Nessa atividade faremos um mapa por município da variável “densidade” do banco “BasesMunicipios.xlsx”
library(readxl)
library(flextable)
library(dplyr)
library(ggplot2)
Base_Municipio = read_excel("C:/Users/eduar/Base_de_dados-master/BasesMunicipios.xlsx")
head(Base_Municipio)
## # A tibble: 6 × 31
## Munic Regiao `COD IBGE` `COD IBGE2` Gini Agua Banheiro Lixo Energia
## <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Angra dos Re… Costa… 330010 3300100 0.5 92.5 95.4 99.3 99.8
## 2 Aperibé (RJ) Noroe… 330015 3300159 0.43 96.8 99.5 97.1 100
## 3 Araruama (RJ) Baixa… 330020 3300209 0.54 96.1 94.4 95.6 99.8
## 4 Areal (RJ) Centr… 330022 3300225 0.48 85.7 98.2 98.6 99.6
## 5 Armação dos … Baixa… 330023 3300233 0.51 83.5 96.3 98.6 100
## 6 Arraial do C… Baixa… 330025 3300258 0.47 93.9 93.3 99.8 100
## # ℹ 22 more variables: Densidade <dbl>, Esperancadevida <dbl>,
## # Mortalidade_infantil <dbl>, Prob_sobrevivencia <dbl>, IDH <dbl>,
## # IDH_Renda <dbl>, IDH_Longevidade <dbl>, IDH_Educacao <dbl>,
## # Probab_sobrev60 <dbl>, TFT <dbl>, Taxa_envelhecimento <dbl>,
## # Taxa_analfabetismo <dbl>, frequencia_liquida_EM <dbl>,
## # Expectativa_anos_de_estudo <dbl>, frequencia_liquida_Superior <dbl>,
## # perc_com_2_anos_de_de_atraso <dbl>, Renda_per_capita <dbl>, …
head(Base_Municipio) %>% flextable() %>% theme_tron_legacy()
Munic | Regiao | COD IBGE | COD IBGE2 | Gini | Agua | Banheiro | Lixo | Energia | Densidade | Esperancadevida | Mortalidade_infantil | Prob_sobrevivencia | IDH | IDH_Renda | IDH_Longevidade | IDH_Educacao | Probab_sobrev60 | TFT | Taxa_envelhecimento | Taxa_analfabetismo | frequencia_liquida_EM | Expectativa_anos_de_estudo | frequencia_liquida_Superior | perc_com_2_anos_de_de_atraso | Renda_per_capita | Renda_per_capita_nula | Perc_pobres | Perc_extremamente_pobres | Populacao | ISS |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Angra dos Reis (RJ) | Costa Verde | 330,010 | 3300100 | 0.50 | 92.49 | 95.45 | 99.26 | 99.77 | 34.42 | 75.75 | 12.97 | 92.99 | 0.724 | 0.740 | 0.846 | 0.605 | 83.19 | 2.10 | 5.22 | 6.27 | 48.56 | 9.00 | 7.26 | 24.94 | 798.68 | 799.89 | 6.69 | 3.54 | 169,511 | 68,586,846.6 |
Aperibé (RJ) | Noroeste Fluminense | 330,015 | 3300159 | 0.43 | 96.84 | 99.52 | 97.07 | 100.00 | 19.54 | 72.10 | 18.40 | 90.41 | 0.692 | 0.670 | 0.785 | 0.631 | 77.85 | 1.70 | 10.13 | 12.59 | 50.95 | 8.95 | 14.19 | 24.57 | 516.14 | 516.81 | 9.40 | 3.83 | 10,213 | 573,002.8 |
Araruama (RJ) | Baixadas Litorâneas | 330,020 | 3300209 | 0.54 | 96.08 | 94.42 | 95.64 | 99.75 | 31.84 | 75.32 | 14.18 | 92.84 | 0.718 | 0.714 | 0.839 | 0.617 | 82.88 | 2.20 | 9.51 | 8.99 | 49.53 | 8.84 | 9.18 | 26.90 | 680.88 | 682.92 | 11.60 | 6.98 | 112,008 | |
Areal (RJ) | Centro-Sul Fluminense | 330,022 | 3300225 | 0.48 | 85.66 | 98.20 | 98.57 | 99.61 | 28.13 | 74.35 | 15.00 | 92.06 | 0.684 | 0.686 | 0.823 | 0.566 | 81.22 | 1.81 | 8.15 | 9.18 | 37.88 | 9.21 | 8.69 | 27.69 | 571.74 | 573.12 | 11.13 | 7.87 | 11,423 | 2,408,993.0 |
Armação dos Búzios (RJ) | Baixadas Litorâneas | 330,023 | 3300233 | 0.51 | 83.53 | 96.31 | 98.55 | 100.00 | 26.64 | 74.44 | 14.80 | 92.12 | 0.728 | 0.750 | 0.824 | 0.624 | 81.36 | 1.80 | 5.28 | 5.57 | 40.78 | 9.09 | 8.66 | 23.23 | 851.39 | 851.39 | 3.69 | 0.11 | 27,560 | 9,224,831.5 |
Arraial do Cabo (RJ) | Baixadas Litorâneas | 330,025 | 3300258 | 0.47 | 93.91 | 93.31 | 99.79 | 100.00 | 32.89 | 73.31 | 16.50 | 91.31 | 0.733 | 0.722 | 0.805 | 0.677 | 79.68 | 1.90 | 8.48 | 5.53 | 55.22 | 9.49 | 9.62 | 21.84 | 714.47 | 715.77 | 6.93 | 2.55 | 27,715 |
summary(Base_Municipio)
## Munic Regiao COD IBGE COD IBGE2
## Length:92 Length:92 Min. :330010 Length:92
## Class :character Class :character 1st Qu.:330158 Class :character
## Mode :character Mode :character Median :330315 Mode :character
## Mean :330312
## 3rd Qu.:330463
## Max. :330630
##
## Gini Agua Banheiro Lixo
## Min. :0.4200 Min. :63.90 Min. :74.75 Min. : 84.86
## 1st Qu.:0.4700 1st Qu.:89.65 1st Qu.:92.33 1st Qu.: 97.17
## Median :0.4850 Median :94.13 Median :96.42 Median : 98.80
## Mean :0.4897 Mean :92.09 Mean :94.66 Mean : 97.91
## 3rd Qu.:0.5100 3rd Qu.:96.61 3rd Qu.:97.92 3rd Qu.: 99.25
## Max. :0.6200 Max. :99.47 Max. :99.83 Max. :100.00
##
## Energia Densidade Esperancadevida Mortalidade_infantil
## Min. : 98.02 Min. :14.59 Min. :71.93 Min. :10.96
## 1st Qu.: 99.77 1st Qu.:22.52 1st Qu.:73.26 1st Qu.:14.56
## Median : 99.89 Median :26.16 Median :73.74 Median :15.90
## Mean : 99.79 Mean :26.97 Mean :73.96 Mean :15.60
## 3rd Qu.: 99.97 3rd Qu.:31.02 3rd Qu.:74.83 3rd Qu.:16.68
## Max. :100.00 Max. :46.83 Max. :76.27 Max. :18.60
##
## Prob_sobrevivencia IDH IDH_Renda IDH_Longevidade
## Min. :90.27 Min. :0.6110 Min. :0.6180 Min. :0.7820
## 1st Qu.:91.28 1st Qu.:0.6847 1st Qu.:0.6827 1st Qu.:0.8040
## Median :91.65 Median :0.7125 Median :0.6985 Median :0.8125
## Mean :91.79 Mean :0.7089 Mean :0.7046 Mean :0.8161
## 3rd Qu.:92.47 3rd Qu.:0.7300 3rd Qu.:0.7230 3rd Qu.:0.8303
## Max. :93.55 Max. :0.8370 Max. :0.8870 Max. :0.8550
##
## IDH_Educacao Probab_sobrev60 TFT Taxa_envelhecimento
## Min. :0.4360 Min. :77.59 Min. :1.300 Min. : 4.910
## 1st Qu.:0.5920 1st Qu.:79.61 1st Qu.:1.680 1st Qu.: 7.242
## Median :0.6240 Median :80.38 Median :1.825 Median : 8.500
## Mean :0.6209 Mean :80.65 Mean :1.848 Mean : 8.584
## 3rd Qu.:0.6530 3rd Qu.:81.80 3rd Qu.:2.020 3rd Qu.: 9.738
## Max. :0.7730 Max. :84.39 Max. :2.500 Max. :12.400
##
## Taxa_analfabetismo frequencia_liquida_EM Expectativa_anos_de_estudo
## Min. : 2.470 Min. :31.10 Min. : 7.330
## 1st Qu.: 6.220 1st Qu.:44.63 1st Qu.: 8.695
## Median : 8.705 Median :49.58 Median : 8.985
## Mean : 9.489 Mean :49.38 Mean : 8.955
## 3rd Qu.:12.240 3rd Qu.:54.08 3rd Qu.: 9.242
## Max. :23.350 Max. :70.49 Max. :10.190
##
## frequencia_liquida_Superior perc_com_2_anos_de_de_atraso Renda_per_capita
## Min. : 3.14 Min. :14.74 Min. : 375.5
## 1st Qu.: 8.24 1st Qu.:21.16 1st Qu.: 559.5
## Median :10.76 Median :24.39 Median : 618.3
## Mean :11.37 Mean :23.96 Mean : 666.0
## 3rd Qu.:13.52 3rd Qu.:26.18 3rd Qu.: 718.1
## Max. :36.40 Max. :36.27 Max. :2000.3
##
## Renda_per_capita_nula Perc_pobres Perc_extremamente_pobres
## Min. : 385.1 Min. : 3.34 Min. : 0.110
## 1st Qu.: 565.5 1st Qu.: 7.70 1st Qu.: 3.225
## Median : 625.0 Median :10.15 Median : 5.060
## Mean : 668.3 Mean :10.16 Mean : 5.100
## 3rd Qu.: 719.6 3rd Qu.:12.20 3rd Qu.: 6.185
## Max. :2001.1 Max. :23.92 Max. :15.690
##
## Populacao ISS
## Min. : 5269 Min. :1.235e+05
## 1st Qu.: 17502 1st Qu.:1.024e+06
## Median : 34878 Median :4.021e+06
## Mean : 173804 Mean :7.203e+07
## 3rd Qu.: 113948 3rd Qu.:1.657e+07
## Max. :6320446 Max. :3.723e+09
## NA's :15
#Classificando as variávels
class(Base_Municipio$Munic)
## [1] "character"
class(Base_Municipio$Regiao)
## [1] "character"
class(Base_Municipio$`COD IBGE`)
## [1] "numeric"
class(Base_Municipio$`COD IBGE2`)
## [1] "character"
class(Base_Municipio$Gini)
## [1] "numeric"
class(Base_Municipio$Agua)
## [1] "numeric"
class(Base_Municipio$Banheiro)
## [1] "numeric"
class(Base_Municipio$Lixo)
## [1] "numeric"
class(Base_Municipio$Energia)
## [1] "numeric"
class(Base_Municipio$Densidade)
## [1] "numeric"
class(Base_Municipio$Esperancadevida)
## [1] "numeric"
class(Base_Municipio$Mortalidade_infantil)
## [1] "numeric"
class(Base_Municipio$Prob_sobrevivencia)
## [1] "numeric"
class(Base_Municipio$IDH)
## [1] "numeric"
class(Base_Municipio$IDH_Renda)
## [1] "numeric"
class(Base_Municipio$IDH_Longevidade)
## [1] "numeric"
class(Base_Municipio$IDH_Educacao)
## [1] "numeric"
class(Base_Municipio$Probab_sobrev60)
## [1] "numeric"
class(Base_Municipio$TFT)
## [1] "numeric"
class(Base_Municipio$Taxa_envelhecimento)
## [1] "numeric"
class(Base_Municipio$Taxa_analfabetismo)
## [1] "numeric"
class(Base_Municipio$frequencia_liquida_EM)
## [1] "numeric"
class(Base_Municipio$Expectativa_anos_de_estudo)
## [1] "numeric"
class(Base_Municipio$frequencia_liquida_Superior)
## [1] "numeric"
class(Base_Municipio$perc_com_2_anos_de_de_atraso)
## [1] "numeric"
class(Base_Municipio$Renda_per_capita)
## [1] "numeric"
class(Base_Municipio$Renda_per_capita_nula)
## [1] "numeric"
class(Base_Municipio$Perc_pobres)
## [1] "numeric"
class(Base_Municipio$Perc_extremamente_pobres)
## [1] "numeric"
class(Base_Municipio$Populacao)
## [1] "numeric"
class(Base_Municipio$ISS)
## [1] "numeric"
#Limpeza de dados
Base_Municipio$`COD IBGE2` = as.numeric(Base_Municipio$`COD IBGE2`)
class(Base_Municipio$`COD IBGE2`)
## [1] "numeric"
summary(Base_Municipio)
## Munic Regiao COD IBGE COD IBGE2
## Length:92 Length:92 Min. :330010 Min. :3300100
## Class :character Class :character 1st Qu.:330158 1st Qu.:3301578
## Mode :character Mode :character Median :330315 Median :3303154
## Mean :330312 Mean :3303128
## 3rd Qu.:330463 3rd Qu.:3304632
## Max. :330630 Max. :3306305
##
## Gini Agua Banheiro Lixo
## Min. :0.4200 Min. :63.90 Min. :74.75 Min. : 84.86
## 1st Qu.:0.4700 1st Qu.:89.65 1st Qu.:92.33 1st Qu.: 97.17
## Median :0.4850 Median :94.13 Median :96.42 Median : 98.80
## Mean :0.4897 Mean :92.09 Mean :94.66 Mean : 97.91
## 3rd Qu.:0.5100 3rd Qu.:96.61 3rd Qu.:97.92 3rd Qu.: 99.25
## Max. :0.6200 Max. :99.47 Max. :99.83 Max. :100.00
##
## Energia Densidade Esperancadevida Mortalidade_infantil
## Min. : 98.02 Min. :14.59 Min. :71.93 Min. :10.96
## 1st Qu.: 99.77 1st Qu.:22.52 1st Qu.:73.26 1st Qu.:14.56
## Median : 99.89 Median :26.16 Median :73.74 Median :15.90
## Mean : 99.79 Mean :26.97 Mean :73.96 Mean :15.60
## 3rd Qu.: 99.97 3rd Qu.:31.02 3rd Qu.:74.83 3rd Qu.:16.68
## Max. :100.00 Max. :46.83 Max. :76.27 Max. :18.60
##
## Prob_sobrevivencia IDH IDH_Renda IDH_Longevidade
## Min. :90.27 Min. :0.6110 Min. :0.6180 Min. :0.7820
## 1st Qu.:91.28 1st Qu.:0.6847 1st Qu.:0.6827 1st Qu.:0.8040
## Median :91.65 Median :0.7125 Median :0.6985 Median :0.8125
## Mean :91.79 Mean :0.7089 Mean :0.7046 Mean :0.8161
## 3rd Qu.:92.47 3rd Qu.:0.7300 3rd Qu.:0.7230 3rd Qu.:0.8303
## Max. :93.55 Max. :0.8370 Max. :0.8870 Max. :0.8550
##
## IDH_Educacao Probab_sobrev60 TFT Taxa_envelhecimento
## Min. :0.4360 Min. :77.59 Min. :1.300 Min. : 4.910
## 1st Qu.:0.5920 1st Qu.:79.61 1st Qu.:1.680 1st Qu.: 7.242
## Median :0.6240 Median :80.38 Median :1.825 Median : 8.500
## Mean :0.6209 Mean :80.65 Mean :1.848 Mean : 8.584
## 3rd Qu.:0.6530 3rd Qu.:81.80 3rd Qu.:2.020 3rd Qu.: 9.738
## Max. :0.7730 Max. :84.39 Max. :2.500 Max. :12.400
##
## Taxa_analfabetismo frequencia_liquida_EM Expectativa_anos_de_estudo
## Min. : 2.470 Min. :31.10 Min. : 7.330
## 1st Qu.: 6.220 1st Qu.:44.63 1st Qu.: 8.695
## Median : 8.705 Median :49.58 Median : 8.985
## Mean : 9.489 Mean :49.38 Mean : 8.955
## 3rd Qu.:12.240 3rd Qu.:54.08 3rd Qu.: 9.242
## Max. :23.350 Max. :70.49 Max. :10.190
##
## frequencia_liquida_Superior perc_com_2_anos_de_de_atraso Renda_per_capita
## Min. : 3.14 Min. :14.74 Min. : 375.5
## 1st Qu.: 8.24 1st Qu.:21.16 1st Qu.: 559.5
## Median :10.76 Median :24.39 Median : 618.3
## Mean :11.37 Mean :23.96 Mean : 666.0
## 3rd Qu.:13.52 3rd Qu.:26.18 3rd Qu.: 718.1
## Max. :36.40 Max. :36.27 Max. :2000.3
##
## Renda_per_capita_nula Perc_pobres Perc_extremamente_pobres
## Min. : 385.1 Min. : 3.34 Min. : 0.110
## 1st Qu.: 565.5 1st Qu.: 7.70 1st Qu.: 3.225
## Median : 625.0 Median :10.15 Median : 5.060
## Mean : 668.3 Mean :10.16 Mean : 5.100
## 3rd Qu.: 719.6 3rd Qu.:12.20 3rd Qu.: 6.185
## Max. :2001.1 Max. :23.92 Max. :15.690
##
## Populacao ISS
## Min. : 5269 Min. :1.235e+05
## 1st Qu.: 17502 1st Qu.:1.024e+06
## Median : 34878 Median :4.021e+06
## Mean : 173804 Mean :7.203e+07
## 3rd Qu.: 113948 3rd Qu.:1.657e+07
## Max. :6320446 Max. :3.723e+09
## NA's :15
library(geobr)
mapa = geobr::read_municipality(code_muni = 33)
##
Downloading: 1.2 kB
Downloading: 1.2 kB
Downloading: 1.6 kB
Downloading: 1.6 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.8 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 1.9 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 2.4 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 10 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 19 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 27 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 35 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 43 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 51 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 59 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 67 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 75 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 83 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 91 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 100 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 110 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 120 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 130 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 140 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 150 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 160 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 170 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 180 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 190 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 200 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 210 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 220 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 230 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
Downloading: 240 kB
names(Base_Municipio)
## [1] "Munic" "Regiao"
## [3] "COD IBGE" "COD IBGE2"
## [5] "Gini" "Agua"
## [7] "Banheiro" "Lixo"
## [9] "Energia" "Densidade"
## [11] "Esperancadevida" "Mortalidade_infantil"
## [13] "Prob_sobrevivencia" "IDH"
## [15] "IDH_Renda" "IDH_Longevidade"
## [17] "IDH_Educacao" "Probab_sobrev60"
## [19] "TFT" "Taxa_envelhecimento"
## [21] "Taxa_analfabetismo" "frequencia_liquida_EM"
## [23] "Expectativa_anos_de_estudo" "frequencia_liquida_Superior"
## [25] "perc_com_2_anos_de_de_atraso" "Renda_per_capita"
## [27] "Renda_per_capita_nula" "Perc_pobres"
## [29] "Perc_extremamente_pobres" "Populacao"
## [31] "ISS"
names(mapa)
## [1] "code_muni" "name_muni" "code_state" "abbrev_state" "geom"
library(dplyr)
Base_Municipio = Base_Municipio %>% rename(code_muni=`COD IBGE2`)
class(mapa$code_muni)
## [1] "numeric"
class(Base_Municipio$code_muni)
## [1] "numeric"
dados_mais_mapa = mapa %>% left_join(Base_Municipio)
dados_mais_mapa %>% ggplot() +
geom_sf(aes(fill=Densidade)) +
scale_fill_distiller(palette = "Set3",
name="Municipio") +
theme_minimal()
Foi possivel perceber que havia erro nos dados do IBGE, que foram corrigidos para que fosse possível a analisar os dados especificamente do municipio do Rio de Janeiro para obtermos as informações da densidade sobre o municipio analisadas no mapa gerado.
A maior densidade está concentrada na região metropolitana do Rio de Janeiro, Já a menor se concentra principalmente no Noroeste Fluminense.