mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

#QUESTIONS Using the mtcars data, answer the following:

1.1 What is the mean and standard deviation of mpg of the mtcars data?

1.2 Is there sufficient evidence that the population mean score of the mtcars data exceeds 19 miles per gallon?

1.3 Refer to Question 1.2, state your null and alternative hypotheses?

1.4 Is there sufficient evidence that mean difference of miles per gallon between automatic and manual cars differ statistically?

1.5 Refer to Question 1.4, state your null and alternative hypotheses?

#ANSWERS

1.1 What is the mean and standard deviation of mpg of the mtcars data?

mean(mtcars$mpg)
## [1] 20.09062
sd(mtcars$mpg)
## [1] 6.026948

1.2 Is there sufficient evidence that the population mean score of the mtcars data exceeds 19 miles per gallon?

t.test(mtcars$mpg, mu = 19, alternative = "greater")
## 
##  One Sample t-test
## 
## data:  mtcars$mpg
## t = 1.0237, df = 31, p-value = 0.157
## alternative hypothesis: true mean is greater than 19
## 95 percent confidence interval:
##  18.28418      Inf
## sample estimates:
## mean of x 
##  20.09062

Since the p-value > 0.05, We fail to reject the null hypothesis. Hence, there is not enough evidence to suggest that the population mean score of the mtcars data exceeds 19 miles per gallon.

1.3 Refer to Question 1.2, state your null and alternative hypotheses?

Ho: μ = 19 mpg

Ha: μ > 19 mpg

1.4 Is there sufficient evidence that mean difference of miles per gallon between automatic and manual cars differ statistically?

cars <- data.frame(mtcars$am, mtcars$mpg)
cars
##    mtcars.am mtcars.mpg
## 1          1       21.0
## 2          1       21.0
## 3          1       22.8
## 4          0       21.4
## 5          0       18.7
## 6          0       18.1
## 7          0       14.3
## 8          0       24.4
## 9          0       22.8
## 10         0       19.2
## 11         0       17.8
## 12         0       16.4
## 13         0       17.3
## 14         0       15.2
## 15         0       10.4
## 16         0       10.4
## 17         0       14.7
## 18         1       32.4
## 19         1       30.4
## 20         1       33.9
## 21         0       21.5
## 22         0       15.5
## 23         0       15.2
## 24         0       13.3
## 25         0       19.2
## 26         1       27.3
## 27         1       26.0
## 28         1       30.4
## 29         1       15.8
## 30         1       19.7
## 31         1       15.0
## 32         1       21.4
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
man<-cars %>%
  filter(mtcars.am != 0)
man
##    mtcars.am mtcars.mpg
## 1          1       21.0
## 2          1       21.0
## 3          1       22.8
## 4          1       32.4
## 5          1       30.4
## 6          1       33.9
## 7          1       27.3
## 8          1       26.0
## 9          1       30.4
## 10         1       15.8
## 11         1       19.7
## 12         1       15.0
## 13         1       21.4
library(dplyr)
auto<-cars %>%
  filter(mtcars.am != 1)
auto
##    mtcars.am mtcars.mpg
## 1          0       21.4
## 2          0       18.7
## 3          0       18.1
## 4          0       14.3
## 5          0       24.4
## 6          0       22.8
## 7          0       19.2
## 8          0       17.8
## 9          0       16.4
## 10         0       17.3
## 11         0       15.2
## 12         0       10.4
## 13         0       10.4
## 14         0       14.7
## 15         0       21.5
## 16         0       15.5
## 17         0       15.2
## 18         0       13.3
## 19         0       19.2
t.test(man$mtcars.mpg, auto$mtcars.mpg)
## 
##  Welch Two Sample t-test
## 
## data:  man$mtcars.mpg and auto$mtcars.mpg
## t = 3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   3.209684 11.280194
## sample estimates:
## mean of x mean of y 
##  24.39231  17.14737

No. as we see that the p-value is less than 0.05, hence, there’s no mean difference that is statistically significant.

1.5 Refer to Question 1.4, state your null and alternative hypotheses?

Ho: mean of the automatic cars is equal to the mean of manual cars.

Ha: mean of the automatic cars is not equal to the mean of manual cars.