 0.14615 12.862 0.00185 **
## hora:ilum 4 0.02079 0.00520 0.457 0.76600
## Residuals 20 0.22726 0.01136
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
reslog=modlog$residuals
shapiro.test(reslog)
##
## Shapiro-Wilk normality test
##
## data: reslog
## W = 0.96786, p-value = 0.4824
TukeyHSD(modlog, "hora")
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = ce_log ~ parc + hora + hora:ilum, data = datos)
##
## $hora
## diff lwr upr p adj
## 12-6 0.1395957 0.05840189 0.2207896 0.0018458