We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features.
(a) Generate a data set with n = 500 and p = 2, such that the obser- vations belong to two classes with a quadratic decision boundary between them. For instance, you can do this as follows:
set.seed(1)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y = 1 * (x1^2 - x2^2 > 0)
(b) Plot the observations, colored according to their class labels. Your plot should display X1 on the x-axis, and X2 on the y- axis.
plot(x1[y == 0], x2[y == 0], col = "red", xlab = "X1", ylab = "X2", pch = "+")
points(x1[y == 1], x2[y == 1], col = "black", pch = 4)
(c) Fit a logistic regression model to the data, using X1 and X2 as predictors.
lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.087260 0.089579 -0.974 0.330
## x1 0.196199 0.316864 0.619 0.536
## x2 -0.002854 0.305712 -0.009 0.993
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 692.18 on 499 degrees of freedom
## Residual deviance: 691.79 on 497 degrees of freedom
## AIC: 697.79
##
## Number of Fisher Scoring iterations: 3
(d) Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear.
data <- data.frame(x1 = x1, x2 = x2, y = y)
probs <- predict(lm.fit, data, type = "response")
preds <- rep(0, 500)
preds[probs > 0.47] <- 1
plot(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1), xlab = "X1", ylab = "X2")
points(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0))
(e) Now fit a logistic regression model to the data using non-linear functions of X1 and X2 as predictors (e.g. X12, X1 ×X2, log(X2), and so forth).
lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(lm.fit )
##
## Call:
## glm(formula = y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), family = binomial,
## data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -102.2 4302.0 -0.024 0.981
## poly(x1, 2)1 2715.3 141109.5 0.019 0.985
## poly(x1, 2)2 27218.5 842987.2 0.032 0.974
## poly(x2, 2)1 -279.7 97160.4 -0.003 0.998
## poly(x2, 2)2 -28693.0 875451.3 -0.033 0.974
## I(x1 * x2) -206.4 41802.8 -0.005 0.996
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6.9218e+02 on 499 degrees of freedom
## Residual deviance: 3.5810e-06 on 494 degrees of freedom
## AIC: 12
##
## Number of Fisher Scoring iterations: 25
(f) Apply this model to the training data in order to obtain a pre- dicted class label for each training observation. Plot the ob- servations, colored according to the predicted class labels. The decision boundary should be obviously non-linear. If it is not, then repeat (a)-(e) until you come up with an example in which the predicted class labels are obviously non-linear.
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "black", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
This non-linear decision boundary closely resembles the true decision
boundary.
(g) Fit a support vector classifier to the data with X1 and X2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
library(e1071)
data$y <- as.factor(data$y)
svm.fit <- svm(y ~ x1 + x2, data, kernel = "linear", cost = 0.01)
preds <- predict(svm.fit, data)
plot(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0), xlab = "X1", ylab = "X2")
points(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1))
(h) Fit a SVM using a non-linear kernel to the data. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
svm.fit = svm(as.factor(y) ~ x1 + x2, data, gamma = 1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "black", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
(i) Comment on your results. This experiment enforces the idea that SVMs with non-linear kernel are extremely powerful in finding non-linear boundary. Both, logistic regression with non-interactions and SVMs with linear kernels fail to find the decision boundary. Adding interaction terms to logistic regression seems to give them same power as radial-basis kernels. However, there is some manual efforts and tuning involved in picking right interaction terms. This effort can become prohibitive with large number of features. Radial basis kernels, on the other hand, only require tuning of one parameter - gamma - which can be easily done using cross-validation.