HELLO!
Teknik Informatika UIN MAULANA MALIK IBRAHIM MALANG|| Lalu Egiq Fahalik Anggara_220605110066 | linier algebra
by Prof. Dr. Suhartono, M.Kom
library(mvtnorm)
library(ggplot2)
library(matlib)
## Warning: package 'matlib' was built under R version 4.2.3
v1 <- c(2, -1, 3)
v1
## [1] 2 -1 3
v2 <- c(-1, 0, 4)
v2
## [1] -1 0 4
v1 + v2
## [1] 1 -1 7
A <- matrix(c(3, 0, -5, -1, -3, 4), nrow = 2, ncol = 3, byrow = TRUE)
A
## [,1] [,2] [,3]
## [1,] 3 0 -5
## [2,] -1 -3 4
B <- matrix(c(-5, 5, 2, 1, -2, 0), nrow = 2, ncol = 3, byrow = TRUE)
B
## [,1] [,2] [,3]
## [1,] -5 5 2
## [2,] 1 -2 0
A+B
## [,1] [,2] [,3]
## [1,] -2 5 -3
## [2,] 0 -5 4
A <- matrix(c(3, 0, -5, -1, -3, 4), nrow = 2, ncol = 3, byrow = TRUE)
A
## [,1] [,2] [,3]
## [1,] 3 0 -5
## [2,] -1 -3 4
-3*A
## [,1] [,2] [,3]
## [1,] -9 0 15
## [2,] 3 9 -12
3*A
## [,1] [,2] [,3]
## [1,] 9 0 -15
## [2,] -3 -9 12
2*A
## [,1] [,2] [,3]
## [1,] 6 0 -10
## [2,] -2 -6 8
v1 <- c(2, -1, 3)
v2 <- c(-1, 0, 4)
v1
## [1] 2 -1 3
v2
## [1] -1 0 4
v1%*%v2
## [,1]
## [1,] 10
A <- matrix(c(3, 0, -5, -1, -3, 4), nrow = 2, ncol = 3, byrow = TRUE)
B <- matrix(c(-5, 5, 2, 1, -2, 0), nrow = 3, ncol = 2, byrow = TRUE)
A
## [,1] [,2] [,3]
## [1,] 3 0 -5
## [2,] -1 -3 4
B
## [,1] [,2]
## [1,] -5 5
## [2,] 2 1
## [3,] -2 0
A %*% B
## [,1] [,2]
## [1,] -5 15
## [2,] -9 -8
A <- matrix(c(4, -1, -5, 0, 1, -2), 2, 3, byrow = TRUE)
t(A)
## [,1] [,2]
## [1,] 4 0
## [2,] -1 1
## [3,] -5 -2
## Standard deviation
sigma <- matrix(c(4,2,2,3), ncol = 2, nrow = 2)
sigma
## [,1] [,2]
## [1,] 4 2
## [2,] 2 3
## Mean
mu <- c(1, 2)
mu
## [1] 1 2
n<-100
n
## [1] 100
set.seed(123)
library(matlib)
A <- matrix(c(1, 3, 2, 1, 2, 5, -2, -3, 2, 2, -3, -3,
-4, -2, -1, 4), nrow = 4, ncol = 4, byrow=TRUE)
#Then we create a matrix M with the function diag():
M <- cbind(A, diag(4))
#Now we upload the pracma package.
library(pracma)
## Warning: package 'pracma' was built under R version 4.2.3
##
## Attaching package: 'pracma'
## The following objects are masked from 'package:matlib':
##
## angle, inv
R <- rref(M)
#If you want to obtain the inverse of the matrix A, then we take the fifth, sixth, seventh and eighth columns of R.
Ainv <- R[, 5:8]
Ainv
## [,1] [,2] [,3] [,4]
## [1,] 0.58024691 -0.7037037 0.8641975 -0.02469136
## [2,] 0.04938272 0.2592593 -0.1604938 0.06172840
## [3,] -0.14814815 0.2222222 -0.5185185 -0.18518519
## [4,] 0.56790123 -0.5185185 0.6543210 0.20987654
A <- matrix(runif(25), 5, 5)
A <- matrix(sample(-100:100, 25, replace=TRUE), 5, 5)
A
## [,1] [,2] [,3] [,4] [,5]
## [1,] -2 36 2 8 -78
## [2,] -29 63 16 -94 54
## [3,] -75 -23 -25 36 87
## [4,] -94 -20 42 68 -48
## [5,] 69 -58 -69 -27 34
A <- matrix(c(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 1), nrow = 11, ncol = 18, byrow = TRUE)
A
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 1 1 1 1 1 1 1 1 1 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0 1 1 1 1
## [3,] 1 0 0 0 0 0 0 0 0 1 0 0 0
## [4,] 0 1 0 0 0 0 0 0 0 0 1 0 0
## [5,] 0 0 1 0 0 0 0 0 0 0 0 1 0
## [6,] 0 0 0 1 0 0 0 0 0 0 0 0 1
## [7,] 0 0 0 0 1 0 0 0 0 0 0 0 0
## [8,] 0 0 0 0 0 1 0 0 0 0 0 0 0
## [9,] 0 0 0 0 0 0 1 0 0 0 0 0 0
## [10,] 0 0 0 0 0 0 0 1 0 0 0 0 0
## [11,] 0 0 0 0 0 0 0 0 1 0 0 0 0
## [,14] [,15] [,16] [,17] [,18]
## [1,] 0 0 0 0 0
## [2,] 1 1 1 1 1
## [3,] 0 0 0 0 0
## [4,] 0 0 0 0 0
## [5,] 0 0 0 0 0
## [6,] 0 0 0 0 0
## [7,] 1 0 0 0 0
## [8,] 0 1 0 0 0
## [9,] 0 0 1 0 0
## [10,] 0 0 0 1 0
## [11,] 0 0 0 0 1
b <- c(1298, 1948, 465, 605, 451, 338, 260, 183, 282, 127, 535)
b
## [1] 1298 1948 465 605 451 338 260 183 282 127 535
C <- cbind(A, b)
C
## b
## [1,] 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1298
## [2,] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1948
## [3,] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 465
## [4,] 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 605
## [5,] 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 451
## [6,] 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 338
## [7,] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 260
## [8,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 183
## [9,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 282
## [10,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 127
## [11,] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 535
library(pracma)
E <- rref(C)
E*6
## b
## [1,] 6 0 0 0 0 0 0 0 0 0 -6 -6 -6 -6 -6 -6 -6 -6 -8898
## [2,] 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 3630
## [3,] 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 2706
## [4,] 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 2028
## [5,] 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 1560
## [6,] 0 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 1098
## [7,] 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 1692
## [8,] 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 762
## [9,] 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 6 3210
## [10,] 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 11688
## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G1 <- eye(8)
G1
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0
## [6,] 0 0 0 0 0 1 0 0
## [7,] 0 0 0 0 0 0 1 0
## [8,] 0 0 0 0 0 0 0 1
G2 <- matrix(rep(0, 80), 8, 10)
G2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0 0
## [6,] 0 0 0 0 0 0 0 0 0 0
## [7,] 0 0 0 0 0 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 0 0 0
b2 <- c(266, 223, 140, 264, 137, 67, 130, 24)
b2
## [1] 266 223 140 264 137 67 130 24
G <- cbind(G1, G2, b2)
G
## b2
## [1,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 266
## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223
## [3,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 264
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 137
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 67
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 130
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 24
M <- rbind(E, G)
M
## b
## [1,] 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1483
## [2,] 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 605
## [3,] 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 451
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 338
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 260
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 183
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 282
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 127
## [9,] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 535
## [10,] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1948
## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 266
## [13,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223
## [14,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140
## [15,] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 264
## [16,] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 137
## [17,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 67
## [18,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 130
## [19,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 24
M2 <- M[,-19]
M2
##
## [1,] 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1
## [2,] 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [9,] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
## [10,] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
## [11,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15,] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16,] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [18,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [19,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M3 <- rref(M2)
M3
##
## [1,] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [9,] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## [11,] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [12,] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [13,] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## [14,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [15,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [16,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [17,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [18,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [19,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
daftar pustaka yoshida, Ruriko.(2021).LINIER ALGEBRA AND ITS APPLICATION WITH R