Cálculo de Probabilidades 2: Proyecto

Samuel Leidenberger Bitrán

Emiliano Bobadilla Franco

Asli Sandoval

Librerías

library(ggplot2)
library(gridExtra)
library(reshape2)
library(patchwork)
library(dplyr)

Attaching package: 'dplyr'
The following object is masked from 'package:gridExtra':

    combine
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Running Code

1. Considere \(X_1\), \(X_2\), . . . , \(X_n\) variables aleatorias independientes e idénticamente distribuidas
todas con distribución exponencial con media 5. También considere \(Y_1\), \(Y_2\), . . . , \(Y_m\) variables aleatorias independientes e idénticamente distribuidas todas con distribución exponencial con media 15 e independientes de los \(X_is\). Defina la cantidad

\[ T= \frac {1/n\sum_{i=1}^{n}X_i} {1/n\sum_{i=1}^{n}Y_i} \]

(a) Tome \(m = 20\). Simule \(n = 10, 100, 1000, 1000\) \(X_is\) y \(Y_js\) y sugiera una posible distri-
bución.

(b) Tome \(n = 20\). Simule \(m = 10, 100, 1000, 1000\) \(X_is\) y \(Y_js\) y sugiera una posible distri-
bución.

simular_T <- function(n, m) {
  X <- rexp(n, rate = 1/5)
  Y <- rexp(m, rate = 1/15)
  T <- (sum(X) / n) / (sum(Y) / m)
  return(T)
}

n_values <- c(10, 100, 1000, 10000)
m_values <- c(10, 100, 1000, 10000)
num_simulations <- 1000

Creamos una lista para almacenar los gráficos

graficos <- list()

for (i in 1:length(n_values)) {
  n <- n_values[i]
  
  # Gráficos para m = 20
  T_n <- replicate(num_simulations, simular_T(n, m = 20))
  df_n <- data.frame(n = paste0("n=", n), T = T_n)
  
  graficos[[paste0("n_", n, "_m_20")]] <- ggplot(df_n, aes(x = T, fill = n)) +
    geom_histogram(alpha = 0.6, bins = 50, position = 'identity') +
    theme_minimal() +
    labs(title = paste0("n = ", n, ", m = 20"), x = "T", y = "Frecuencia")
  
  # Gráficos para n = 20
  T_m <- replicate(num_simulations, simular_T(n = 20, m = n_values[i]))
  df_m <- data.frame(m = paste0("m=", n_values[i]), T = T_m)
  
  graficos[[paste0("n_20_m_", n_values[i])]] <- ggplot(df_m, aes(x = T, fill = m)) +
    geom_histogram(alpha = 0.6, bins = 50, position = 'identity') +
    theme_minimal() +
    labs(title = paste0("n = 20, m = ", n_values[i]), x = "T", y = "Frecuencia")
}

Mostramos los gráficos en una cuadrícula 4x2

grid.arrange(grobs = graficos, ncol = 2)


(c) Encuentre la distribución de \(T\)

Observamos que nuestra \(T\) tiene un comportamiento similar a una distribución Cauchy


2. Considere \(X_1\), \(X_2\), . . . , \(X_n\) variables aleatorias independientes e idénticamente distribuidas todas con distribución normal estándar. Defina

\[ U= \frac {\sqrt{n}[X_1+X_2+...+X_n] }{X_1^2+X_2^2+...+X_n^2} \]

Haga \(n = 10, 100, 1000, 10000\) simulaciones de \(U\) y sugiera una posible distribución para \(U\)

simulate_U <- function(n, num_simulations) {
  U_values <- numeric(num_simulations)
  
  for (i in 1:num_simulations) {
    X <- rnorm(n)
    U <- sqrt(n) * sum(X) / sqrt(sum(X^2))
    U_values[i] <- U
  }
  
  return(U_values)
}

num_simulations_list <- c(10, 100, 1000, 10000)
n_values <- c(10, 100, 1000)

all_data <- data.frame()

for (n in n_values) {
  for (num_simulations in num_simulations_list) {
    U_values <- simulate_U(n, num_simulations)
    data <- data.frame(n = n, num_simulations = num_simulations, U = U_values)
    all_data <- rbind(all_data, data)
  }
}

all_data_melted <- melt(all_data, id.vars = c("n", "num_simulations"), variable.name = "Variable", value.name = "U")

ggplot(all_data_melted, aes(x = U, fill = factor(num_simulations))) +
  geom_histogram(alpha = 0.5, position = "identity", bins = 30) +
  facet_wrap(~ n) +
  labs(title = "Histograma de U para diferentes n y número de simulaciones",
       x = "Valor de U",
       y = "Frecuencia",
       fill = "Num. de Simulaciones") +
  theme_minimal()

Observamos que tiene apariencia de normal estándar


3. Considere \(X_1, X_2, . . . , X_n\) variables aleatorias independientes e id ́enticamente distribuidas
todas con distribución \(Unif (0, 5)\). Defina

\[ U = máx[X_1,X_2,...,X_n]-5 \]

Haga \(n = 10, 100, 1000, 10000\) simulaciones de \(U\) y sugiera una posible distribución para \(U\)

Definimos la función de simulación de \(U\)

simular_u <- function(n, num_simulaciones = 1000) {
  u <- rep(0, num_simulaciones)
  
  for (i in 1:num_simulaciones) {
    xi <- runif(n, min = 0, max = 5)
    u[i] <- max(xi) - 5
  }
  
  return(u)
}

Valores de \(n\) para simular

valores_n <- c(10, 100, 1000, 10000)

Simulamos \(U\) y almacenamos en un marco de datos

u_datos <- data.frame()

for (n in valores_n) {
  u_simulado <- simular_u(n)
  u_n <- data.frame(n = rep(n, length(u_simulado)), u = u_simulado)
  u_datos <- rbind(u_datos, u_n)
}

Usamos melt para transformar los datos para crear el gráfico de facetas

u_melted <- melt(u_datos, id.vars = "n")

Creamos gráfico de facetas

ggplot(u_melted, aes(x = value)) +
  geom_histogram(bins = 50, fill = "blue", color = "black") +
  facet_wrap(~ n, ncol = 2, scales = "free_x") +
  ggtitle("Histogramas de U para diferentes valores de n") +
  xlab("Valor de U") + ylab("Frecuencia")

Observamos que arece una distribución exponencial recorrida e invertida


4. Se lanzan 3 dados balanceados. Sea \(X\) la suma de las caras

(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la función de
masa de probabilidad aproximada de \(X\)

Función para realizar \(n\) simulaciones y calcular la función de masa de probabilidad aproximada de \(X\)

simulaciones <- function(n) {
  resultados <- replicate(n, sum(sample(1:6, size = 3, replace = TRUE)))
  freq_absoluta <- table(resultados)
  freq_relativa <- freq_absoluta / n
  return(freq_relativa)
}


(b) Usando las funciones de las librería patchwork y ggplot2 ponga en un mismo gr ́afico
las cuatro gráficas de las funciones de masa del inicio anterior.

Creamos las gráficas para \(n = 100, 1000, 10000, 100000\)

n_valores <- c(100, 1000, 10000, 100000)
graficas <- lapply(n_valores, function(n) {
  datos <- as.data.frame(simulaciones(n))
  colnames(datos) <- c("X", "Probabilidad")
  p <- ggplot(datos, aes(x = as.numeric(as.character(X)), y = Probabilidad)) + 
    geom_bar(stat = "identity", fill = "blue", alpha = 0.6) +
    ggtitle(paste("n =", n)) +
    labs(x = "X", y = "Probabilidad") +
    theme_minimal()
  return(p)
})

Combinamos las gráficas en un solo frame

grafica_combinada <- graficas[[1]] / graficas[[2]] | graficas[[3]] / graficas[[4]]
print(grafica_combinada)

(c) Para \(n = 10, . . . , 100000\) haga \(n\) simulaciones para obtener un estimado de la proba-
bilidad \(P(X ≤ 3)\). Ponga en un gráfico \(n\) en el eje horizontal y la probabilidad en el
eje vertical.

Estimamos la probabilidad \(P(X <= 3)\) para \(n = 10, …, 100000\)

n_simulaciones <- c(100,1000,10000,100000)
probabilidad <- sapply(n_simulaciones, function(n) {
  resultados <- simulaciones(n)
  p_x_menor_igual_3 <- sum(resultados[names(resultados) %in% c("3")])
  return(p_x_menor_igual_3)
})

Graficamos \(n\) en el eje horizontal y la probabilidad en el eje vertical

datos_probabilidad <- data.frame(n = n_simulaciones, probabilidad = probabilidad)
p_probabilidad <- ggplot(datos_probabilidad, aes(x = n, y = probabilidad)) +
  geom_line(color = "red") +
  labs(x = "n", y = "Probabilidad P(X ≤ 3)") +
  theme_minimal()
print(p_probabilidad)


5. Una urna tiene 7 bolas numeradas del 1 al 7. Se sacan 2 bolas de la urna SIN reemplazo.
Sea \(X\) la suma del n ́umeros en las bolas.


(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la función de
masa de probabilidad aproximada de \(X\).

urna_simulacion <- function(n) {
  urna <- 1:7
  resultados <- numeric(n)
  
  for (i in 1:n) {
    muestra <- sample(urna, 2, replace = FALSE)
    suma <- sum(muestra)
    resultados[i] <- suma
  }
  
  return(resultados)
}

Realizamos simulaciones para \(n = 100, 1000, 10000, 100000\)

n100 <- urna_simulacion(100)
n1000 <- urna_simulacion(1000)
n10000 <- urna_simulacion(10000)
n100000 <- urna_simulacion(100000)


(b) Usando las funciones de las librería patchwork y ggplot2 ponga en un mismo gráfico
las cuatro gráficas de las funciones de masa del inicio anterior.

crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 1, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "Suma de las bolas (X)", y = "Frecuencia") +
    theme_minimal()
}

Creamos los histogramas

hist_n100 <- crear_histograma(n100, "Histograma de n = 100")
hist_n1000 <- crear_histograma(n1000, "Histograma de n = 1000")
hist_n10000 <- crear_histograma(n10000, "Histograma de n = 10000")
hist_n100000 <- crear_histograma(n100000, "Histograma de n = 100000")

Organizamos los histogramas en una matriz 2x2 utilizando patchwork

(hist_n100 | hist_n1000) / (hist_n10000 | hist_n100000)


(c) Para \(n = 10, . . . , 100000\) haga \(n\) simulaciones para obtener un estimado de la proba-
bilidad \(P(X ≤ 10)\). Ponga en un gráfico \(n\) en el eje horizontal y la probabilidad en el
eje vertical.

calcular_probabilidad <- function(datos) {
  exitos <- sum(datos <= 10)
  probabilidad <- exitos / length(datos)
  return(probabilidad)
}

Realizamos las simulaciones y calculamos las probabilidades

valores_n <- c(10, 100, 1000, 10000, 100000)
probabilidades <- numeric(length(valores_n))

for (i in 1:length(valores_n)) {
  resultados <- urna_simulacion(valores_n[i])
  probabilidades[i] <- calcular_probabilidad(resultados)
}

Creamos un gráfico de probabilidades

df <- data.frame(n = valores_n, probabilidad = probabilidades)

ggplot(df, aes(x = n, y = probabilidad)) +
  geom_point() +
  geom_line() +
  scale_x_log10() +
  labs(title = "Probabilidad P(X ≤ 10) en función de n",
       x = "n (cantidad de simulaciones)", y = "Probabilidad P(X ≤ 10)") +
  theme_minimal()


6. Una urna tiene 7 bolas numeradas del 1 al 7. Se sacan 2 bolas de la urna CON reemplazo.
Sea \(X\) la suma del números en las bolas.

Definimos la función de simulación

simulacion <- function(n) {
  sumas <- numeric(n)
  
  for (i in 1:n) {
    bola1 <- sample(1:7, 1, replace = TRUE)
    bola2 <- sample(1:7, 1, replace = TRUE)
    suma <- bola1 + bola2
    sumas[i] <- suma
  }
  
  return(sumas)
}


(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la función de
masa de probabilidad aproximada de \(X\).

Realizamos las simulaciones y obtenemos la función de masa de probabilidad aproximada

n_values <- c(100, 1000, 10000, 100000)
resultados <- lapply(n_values, simulacion)
fmp_aprox <- lapply(resultados, function(x) table(x) / length(x))


(b) Usando las funciones de las librería patchwork y ggplot2 ponga en un mismo gráfico
las cuatro gráficas de las funciones de masa del inicio anterior.

Creamos las gráficas de las funciones de masa

graficas <- lapply(1:4, function(i) {
  ggplot(data.frame(x = as.numeric(names(fmp_aprox[[i]])), y = as.vector(fmp_aprox[[i]])), aes(x = x, y = y)) +
    geom_col(fill = "blue") +
    labs(title = paste("n =", n_values[i]), x = "Suma", y = "Probabilidad") +
    theme_minimal()
})

Poner las gráficas en un mismo frame

grafico_combinado <- graficas[[1]] / graficas[[2]] / graficas[[3]] / graficas[[4]]
print(grafico_combinado)


(c) Para \(n = 10, . . . , 100000\) haga \(n\) simulaciones para obtener un estimado de la proba-
bilidad \(P(X ≤ 10)\). Ponga en un gráfico \(n\) en el eje horizontal y la probabilidad en el
eje vertical.

Estimamos la probabilidad \(P(X <= 10)\) para distintos valores de \(n\)

n_seq <- c(100, 1000, 10000, 100000)
prob_estimada <- sapply(n_seq, function(n) {
  sumas <- simulacion(n)
  mean(sumas <= 10)
})

Creamos el gráfico de \(n\) en el eje horizontal y la probabilidad en el eje vertical

ggplot(data.frame(n = n_seq, prob = prob_estimada), aes(x = n, y = prob)) +
  geom_line() +
  labs(title = "Estimación de P(X <= 10)", x = "n", y = "Probabilidad") +
  theme_minimal()


7. En un salón de clases del curso de Cálculo de Probabilidad 2 hay 50 estudiantes. Cada
estudiante pone en papel su clave única (CU) y lo introduce en una urna común. Poste-
riormente dichxs estudiantes toman un papel de la urna. Sea \(X\) el número de alumnos que
sacaron el papelito con su clave única.


(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la función de
masa de probabilidad aproximada de \(X\).

simulaciones <- function(n) {
  resultados <- numeric(n)
  
  for (i in 1:n) {
    estudiantes <- 1:50
    urna <- sample(estudiantes, size = 50, replace = FALSE)
    coincidencias <- sum(estudiantes == urna)
    resultados[i] <- coincidencias
  }
  
  return(resultados)
}

n_vals <- c(100, 1000, 10000, 100000)
prob_mass_func <- list()

for (n in n_vals) {
  sim <- simulaciones(n)
  prob_mass_func[[as.character(n)]] <- table(sim) / n
}

(b) Usando las funciones de las librería patchwork y ggplot2 ponga en un mismo gráfico
las cuatro gráficas de las funciones de masa del inicio anterior.

plot_prob_mass_func <- function(prob_mass_func, n) {
  df <- data.frame(NumEstudiantes = as.numeric(names(prob_mass_func)), 
                   Probabilidad = as.numeric(prob_mass_func))
  
  ggplot(df, aes(x = NumEstudiantes, y = Probabilidad)) +
    geom_col() +
    labs(title = paste0("n = ", n),
         x = "Número de estudiantes que sacaron su propia clave",
         y = "Probabilidad") +
    theme_minimal()
}
plot_100 <- plot_prob_mass_func(prob_mass_func[['100']], 100)
plot_1000 <- plot_prob_mass_func(prob_mass_func[['1000']], 1000)
plot_10000 <- plot_prob_mass_func(prob_mass_func[['10000']], 10000)
plot_100000 <- plot_prob_mass_func(prob_mass_func[['100000']], 100000)
(plot_100 | plot_1000) / (plot_10000 | plot_100000)


(c) Para \(n = 10, . . . , 100000\) haga \(n\) simulaciones para obtener un estimado de la proba-
bilidad \(P(X ≤ 15)\). Ponga en un gráfico \(n\) en el eje horizontal y la probabilidad en el
eje vertical.

prob_x_menorigual_15 <- function(n) {
  sim <- simulaciones(n)
  sum(sim <= 15) / n
}

n_vals_c <- c(10,1000,10000,100000)
prob_vals_c <- sapply(n_vals_c, prob_x_menorigual_15)

df_c <- data.frame(n = n_vals_c, probabilidad = prob_vals_c)
ggplot(df_c, aes(x = n, y = probabilidad)) +
  geom_line() +
  labs(title = "Probabilidad P(X ≤ 15) en función de n",
       x = "Número de simulaciones (n)",
       y = "Probabilidad P(X ≤ 15)") +
  theme_minimal()


8. Simule tantos números uniformes en el intervalo \((0,1)\) hasta que su suma sea mayor o igual
que 1. Sea \(N\) el número de sumando requeridos para alcanzar dicho objetivo. Por ejemplo
si obtuvo los números \(0.35, 0.58, 0.22\) se tiene que \(N = 3\) (pues se necesitó 3 sumandos
para que la suma sea mayor ó igual que 1).

(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la funci ́on de
masa de probabilidad aproximada de \(N\).
(b) Usando las funciones de las librería patchwork y ggplot2 ponga en un mismo gr ́afico
las cuatro gráficas de las funciones de masa del inicio anterior.

(c) Para \(n = 10, . . . , 100000\) haga \(n\) simulaciones para obtener un estimado del valor
esperado de \(E(N)\). Ponga en un gráfico \(n\) en el eje horizontal y el valor esperado en
el eje vertical

Función para simular \(N\) sumandos

simular_sumandos <- function() {
  suma <- 0
  n <- 0
  while (suma < 1) {
    suma <- suma + runif(1)
    n <- n + 1
  }
  return(n)
}

Función para calcular la función de masa de probabilidad aproximada de \(N\)

calcular_fmp <- function(n) {
  simulaciones <- replicate(n, simular_sumandos())
  fmp <- table(simulaciones) / n
  fmp_df <- as.data.frame(fmp)
  fmp_df$simulaciones <- as.numeric(as.character(fmp_df$simulaciones))
  fmp_df$Freq <- as.numeric(fmp_df$Freq)
  return(fmp_df)
}

Función para graficar la función de masa de probabilidad

graficar_fmp <- function(data, n) {
  ggplot(data, aes(x = simulaciones, y = Freq)) +
    geom_col(fill = "dodgerblue", width = 0.7) +
    labs(title = paste0("FMP para n = ", n),
         x = "Sumandos",
         y = "Frecuencia") +
    theme_minimal()
}

Simulamos para diferentes valores de \(n\)

valores_n <- c(100, 1000, 10000, 100000)
fmp_data <- lapply(valores_n, calcular_fmp)
fmp_plots <- lapply(seq_along(fmp_data), function(i) graficar_fmp(fmp_data[[i]], valores_n[i]))

Graficamos las FMP en un solo gráfico

combined_plot <- fmp_plots[[1]] / fmp_plots[[2]] / fmp_plots[[3]] / fmp_plots[[4]]
print(combined_plot)

Estimamos el valor esperado de \(E(N)\) para diferentes valores de \(n\) y los graficamos

estimar_valor_esperado <- function(data) {
  sum(data$simulaciones * data$Freq)
}

valores_esperados <- sapply(fmp_data, estimar_valor_esperado)

ggplot(data.frame(n = valores_n, E_N = valores_esperados), aes(x = n, y = E_N)) +
  geom_point() +
  geom_line() +
  scale_x_log10() +
  labs(title = "Valores esperados de E(N) en función de n",
       x = "n",
       y = "E(N)") +
  theme_minimal()


9. Considere \(X1, . . . , Xn\) variables aleatorias independientes e idénticamente distribuidas,
\(X_i∼Unif(0, 1)\). Sea \(X(2)\) el segundo valor mas de pequeño de estas \(n X_i’s\)

Función para realizar las simulaciones

simular_x2 <- function(n, n_simulaciones) {
  x2_vals <- numeric(n_simulaciones)
  for (i in 1:n_simulaciones) {
    xi_vals <- runif(n)
    x2_vals[i] <- sort(xi_vals)[2]
  }
  return(x2_vals)
}

Realizamos las simulaciones y guardamos los resultados

n_valores <- c(100, 1000, 10000, 100000)
n_simulaciones <- 10000
simulaciones <- lapply(n_valores, function(n) simular_x2(n, n_simulaciones))

Creamos un data.frame con los resultados

datos <- data.frame()
for (i in 1:length(n_valores)) {
  df <- data.frame(x2 = simulaciones[[i]], n = n_valores[i])
  datos <- rbind(datos, df)
}

Creamos y combinamos las gráficas

p1 <- ggplot(datos[datos$n == 100,], aes(x = x2)) + geom_density() + labs(title = "n = 100")
p2 <- ggplot(datos[datos$n == 1000,], aes(x = x2)) + geom_density() + labs(title = "n = 1000")
p3 <- ggplot(datos[datos$n == 10000,], aes(x = x2)) + geom_density() + labs(title = "n = 10000")
p4 <- ggplot(datos[datos$n == 100000,], aes(x = x2)) + geom_density() + labs(title = "n = 100000")

(p1 | p2) / (p3 | p4)


(a) Para \(n = 100, 1000, 10000, 100000\) haga 10, 000 simulaciones para obtener la función
de densidad de probabilidad aproximada de \(X(2)\).

# Establece una semilla para obtener resultados reproducibles (opcional)
set.seed(123)


eo100=c()
eo1000=c()
eo10000=c()
eo100000=c()

# Genera n valores aleatorios uniformes en el intervalo (0,1)
for(i in 0:10000){
  n100 <- runif(100)
  n1000 <- runif(1000)
  n10000 <- runif(10000)
  n100000 <- runif(100000)
  
  # Ordena los valores generados
  ordenados100 <- sort(n100)
  ordenados1000 <- sort(n1000)
  ordenados10000 <- sort(n10000)
  ordenados100000 <- sort(n100000)
  
  
  eo100<-append(eo100,ordenados100[2])
  eo1000<-append(eo1000,ordenados1000[2])
  eo10000<-append(eo10000,ordenados10000[2])
  eo100000<-append(eo100000,ordenados100000[2])
}


(b) Usando las funciones de la librería patchwork ponga en un mismo gráfico las cuatro
gráficas de las funciones de masa del inicio (a).

crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = .001, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}

length(eo100000)
[1] 10001
# Creamos histogramas
hist_n100 <- crear_histograma(eo100, "Histograma de n = 100")
hist_n1000 <- crear_histograma(eo1000, "Histograma de n = 1000")
hist_n10000 <- crear_histograma(eo10000, "Histograma de n = 10000")
hist_n100000 <- crear_histograma(eo100000, "Histograma de n = 100000")

# Organizamos los histogramas en una matriz 2x2 utilizando patchwork
(hist_n100 | hist_n1000) / (hist_n10000 | hist_n100000)


(c) ¿Qué densidad diría que tiene \(X(2)\)?

Parece una beta


(d) ¿Es consistente este resultado con ejemplo teórico que se vió en clase?

Si, una \(beta(2,n-2+1)\)


10. Considere \(X1, . . . , Xn\) variables aleatorias independientes e idénticamente distribuidas,
\(Xi ∼ Unif (−1, 1)\). Sea \(Xmed\) la mediana de estas \(n\) \(X_i’s\), i.e.

\[ X_{med}= \begin{cases} X_{\frac{n+1}{2}} & \text{si n es impar}\\ \frac{1}{2}[X_\frac{n}{2}+X_{\frac{n}{2}+1} & \text{si n es par } \end{cases} \]

mediana <- function(x) {
  n <- length(x)
  if (n %% 2 == 0) {
    return((x[n/2] + x[n/2 + 1])/2)
  } else {
    return(x[(n+1)/2])
  }
}

Definimos la función de densidad de \(X_{med}\)

densidadXmed <- function(n, N) {
  resultados <- numeric(N)
  for (i in 1:N) {
    muestra <- runif(n, -1, 1)
    med <- mediana(muestra)
    resultados[i] <- med
  }
  density(resultados)
}

(a) Para \(n = 100, 1000, 10000, 100000\) haga 10, 000 simulaciones para obtener la función
de densidad de probabilidad aproximada de \(Xmed\).

Obtener la función de densidad de \(X_{med}\) para \(n = 100, 1000, 10000, 100000\)

n <- c(100, 1000, 10000, 100000)
N <- 10000
densidades <- lapply(n, densidadXmed, N=N)


(b) Usando las funciones de la librería patchwork ponga en un mismo gráfico las cuatro
gráficas de las funciones de masa del inicio (a).

Graficamos las funciones de densidad en un mismo gráfico

p <- NULL
for (i in 1:length(n)) {
  p[[i]] <- ggplot(data.frame(x=densidades[[i]]$x, y=densidades[[i]]$y), 
                   aes(x=x, y=y)) + geom_line() +
    labs(title=paste0("n=", n[i]))
}
wrap_plots(p)


(c) ¿Qué densidad diría que tiene \(Xmed\)?

La densidad de \(X_{med}\) se asemeja a una distribución normal


  1. Considere \(X_1, . . . , X_{999}\) variables aleatorias independientes e idénticamente distribuidas
    \(Unif [−1, 1]\). También considere \(X_{1000} ∼ Unif [200, 300]\) independiente de las otras 999
    variables aleatorias, i.e. en total se tienen 1000 variables aleatorias independientes.


(a) Para \(n = 100, 1000, 10000, 100000\) haga \(n\) simulaciones para obtener la función de
densidad de probabilidad aproximada de \(\bar{X}\).

(b) Usando las funciones de la librería patchwork ponga en un mismo gráfico las cuatro
gráficas de las funciones de masa del inicio (a).

10000,100000 es computacionalmente intensivo

dist_unif <-c()

for(i in 1:1000) {
  dist_unif <- append(dist_unif,runif(999, min = -1, max = 1))
  dist_unif <-append(dist_unif,runif(1, min = 200, max = 300))
}

medias100=c()
for(i in 1:100) {
  medias100<-append(medias100,sum(dist_unif[i*1000-999:i*1000])/1000)
}

medias1000=c()
for(i in 1:1000) {
  medias1000<-append(medias1000,sum(dist_unif[i*1000-999:i*1000])/1000)
}
crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 10, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}
hist_n100 <- crear_histograma(medias100, "Histograma de n = 100")
hist_n1000 <- crear_histograma(medias1000, "Histograma de n = 1000")

# Crearmos histogramas
medias1000
   [1]   0.7569436   1.0492000   1.3218237   1.5492232   1.7784019   2.0755630
   [7]   2.3256072   2.5842839   2.8666379   3.1455624   3.4446875   3.7157679
  [13]   4.0042071   4.2218851   4.4963361   4.7196930   4.9831399   5.2742565
  [19]   5.5295949   5.7478205   6.0070543   6.2535432   6.4567126   6.7494330
  [25]   7.0320029   7.2601767   7.5537836   7.8365467   8.0741688   8.3276314
  [31]   8.5407811   8.7449699   9.0058233   9.2339008   9.5259838   9.7295481
  [37]  10.0151341  10.2330270  10.5269299  10.7324254  10.9945173  11.2728538
  [43]  11.5437040  11.8293050  12.1226119  12.3467019  12.6454632  12.9264610
  [49]  13.2086500  13.5054617  13.7571190  13.9868313  14.1903914  14.4234580
  [55]  14.6950619  14.9085721  15.1244065  15.3815894  15.5899657  15.8802925
  [61]  16.1245601  16.3897285  16.6633320  16.8819049  17.1105950  17.4064554
  [67]  17.6260406  17.8770569  18.1762160  18.4570485  18.7330227  18.9528160
  [73]  19.2205365  19.4746471  19.6821463  19.9084073  20.1551452  20.3594927
  [79]  20.5621590  20.8301217  21.0393853  21.2914349  21.5844262  21.8518879
  [85]  22.1151692  22.3762049  22.6358782  22.8380071  23.0899922  23.3572965
  [91]  23.6474701  23.8496949  24.0766560  24.2954952  24.5206811  24.8082564
  [97]  25.0345749  25.2617855  25.5206385  25.7820386  26.0144951  26.2236135
 [103]  26.4415517  26.6488310  26.9404221  27.1501822  27.4423652  27.6498350
 [109]  27.8864745  28.1338935  28.3848337  28.6698158  28.8868525  29.0926262
 [115]  29.3595220  29.5648396  29.8046360  30.0900052  30.3261673  30.5410400
 [121]  30.8208900  31.0797829  31.3533602  31.5832119  31.8021576  32.0810445
 [127]  32.3532205  32.6014692  32.8811336  33.1671829  33.3975689  33.6608308
 [133]  33.9141740  34.1799839  34.4026110  34.6554895  34.8558686  35.1348611
 [139]  35.3652564  35.5756026  35.7931442  36.0406577  36.2604161  36.5470024
 [145]  36.7500028  37.0168169  37.2422842  37.4570850  37.7139959  37.9582275
 [151]  38.1946446  38.4782744  38.6970435  38.9108543  39.1116641  39.4026466
 [157]  39.7011476  40.0009535  40.2416080  40.4492437  40.6535883  40.9064465
 [163]  41.1427209  41.4094058  41.6749623  41.9196285  42.1392941  42.3789552
 [169]  42.6569081  42.9169637  43.1358880  43.4149232  43.7043499  43.9850894
 [175]  44.2461232  44.5388162  44.7691532  45.0282345  45.3223455  45.5749545
 [181]  45.8532864  46.0769414  46.3128138  46.5949996  46.8032288  47.0687027
 [187]  47.3544148  47.5668142  47.8582757  48.1274565  48.3403532  48.6317620
 [193]  48.8509966  49.0826729  49.3019450  49.5131878  49.7773532  50.0482519
 [199]  50.3083663  50.5151451  50.7602987  51.0373565  51.3292508  51.6065814
 [205]  51.8745165  52.0903193  52.3313606  52.6140924  52.8884952  53.1130554
 [211]  53.4024984  53.6887154  53.9465579  54.2355510  54.5266588  54.7312192
 [217]  54.9784534  55.2592894  55.4885547  55.7609980  55.9655545  56.2112408
 [223]  56.4814410  56.7366447  56.9777102  57.2717964  57.5025249  57.7920624
 [229]  58.0504880  58.2550111  58.4762651  58.6807702  58.9489377  59.2066620
 [235]  59.5046900  59.7805483  60.0302810  60.3163682  60.5216064  60.8183749
 [241]  61.0626895  61.3464092  61.6463947  61.9432608  62.1493210  62.3628282
 [247]  62.6462808  62.8581353  63.0731326  63.3023217  63.5573750  63.7713330
 [253]  64.0259085  64.2417916  64.5321507  64.7535758  64.9807918  65.1822632
 [259]  65.3930220  65.6673964  65.8920857  66.1062515  66.3965461  66.6157177
 [265]  66.8968786  67.1743954  67.4515956  67.6949261  67.9197043  68.1959693
 [271]  68.4313229  68.6403291  68.9118336  69.1891122  69.4677021  69.6725141
 [277]  69.8837042  70.1350653  70.3795026  70.6084317  70.8361354  71.0426288
 [283]  71.3348030  71.5900661  71.8165139  72.0952907  72.3793436  72.6612946
 [289]  72.8826148  73.1113028  73.3585308  73.6384592  73.8977813  74.1930085
 [295]  74.4880664  74.6949852  74.9109394  75.1324402  75.3957720  75.6790068
 [301]  75.9454022  76.2104458  76.4128282  76.6165214  76.8612531  77.1334157
 [307]  77.3778640  77.6522694  77.9321923  78.2190826  78.4501515  78.6717816
 [313]  78.8931615  79.1658902  79.4177966  79.6786128  79.8913021  80.1124823
 [319]  80.3762822  80.5818987  80.8193711  81.0448602  81.3316315  81.5577993
 [325]  81.7975406  82.0196888  82.2623388  82.5076615  82.7525120  82.9658215
 [331]  83.2466827  83.5382205  83.8179241  84.0807735  84.2871961  84.5580830
 [337]  84.8013332  85.0908761  85.3387222  85.5963547  85.8443837  86.0808085
 [343]  86.3713305  86.5921383  86.8302410  87.0988319  87.3151145  87.5714398
 [349]  87.8228992  88.0388901  88.2518588  88.4648195  88.7522784  89.0157696
 [355]  89.2606698  89.5489108  89.8008147  90.0916022  90.3251356  90.6112564
 [361]  90.8858689  91.1708635  91.4542275  91.6786510  91.9460125  92.2015925
 [367]  92.4259223  92.6510944  92.9429496  93.1990713  93.4559660  93.7427766
 [373]  94.0374748  94.3214279  94.5571768  94.8392094  95.0496310  95.2788898
 [379]  95.5211648  95.7351329  95.9844621  96.2750294  96.5311091  96.8277947
 [385]  97.0314957  97.2518084  97.4931680  97.7593741  98.0115582  98.2539598
 [391]  98.5401789  98.8321428  99.0991199  99.3110197  99.5903980  99.8540231
 [397] 100.1302899 100.3830775 100.6673863 100.9142922 101.1395190 101.4058415
 [403] 101.6957088 101.9097713 102.1883234 102.4752872 102.7259414 102.9830116
 [409] 103.2143564 103.4506634 103.6723785 103.9570862 104.2492813 104.5163987
 [415] 104.7796965 104.9959125 105.2540817 105.4695788 105.6791643 105.9570091
 [421] 106.1600820 106.4041401 106.6124475 106.8549827 107.1240740 107.4066912
 [427] 107.6920459 107.9598552 108.2551560 108.5023508 108.7137367 108.9314037
 [433] 109.2134076 109.4513083 109.7499961 109.9564176 110.2494019 110.4815905
 [439] 110.7345622 111.0133773 111.2187063 111.5033622 111.7378178 112.0003345
 [445] 112.2302594 112.5266664 112.7670342 112.9908990 113.2265114 113.4520356
 [451] 113.7138411 113.9764341 114.2288713 114.5031416 114.7806336 114.9954330
 [457] 115.2924217 115.5036809 115.8036154 116.0650670 116.2839818 116.5819708
 [463] 116.8702763 117.0820568 117.3218932 117.5630581 117.7775692 118.0524502
 [469] 118.2614528 118.5330462 118.7765464 119.0155843 119.2629182 119.5082909
 [475] 119.7444607 119.9917356 120.2433859 120.5029421 120.7441107 121.0117000
 [481] 121.2802432 121.5174497 121.7709290 122.0472060 122.2631732 122.5362546
 [487] 122.7409085 122.9508708 123.2040268 123.4812549 123.7720729 123.9949985
 [493] 124.2178450 124.4944920 124.7912729 125.0550759 125.2658054 125.5031515
 [499] 125.7458025 126.0354481 126.2617288 126.5031817 126.7404512 126.9847360
 [505] 127.2722540 127.5331480 127.8076419 128.0816742 128.3750917 128.6738843
 [511] 128.9444211 129.1700208 129.3975843 129.6658826 129.8819338 130.1445255
 [517] 130.3796151 130.6140377 130.8596132 131.1024176 131.3492281 131.5546467
 [523] 131.7978749 132.0949567 132.3867109 132.6749555 132.9327866 133.1398783
 [529] 133.3864071 133.6580366 133.9288974 134.1422557 134.4061659 134.6936461
 [535] 134.9447892 135.2063524 135.5002433 135.7875116 136.0019753 136.2620890
 [541] 136.5335692 136.7623120 136.9653224 137.1917592 137.4125275 137.7003081
 [547] 137.9449820 138.1869465 138.4541878 138.7146462 138.9615587 139.1672206
 [553] 139.3989340 139.6380376 139.9240377 140.2227442 140.5214668 140.7712044
 [559] 141.0101407 141.2779723 141.5759089 141.8096647 142.0581071 142.2808340
 [565] 142.5684773 142.8344175 143.0900157 143.3752652 143.6297143 143.9087650
 [571] 144.1207046 144.3290968 144.5569560 144.8053447 145.0813864 145.3702004
 [577] 145.6564421 145.8857146 146.1856347 146.4688166 146.7617222 147.0143743
 [583] 147.3032600 147.5887314 147.8530914 148.1290178 148.4053118 148.7042910
 [589] 148.9829982 149.1900643 149.4618943 149.7188026 149.9216770 150.1861409
 [595] 150.4840138 150.7547249 150.9794465 151.2025795 151.4921774 151.7202613
 [601] 151.9582978 152.2023897 152.4090208 152.6749147 152.9066736 153.1736392
 [607] 153.4704403 153.7675190 154.0426510 154.2898409 154.5384363 154.7815329
 [613] 155.0460662 155.3248082 155.5409486 155.7487066 156.0117838 156.2848886
 [619] 156.5209778 156.7881505 157.0546445 157.2880739 157.4990283 157.7540424
 [625] 158.0285422 158.2820088 158.5488469 158.8149660 159.1034393 159.3458640
 [631] 159.5672293 159.7875508 160.0873529 160.3277534 160.5834944 160.8414174
 [637] 161.1246771 161.4132758 161.6946866 161.9248014 162.1849422 162.4680784
 [643] 162.7046149 162.9850516 163.2486440 163.4647279 163.6827137 163.8874796
 [649] 164.0894154 164.3320583 164.5607885 164.7884289 165.0021795 165.2636209
 [655] 165.5616494 165.7939888 166.0836380 166.3129088 166.6109425 166.8232370
 [661] 167.0678840 167.2878118 167.5856858 167.8686811 168.1676722 168.4086456
 [667] 168.6246765 168.8534236 169.0685287 169.3015982 169.5625851 169.8006380
 [673] 170.0164146 170.2780597 170.5324091 170.8077131 171.0252299 171.3212700
 [679] 171.6151930 171.8719592 172.1086902 172.3693999 172.6051603 172.8072955
 [685] 173.1068609 173.3077550 173.5259195 173.8116637 174.0613453 174.3190432
 [691] 174.5699195 174.8374614 175.1183379 175.4091139 175.6323908 175.8727421
 [697] 176.1426522 176.4157129 176.6672669 176.9185766 177.1187804 177.3666884
 [703] 177.6018633 177.8256235 178.0375641 178.2908018 178.5402438 178.7689183
 [709] 178.9838942 179.2602982 179.5179747 179.7953195 180.0287638 180.2413976
 [715] 180.4834830 180.7259909 180.9565546 181.1628870 181.4074783 181.6822105
 [721] 181.9475648 182.2170124 182.4772210 182.7160837 182.9635955 183.2270578
 [727] 183.5248326 183.7485075 183.9950640 184.2932678 184.5681178 184.8400910
 [733] 185.1319414 185.4232306 185.6520551 185.8909616 186.1730370 186.3850841
 [739] 186.6693094 186.8973573 187.1936787 187.4068261 187.6387548 187.8544830
 [745] 188.1417049 188.4246330 188.7209070 188.9267169 189.1943814 189.4930755
 [751] 189.7117590 190.0061869 190.2652057 190.5417415 190.7603219 190.9856596
 [757] 191.2677309 191.4703224 191.7626844 192.0219911 192.3053943 192.5273509
 [763] 192.7361470 192.9788695 193.2492472 193.5458821 193.7684156 194.0628510
 [769] 194.3613931 194.6019867 194.8241792 195.1053482 195.3580111 195.5837815
 [775] 195.8611873 196.0860732 196.3560324 196.5751478 196.8514204 197.0958995
 [781] 197.3283992 197.5943956 197.8903985 198.1133127 198.3411177 198.6342781
 [787] 198.9040635 199.1421106 199.3613984 199.6456818 199.9320696 200.1676704
 [793] 200.3740056 200.6126377 200.9102726 201.1388916 201.4178197 201.6190631
 [799] 201.8309236 202.0395073 202.2692659 202.5664839 202.7761820 203.0183404
 [805] 203.2950991 203.5646502 203.8242047 204.0487289 204.2964804 204.5078543
 [811] 204.7712240 205.0176917 205.3176002 205.5713589 205.8109980 206.0490341
 [817] 206.2730323 206.5511481 206.8043414 207.1039687 207.3587034 207.5685409
 [823] 207.7883677 208.0412131 208.2964483 208.5501522 208.7877124 209.0178284
 [829] 209.2219678 209.4479634 209.7314385 209.9406464 210.1776105 210.4563112
 [835] 210.6867067 210.9363642 211.1963879 211.4244150 211.6397713 211.8902689
 [841] 212.1193507 212.4027880 212.6938916 212.9829444 213.2246593 213.4601555
 [847] 213.7437858 214.0384863 214.3335450 214.5478963 214.7732195 215.0636710
 [853] 215.2952245 215.5455025 215.8049509 216.0464518 216.3348233 216.5913753
 [859] 216.8718769 217.1111042 217.3534506 217.5704090 217.8145040 218.0311448
 [865] 218.2805263 218.5452307 218.8090695 219.0195370 219.2731458 219.5626114
 [871] 219.8434674 220.0852371 220.3410573 220.6018549 220.8754123 221.1224605
 [877] 221.3582198 221.6447062 221.8576377 222.1241468 222.3397833 222.6106979
 [883] 222.8845206 223.1804933 223.4059669 223.6146861 223.8167638 224.0537869
 [889] 224.3224915 224.5582767 224.8282635 225.1048784 225.3561406 225.6306410
 [895] 225.9122164 226.1859797 226.4454803 226.7062086 227.0043031 227.2621871
 [901] 227.4655372 227.7171551 227.9520339 228.2111397 228.4810527 228.7788495
 [907] 229.0612113 229.2903201 229.5487264 229.8030562 230.0034707 230.2662374
 [913] 230.5207618 230.7761555 230.9962923 231.1999041 231.4879791 231.7352027
 [919] 231.9402244 232.2053419 232.5045786 232.7866286 233.0659972 233.3538458
 [925] 233.5555330 233.8303042 234.1175477 234.3948596 234.6297611 234.8971489
 [931] 235.1514675 235.4502356 235.6566098 235.9226423 236.1281934 236.3857572
 [937] 236.6247948 236.8267871 237.1128364 237.3802004 237.6621862 237.9256950
 [943] 238.1272256 238.4103058 238.6627775 238.8678567 239.0859677 239.3209303
 [949] 239.5673088 239.8407872 240.0436417 240.2553261 240.4990250 240.7312874
 [955] 240.9973733 241.2758313 241.5736504 241.7908364 242.0672506 242.3028611
 [961] 242.5847444 242.8555567 243.1180958 243.3977313 243.6647960 243.9215074
 [967] 244.1679517 244.4443850 244.6452848 244.8592444 245.0829369 245.3317544
 [973] 245.5743815 245.7857438 246.0604807 246.2941934 246.5854290 246.8532008
 [979] 247.0704179 247.3040969 247.5290738 247.7412884 247.9876068 248.2170772
 [985] 248.4492984 248.6657455 248.9620328 249.2552099 249.4965387 249.7775653
 [991] 250.0452462 250.2510218 250.4784208 250.7228329 250.9874852 251.2618108
 [997] 251.5364929 251.8013666   0.0000000   0.2380837
# Organizamos los histogramas en una matriz 2x2 utilizando patchwork
(hist_n100 | hist_n1000) 

(c) ¿Qué densidad diría que tiene \(\bar{X}\)?

Parece una densidad uniforme


(d) ¿Diría que se violenta el Teorema del Límite Central?

No, ya que no son distribuciones idénticas


12. Considere \(X_1, . . . , X_n\) variables aleatorias independientes e idénticamente distribuidas,
\(X_i ∼ exp(1)\). Sea \(Xmed\) la mediana de estas \(n\) \(X_i’s\), i.e. \[ X_{med}= \begin{cases} X_{\frac{n+1}{2}} & \text{si n es impar}\\ \frac{1}{2}[X_\frac{n}{2}+X_{\frac{n}{2}+1} & \text{si n es par } \end{cases} \]

Definimos la función de mediana

mediana <- function(x) {
  n <- length(x)
  if (n %% 2 == 0) {
    return((x[n/2] + x[n/2 + 1])/2)
  } else {
    return(x[(n+1)/2])
  }
}

Definir la función de densidad de \(X_{med}\)

densidadXmed <- function(n, N) {
  resultados <- numeric(N)
  for (i in 1:N) {
    muestra <- rexp(n, 1)
    med <- mediana(muestra)
    resultados[i] <- med
  }
  density(resultados)
}

(a) Para \(n = 100, 1000, 10000, 100000\) haga 10, 000 simulaciones para obtener la función
de densidad de probabilidad aproximada de \(Xmed\).

Obtener la función de densidad de \(X_{med}\) para \(n = 100, 1000, 10000, 100000\)

n <- c(100, 1000, 10000, 100000)
N <- 10000
densidades <- lapply(n, densidadXmed, N=N)

(b) Usando las funciones de la librería patchwork ponga en un mismo gráfico las cuatro
gráficas de las funciones de masa del inicio (a).

p <- NULL
for (i in 1:length(n)) {
  p[[i]] <- ggplot(data.frame(x=densidades[[i]]$x, y=densidades[[i]]$y), 
                   aes(x=x, y=y)) + geom_line() +
    labs(title=paste0("n=", n[i]))
}
wrap_plots(p)

(c) ¿Qué densidad diría que tiene \(Xmed\)?

La densidad de \(X_{med}\) se asemeja a una distribución normal con media igual a \(log(2)\) y varianza igual a \(\pi^{2/6}\)


13. Considere \(X_1, . . . , X_n\) variables aleatorias independientes e idénticamente distribuidas, \(t(1)\).


(a) Calcule teoricamente \(E(X)\)

Teóricamente \(E(X)=0=med(X)=moda(X)\)


(b) Para \(n = 100, 1000, 10000, 100000\) haga 10, 000 simulaciones para obtener la función
de densidad de probabilidad aproximada de \(\bar{X}\), i.e. el promedio aritmético de las
observaciones.

# Establecer la semilla para la reproducibilidad de los resultados
set.seed(123)

med_arit<-c()


for(n in c(100,1000,10000,100000)){
  
  for(i in 1:1000){
    
    # Número de valores a simular
    df <- 1           # Grados de libertad
    
    # Simular valores de la distribución t de Student
    t_values <- rt(n, df)
    
    med_arit<-append(med_arit,sum(t_values)/n)
    
  }
}

med_arit
   [1]  4.133642e+00  1.214052e+00 -6.473249e-01  1.153164e+00  1.362228e+00
   [6]  1.003327e-01  5.228007e-01  1.055026e+02 -4.409836e+00  1.410580e+00
  [11] -7.721249e-01  1.334293e+00 -4.620658e-01  1.311404e+01 -1.149182e+00
  [16]  1.427828e+00  2.575894e-01 -1.940338e-01 -5.583881e+00  1.425002e+00
  [21] -8.316089e+00 -1.444350e-01 -3.327594e+00 -3.992560e-01  1.999578e+00
  [26]  6.166858e+00 -3.739182e+00 -4.972474e+00  6.143137e-01  1.634351e+00
  [31]  1.753571e+00  2.787898e+00  4.681753e-01 -1.646720e+00  3.355847e+00
  [36]  1.423119e+01 -5.700215e-02 -5.644630e-01 -7.914533e-01 -1.835282e+00
  [41] -8.253070e-01 -9.371178e-01 -5.267372e-01 -3.064572e-01 -2.366530e+00
  [46] -8.204747e-01 -4.315213e+00  6.299767e-01  2.556562e+00 -6.185812e+00
  [51]  1.317846e+00  1.672516e+00 -9.592324e-01 -7.119883e-01  1.723104e-01
  [56] -1.913250e-01 -7.238076e-01 -3.668693e+01  2.782761e-01 -1.426685e+00
  [61]  1.037664e+00 -6.476778e-01 -2.185614e+00 -4.649582e-01 -1.677005e+00
  [66] -1.172050e+00 -2.616343e+00 -5.042541e+00  2.189062e-01 -5.022679e+00
  [71] -6.016358e-01  2.439239e+00  6.199169e+00  1.649525e+00 -4.170498e+00
  [76]  1.526818e+00  2.172177e+00  9.145291e-01 -1.236092e+02 -8.544196e-01
  [81] -2.565869e+00  2.320024e+00  7.048459e-02  4.745400e-01  1.162876e+00
  [86] -7.578048e-02 -5.686817e-01  6.668853e-01 -4.794471e+00  3.004305e-01
  [91]  2.076130e-01  1.491680e-01  1.223717e+00 -3.447945e-01  1.908942e-01
  [96]  1.318179e+00 -1.867927e+00 -4.875496e-01  4.373054e+00  4.452594e+00
 [101]  1.908074e+00  4.097175e+00  3.617074e-01 -1.479575e-02  1.029027e+00
 [106]  2.411972e+00 -2.242892e+00  7.429070e-01 -4.029150e-01 -9.218286e-02
 [111]  7.164890e-01  2.672546e-01 -4.296313e-01 -1.723002e-01 -1.655714e+01
 [116]  1.175300e+00  3.864799e-01 -2.475428e+00 -1.804969e+00 -1.820188e-01
 [121]  7.806492e-02  1.671341e-01 -1.257214e+00 -2.273188e+00  3.830271e-01
 [126] -6.674111e-01 -6.293085e-01 -1.077908e+00  5.340616e-01 -1.454750e+00
 [131]  1.366855e+00  1.840951e-01 -3.832827e+00 -1.371690e+00 -2.744102e+00
 [136]  2.759438e+00 -1.716084e+00  3.430384e+00  4.532693e-01  1.569531e-01
 [141] -3.523162e+00 -2.595765e+00  4.100863e+00 -1.746186e+01 -3.685013e+00
 [146] -4.364473e-01  1.730385e+00 -3.124306e+00  1.091131e+01  2.378726e-01
 [151]  5.433942e-01  3.412417e-01 -1.974845e+00 -3.632976e-01  1.125210e+00
 [156]  8.560264e-01 -4.914061e+00 -5.292542e-01  5.679471e-01  2.216935e+01
 [161] -5.556319e-01  7.222855e+00  1.411275e-01  1.731249e+00 -7.680824e-01
 [166]  2.154601e-01  2.246326e-01 -2.238098e+00 -4.486152e-01  9.570334e-01
 [171] -9.676266e-01  1.536170e+00  8.363022e+00  1.263207e+00 -2.695548e+00
 [176]  2.083040e+00  1.668498e+00 -7.769099e-02 -7.631979e-01  1.069484e+00
 [181]  2.515202e+00  1.487841e-01 -3.325923e-01 -8.005179e-01  4.149302e-01
 [186] -3.284194e+00 -3.798428e-01 -9.049329e+00 -2.739108e-01  4.878305e-01
 [191] -1.301774e-01  3.293434e-01  5.536701e+00 -1.256427e+00 -9.902107e-01
 [196] -4.787643e-01 -2.550281e+00 -2.395469e+00  1.205342e+01 -2.976943e+00
 [201] -2.654452e+00 -7.930572e-01  6.743321e+00 -5.817774e-01 -2.941703e+00
 [206]  6.208829e-01  4.624412e+00 -2.541630e+00  2.449644e+00 -1.959456e+00
 [211] -5.979318e+00 -1.219304e+00  3.527311e+00 -2.928380e+00  6.615611e+00
 [216]  8.569897e+00 -7.164031e+00 -4.141102e+00  3.496514e-01 -1.233683e+01
 [221]  2.716653e-01  5.297881e-01  1.235668e-01  9.502158e+00  2.865478e-01
 [226]  1.575899e+00 -2.309727e-01 -3.366805e+01 -1.369601e+00 -2.742415e-01
 [231] -1.229778e-01 -3.528342e+00  9.169028e-01  1.600555e+00  6.279545e-01
 [236] -2.399453e-02  9.160860e+00 -3.948950e-01 -1.855163e+00 -9.543527e-01
 [241] -5.925150e+00  2.536793e-01 -2.048737e-01 -4.063031e-02  1.644863e+00
 [246]  1.171138e+00 -1.332207e+00 -2.479383e+00 -3.235403e+01 -2.702849e+01
 [251] -2.814271e+00 -2.056634e-01 -1.849876e-02 -1.446293e+00  7.909151e+01
 [256] -4.280195e+00  4.188914e-01  4.760322e-01 -1.433951e+00 -5.175931e+01
 [261] -2.579723e+00  6.262520e-01 -6.421516e+00 -8.454498e-01 -8.773348e+02
 [266] -4.915510e-01  1.355497e+00 -6.899039e-01 -7.979838e-02  8.712671e-01
 [271]  1.453761e+01 -2.089648e+00  1.976062e+00 -1.432984e+00  1.793005e-02
 [276]  1.388496e+00 -9.374377e-02  6.886381e+00  1.186145e-01  2.303915e-01
 [281]  1.122924e-01  6.310351e+00  3.062593e-01  2.841310e+00  4.888576e+00
 [286]  1.778102e+00  2.649356e+00 -2.300816e+00  2.077519e-01 -1.033614e+00
 [291] -3.589575e+00 -2.171800e-01  3.744250e+00  9.742123e-01  5.080989e-02
 [296] -1.764172e+00  6.290756e-01 -1.394982e+00 -1.254559e+00 -2.287897e+01
 [301]  7.028586e-01  1.770383e+00 -2.603515e-01 -5.993939e-01  6.305827e-01
 [306] -1.410698e+00  2.658784e+00  4.891513e+00 -2.747051e+00  1.622953e+00
 [311] -1.155324e+00 -6.885661e-01  4.656406e-02 -5.715111e+00 -1.506514e+00
 [316] -6.229884e-01  1.733600e+00  3.490756e-01 -1.372297e+02  5.034760e-01
 [321] -2.747140e+00 -4.261748e+00 -5.863522e-01  5.684655e+00  1.125270e+00
 [326]  5.888808e-01 -1.502828e+00  1.007869e+01  2.739215e-01  2.899402e-01
 [331]  1.068804e+01  8.256957e-01 -5.156960e-01  6.313775e-01  3.386245e-01
 [336] -1.776376e-01 -4.569016e-01 -2.402552e+00 -1.412875e+00 -1.186580e+00
 [341] -3.388753e-01 -8.458388e-01  2.500369e-03 -1.107443e+00 -1.539621e+00
 [346]  1.090941e+00 -1.237728e+00 -3.824738e-01  6.941940e+00 -1.415554e+00
 [351] -3.639423e+00 -7.302016e-01 -4.545693e-01  5.858058e-01  9.226603e-01
 [356] -1.829936e+01  4.205123e+00  8.542070e-01  7.150016e+00 -1.485518e+00
 [361] -1.838592e+01 -4.110246e-02  5.607891e-01 -1.526405e-01  1.910224e+00
 [366] -2.655266e-02  9.680311e-03 -2.253561e+00  2.857512e+00 -5.067130e-01
 [371] -1.659761e+01 -1.488065e+01  6.747895e-01 -3.517294e+01  2.000175e+00
 [376] -8.933598e-01 -4.396321e-01 -3.864966e-01  1.121493e-01 -1.251529e+00
 [381] -9.705764e-02  4.625426e-01  1.802724e+01  3.387541e-01  7.876524e-01
 [386]  1.880858e+00 -6.636664e+00  5.687268e-01  4.566087e+00  2.867221e+00
 [391]  4.659878e+00 -1.252253e+00  8.453659e-01  3.559040e+00  6.642483e-02
 [396] -5.502914e-01  2.353684e+00  1.095706e+00 -2.469120e+00 -1.160288e+00
 [401] -2.490098e+00  1.409418e+00 -5.169656e-01 -5.823371e+00  3.998635e-01
 [406] -5.349680e+00 -1.203605e+00  1.221253e+00  8.849758e-01 -8.171469e-01
 [411]  1.587844e+00 -1.036168e+00  7.707955e+00 -8.431175e-01  8.641088e-01
 [416] -3.548811e+00 -5.359356e+00  5.789444e-01  2.635362e+00 -7.489051e-01
 [421] -1.265825e-01 -8.936957e-02  1.296627e+00  3.872120e+00 -2.102431e+00
 [426]  6.778866e+00 -1.307318e+00  4.408768e+00  5.755047e-01 -2.543309e-01
 [431] -7.035171e-01 -2.577273e-01 -1.127078e-01  2.617475e+00 -9.898981e-01
 [436]  3.445708e+00  4.039735e+00 -2.320551e-01 -1.824875e-01 -5.024655e+00
 [441] -8.382523e-02 -7.689683e-01  1.087773e+00  3.937130e-01  2.275487e+00
 [446] -3.570742e-01  3.662015e+00  7.849391e-01 -3.933221e+00  2.861892e+00
 [451]  6.449457e-01 -3.057484e+00  2.528640e-01  2.714638e-01  4.278124e+01
 [456]  3.892852e+00  1.130576e+00  4.058057e+00  2.910295e+00  8.504282e-01
 [461]  3.234995e-01 -1.920013e+00 -2.123532e-01 -4.352232e-01 -4.683629e-01
 [466]  8.006818e+00 -3.923184e+00  1.987710e-01 -6.958373e-01  4.691682e-01
 [471]  1.847471e+00 -2.379934e+00 -1.286880e-01 -5.800848e-01  4.822065e-01
 [476] -3.272190e-01 -8.634064e+00  4.305173e-01  1.278683e-01 -2.261103e+00
 [481]  4.308838e-01 -7.145634e-01  3.436709e+00 -6.221761e-01 -1.191515e+00
 [486] -1.401404e+00  2.390654e-01  1.057998e+00 -2.923425e+00 -9.071407e+00
 [491]  1.747639e+00 -2.910107e-01 -7.831904e-01  8.072423e+00 -1.041628e+00
 [496] -1.457168e+01 -1.793355e+00 -8.524816e-01  2.300017e+00  6.990808e-01
 [501]  1.648646e+00  2.373200e-01  1.840400e+00  2.250488e+00 -2.206726e+01
 [506] -1.633065e+00  4.380727e-01 -2.777375e-01  7.594170e-01  4.188178e-03
 [511] -4.546972e-01  9.874497e+00 -8.375656e-02  1.823973e+00 -9.359933e-01
 [516] -2.976330e+00  1.738936e+01 -8.303524e-01  6.162115e+00 -5.361316e-02
 [521]  1.205017e+00  1.529593e+00  1.806379e+00 -1.060288e+02  1.549491e+00
 [526] -2.872626e-01 -6.132183e-01  1.025510e+02 -2.824539e+00  1.100878e+00
 [531]  2.487881e-01  7.192176e+00  1.035272e+00 -6.365208e+00 -1.433828e+00
 [536]  1.296237e+00  7.441949e-01  3.496627e-01 -9.806648e-01  1.340613e-01
 [541]  2.605782e-01 -3.447820e-02 -6.117789e+00 -3.104928e+00  1.194726e+00
 [546]  1.757351e+00  7.498218e-02 -4.097439e-01 -7.602391e-01  2.859363e+00
 [551] -1.739487e+00  3.467535e-01 -2.832457e-01  7.439240e-02  1.249618e+00
 [556] -1.759787e+00 -9.190631e-01  8.180714e-01  1.290363e+00  4.611005e+00
 [561]  1.549601e-01 -1.187735e+00 -6.913951e+01  2.733765e+01 -4.351812e+00
 [566]  4.337468e+00 -1.275747e+00 -1.407428e+00  3.790364e+00  1.939558e+00
 [571]  6.117063e+00 -2.071238e+00 -8.084046e-02 -1.728008e-01  1.052926e+00
 [576] -6.182843e-02  3.773629e-02  1.725417e+00 -1.686585e+00 -3.974252e+01
 [581]  1.025266e+00 -9.037855e-01  1.820310e+00 -2.426678e-01 -9.279325e-01
 [586]  1.569548e+01  4.471147e-01 -5.396890e-01  3.926430e-01 -3.474279e-01
 [591] -3.931366e-01  1.122571e-01  2.038273e-02 -2.179771e+00  7.039492e-01
 [596] -8.651928e-01  2.067665e+00 -7.126026e-01  1.488893e+00 -2.797562e+00
 [601]  8.226181e-01  2.433603e+00  3.235659e-01 -7.381004e+00  3.689534e+00
 [606]  1.092364e-01 -3.019425e+00 -8.277474e+00 -2.769727e+00  4.334443e+00
 [611] -3.954686e-01 -1.794122e+00  1.444938e+00 -3.475026e-02  2.168397e+01
 [616]  1.929575e-01  1.525120e-01 -1.253548e+00 -1.157942e+01 -8.211928e-01
 [621]  2.264908e+00 -6.098375e-01  1.110368e+00 -5.505597e-01 -1.825752e+00
 [626]  3.882208e+00 -2.833505e+00 -2.505253e-01  4.025603e+00  1.308136e+00
 [631]  8.097713e-01 -6.580497e-02 -1.316831e+00 -2.421907e+00 -2.925779e+00
 [636] -8.468976e-01  7.364787e+00  1.038630e-01  1.940521e+00  2.342156e+00
 [641] -1.666471e+00  5.730186e-01 -1.116678e+00 -2.746553e+00  2.062203e+01
 [646] -2.247831e+00 -2.016746e+00  6.475424e-01 -1.178190e+00 -2.303792e+00
 [651]  7.078312e+00 -4.228074e-01  6.283387e-01 -2.242248e+00 -1.448758e+00
 [656] -9.305418e-01  7.043759e-02 -5.038263e-01  6.114666e+01  7.559190e-01
 [661] -8.263697e-01 -4.771829e-01 -6.891113e+02 -2.672982e+00  2.149721e-01
 [666] -1.940789e+00 -4.741057e-02 -2.313804e+00  2.713064e+00  7.158372e-01
 [671]  4.454800e-01 -2.708970e+00 -2.360172e+00  2.517459e+00  4.798940e+01
 [676] -8.780154e+00 -1.231221e+00  5.355778e+00 -5.501448e+00  9.246962e-01
 [681] -4.469455e-01 -2.066536e-01  2.533237e+01  4.139282e+00 -5.469617e-01
 [686] -1.379820e+00 -1.862185e+00 -9.049391e+00 -1.579328e+00  2.485622e+00
 [691]  2.148746e+00 -2.120622e+00 -3.925653e+00 -6.520389e-01  6.605788e-01
 [696]  6.388467e+00 -2.483015e+00  6.123317e-01  3.179200e-01 -1.152343e+00
 [701]  2.374614e+00 -1.279416e+01  1.247746e+00 -2.283852e+00  1.774861e-01
 [706]  1.262102e+00 -3.933877e+00 -2.797696e-01  1.061821e+00  3.612876e+02
 [711]  3.056897e-01  4.080379e+00 -2.144020e+00  1.530127e-01 -1.370284e+00
 [716] -3.100835e-01 -7.713983e-01  1.932474e+00  5.806967e+00  3.091919e-01
 [721] -1.124378e+01 -7.641636e-01  4.115654e+00  4.680790e+00 -7.943496e-01
 [726]  7.034226e-01  4.170467e-02 -5.132281e-01 -5.160834e-01 -9.452553e-03
 [731]  5.288122e-01 -1.336957e+00 -2.847054e+00  4.082494e-03  1.605784e+00
 [736]  7.920709e-03  2.324427e+00 -1.242280e-01 -8.220893e-01  3.780128e-01
 [741]  8.871879e+00  1.914929e-01 -4.096066e+00 -1.179460e+00  1.626072e+00
 [746]  1.345648e+00  2.549580e+00 -7.213926e-01  1.386181e+00  8.519303e-02
 [751]  1.140289e-01 -4.136257e-01 -5.754947e-01  9.801280e-01 -5.253150e-01
 [756] -4.183835e-01  1.534519e+00 -9.350396e-01 -4.043797e-01 -3.539397e-01
 [761] -3.706006e-01  1.450597e+00  6.497443e-02  5.461249e-01 -3.352896e+00
 [766] -1.009758e+00 -2.758763e+00  7.257418e+00  8.143301e-01 -1.071688e-01
 [771]  8.569913e-01  4.110683e-01 -4.795876e+00 -1.810845e-01 -4.753091e+00
 [776] -1.555539e+00 -8.795152e-01  9.170336e-01 -9.395226e-02 -3.418531e-01
 [781] -1.220167e+00 -6.680112e-01 -6.471767e-01  8.275022e-01  1.967729e+00
 [786] -1.232505e+00 -1.771057e+00  2.593767e-01  9.959689e-01  1.816527e-01
 [791] -1.181524e+00  8.309047e-01  1.433310e-01 -8.572837e-01  5.002077e-02
 [796] -1.764679e+00  5.333474e-01  7.199487e-01 -7.739372e-01 -7.840980e-02
 [801] -2.052335e+00 -4.928310e-01 -1.143085e+00 -8.683791e-01 -2.138480e-01
 [806]  4.209341e-01 -9.079092e-01  4.053712e-01  2.182938e-01 -1.078444e-01
 [811]  1.557676e-01 -2.416089e-01 -5.990991e-01 -3.607928e+01 -1.752122e+00
 [816]  6.800912e-01  8.731348e+00 -1.038109e-02  2.384901e+00  7.846407e+00
 [821] -5.489276e-01  1.977746e-01 -5.325324e-01 -1.285984e+01  9.179443e-01
 [826] -1.216985e+00 -8.311963e-02  2.447345e+00 -3.064419e+00 -5.003616e-03
 [831]  7.483888e-01  1.389320e+00  1.706758e+00 -2.495770e-01  2.868279e-01
 [836]  7.241301e+00  1.662045e+00 -2.882588e+00  2.507916e+00  1.983327e-01
 [841]  7.942806e-01  9.701135e-01  1.031240e+00  2.678146e+00  6.382354e+00
 [846]  3.679419e-01 -4.264490e+00  6.479728e-01  1.055126e+00  8.070079e-01
 [851]  1.073010e+00  2.439261e-01 -1.464655e+00  4.871054e+00 -2.886587e-01
 [856]  5.652321e+00  1.230615e+00  8.474607e-01  4.162029e-01 -8.457879e-01
 [861]  6.772492e+00 -1.567162e+00 -6.263852e+00 -2.062508e+00  4.307670e-01
 [866]  7.912996e-01  2.605805e+01 -4.114501e-01  2.430370e+00  6.596297e+00
 [871]  1.021477e+01 -3.963845e-01 -2.612360e+00  1.339431e+00 -4.149372e-01
 [876]  5.391685e-01 -2.805703e+00 -1.558659e+00  2.442359e+00  6.681290e-02
 [881]  7.538697e+00  2.469116e-01 -1.337214e-01  4.056020e+00 -8.903958e-01
 [886]  4.296219e-01 -1.145246e+00  7.054726e+00 -1.020234e+00 -4.719812e+00
 [891] -1.107660e+00  2.403233e-01  4.208318e-01 -2.026087e+00  9.174781e-02
 [896]  4.607803e+00  1.426420e+00 -6.331881e-01  1.199479e+00  2.418406e-01
 [901] -3.691703e-01 -4.028237e-01 -1.098497e+00  1.082782e+00 -2.263955e-01
 [906]  1.235525e+00  3.025141e+00 -3.987246e-01  5.770133e-01  8.326158e-01
 [911]  6.995177e-01  4.587861e+00  1.046079e+01 -2.832114e+01  2.725955e+01
 [916]  1.337964e-01  3.136500e+00 -2.060784e-01  1.691387e+00 -6.631452e-01
 [921]  2.539367e+00  2.874759e+00 -1.343504e+00 -5.058694e-01 -2.568752e-01
 [926] -3.060775e-02 -7.818506e-01  1.500529e+00 -3.458447e+00  6.170627e-01
 [931] -1.479737e+00  1.022989e-01 -1.875233e+00  3.543536e+00 -5.641870e-01
 [936]  2.848364e-01 -5.595692e-01 -1.032832e+00  2.202169e+00 -8.826588e-01
 [941]  2.079760e+00 -1.734621e+00  3.697568e-01  2.103311e+00  4.816172e-02
 [946]  1.666034e+00 -1.124613e+00 -1.877033e+01  1.101707e+01 -3.637426e+00
 [951]  2.019523e+00 -1.653639e-01  1.557146e+00  4.826788e-01 -3.743946e-02
 [956]  1.864359e+00  1.489394e+00  2.887372e+00 -1.006932e-01 -5.646996e-01
 [961] -1.950380e+00 -3.549517e+00 -1.167953e-02 -1.009840e+00 -1.771600e+00
 [966] -3.341938e+00  1.334619e+01  1.877532e-01  5.424314e-02 -1.839926e+01
 [971] -1.976429e+01 -1.664131e+00 -9.637289e-01  3.994659e-01  8.807878e+01
 [976]  1.016069e+01  9.038890e-02 -1.138223e+01 -2.787533e-01 -6.226172e-01
 [981] -3.143169e-01 -5.349807e-01  5.762999e+00 -1.504948e+00 -6.156131e-01
 [986]  1.804847e+00  5.017598e+00 -1.204148e+00 -4.876535e+00  5.755341e+00
 [991]  1.146740e+00 -2.549712e-01  7.937148e-02 -1.976500e-01  4.729444e-01
 [996]  8.657138e-02  5.082028e-01 -2.076147e-01  3.836267e+00 -5.400031e-01
[1001] -3.323698e+01 -4.853045e-01 -5.554691e-01  2.556459e+00  4.422587e+00
[1006] -7.059197e+00 -4.171440e-01  5.041803e-01  1.516905e+00  8.257774e-01
[1011] -9.949593e-01  6.058443e-01 -2.226056e+00  9.075762e-01  5.073609e+00
[1016] -1.959145e+00 -4.458389e+00  1.619963e-01 -4.912001e-01 -4.983323e-01
[1021]  1.237744e+00 -5.956942e-02  2.202779e-01 -7.618741e+00 -1.195282e+00
[1026]  1.803082e+00  6.438075e+00 -4.163450e+00 -2.853716e+00 -1.913165e-01
[1031]  6.240564e-01  1.092290e+01  3.780021e-01 -4.621473e-01 -9.503909e-01
[1036] -1.630155e+00  4.623955e+00  7.171438e-01  1.204632e+00  2.304087e-02
[1041] -2.388852e+00 -3.798507e-01 -3.398863e-02 -7.810716e-02 -1.859480e+00
[1046] -1.302497e+00 -6.522296e-01  4.921230e-01 -2.429227e-01 -2.968239e+00
[1051]  2.843247e-01 -1.492926e+01  1.056791e+00 -2.266909e-02  2.573419e+00
[1056]  3.126472e+00  4.846702e-01 -5.186467e-01  5.717104e+00 -7.153146e-01
[1061] -8.485291e-02  4.869398e-01  4.842543e-01  3.000896e+00  4.393877e-01
[1066]  1.337064e+01  3.467461e+00 -6.434246e+00  1.198236e+00 -2.534637e-01
[1071] -3.410515e+00  1.400905e+00 -1.457084e+00  1.636140e+00 -6.966825e-01
[1076] -4.962493e-01  5.460466e-01  1.333080e+01 -1.682361e+00  5.751226e+00
[1081] -1.868236e+00 -1.258235e+00  5.963128e-01 -6.474546e-01  7.018828e-01
[1086] -7.269734e-01  8.668324e-01  3.990440e-01 -2.473779e-01  8.267742e-01
[1091] -3.801067e-01 -8.292251e-01  6.797056e+00  7.278105e-01  1.077773e+00
[1096]  1.555635e+00 -2.263191e+00 -4.652888e+00 -5.601143e-01  6.929021e-01
[1101]  1.156992e+00 -9.551481e-01  2.339938e+00 -1.011574e+01 -8.088104e-01
[1106] -4.117067e-01 -3.524252e+00  2.926327e+00  5.823712e-02  1.114726e+00
[1111]  1.040062e+01  6.932956e-01 -7.597837e+00  4.884090e-02 -2.537711e+02
[1116] -9.802214e-01 -1.738539e-01  8.258867e+00 -1.299505e+01  5.171342e-01
[1121]  6.267744e+01  1.989298e+00 -1.458989e+00  1.382193e+00  1.069857e+00
[1126]  2.879003e+00 -5.818063e-01 -4.833611e+01  2.123523e+00 -4.530442e+01
[1131]  1.389864e+00 -2.478962e+00  7.129272e-02  2.762937e-01 -7.931631e-01
[1136]  5.020978e-01 -1.273769e+01 -6.340475e-01 -6.368809e-01  4.321321e-01
[1141]  1.844721e+00 -7.750163e-01 -4.007338e+00  3.989933e-01  3.703577e-01
[1146] -1.019419e-02  1.482559e-02  6.130575e-01  1.165181e+00 -1.187584e+00
[1151] -3.285808e+00 -1.149564e-01 -1.210684e+01 -2.185431e+00  3.496679e-01
[1156]  1.331626e+00 -5.451212e+00 -7.423695e-01  3.991458e-01  2.845623e+00
[1161]  2.432536e-01  2.470616e+00 -1.022642e+01  2.505683e-01  2.099125e-01
[1166]  1.801815e+00 -1.030308e-01 -5.798878e+00 -4.495887e-02 -1.109559e-01
[1171] -3.107741e-01 -4.888533e-01 -2.720660e+00 -6.065561e-01  1.615594e+00
[1176] -1.178340e+00 -5.473806e-02  1.608213e-01 -4.044007e+00  2.103663e-01
[1181]  2.702588e+01 -3.751791e-01  2.063144e-01  8.402844e-01 -7.192464e-01
[1186]  1.552654e+00 -8.782335e-01 -4.622363e-01  7.478264e-01 -2.033205e-01
[1191]  1.676019e+00  9.946781e-01 -2.528157e-01  1.061585e+00  1.844410e+00
[1196]  8.372777e-01  6.488396e-01 -1.827829e-01 -2.500853e+00  1.126913e+00
[1201] -5.014452e+00  3.042543e+00  3.719429e+00 -8.652568e+00  2.714442e+00
[1206]  6.883338e-01 -9.120615e-01 -1.395745e-01  2.770683e-01  8.012727e-01
[1211]  1.269671e-01  3.929320e-01  1.364901e+00  8.224935e-01 -1.567606e-01
[1216]  3.588403e+00  3.213173e-02  2.512351e-01  4.009630e-01  4.489186e+00
[1221] -7.774049e-01  1.609964e+00  5.859859e+00 -1.759376e+00  8.783248e+00
[1226] -2.471272e-02  9.103775e-01 -1.380548e+01 -1.377104e-01  2.099194e-01
[1231] -1.758758e+00  1.304695e+00 -5.747209e-01  4.632847e-01 -1.072052e+00
[1236] -4.962430e-01 -3.606148e+00  1.125432e-01 -1.290653e+00 -1.080926e-01
[1241] -2.093007e+00  2.771172e-01  1.277960e+00 -7.869118e-01  3.124979e+00
[1246] -2.378015e+00  1.168160e+00  4.063930e-01 -1.353398e+00  1.144537e-02
[1251] -1.818743e+00 -5.266138e-01 -6.960957e-01  2.193213e+00 -1.286962e+00
[1256]  1.265881e+00  2.330282e-01 -4.329120e-01  3.781997e+00 -2.242546e-01
[1261]  1.199203e-01  1.837507e+00  1.984716e+00 -3.695593e-01  7.947866e+00
[1266]  4.918105e-01 -1.307361e+00 -1.752460e+00  2.338596e+00 -2.054058e+00
[1271]  2.250341e-01 -1.127265e-01 -7.514325e-01 -2.693100e+00 -4.128406e-01
[1276] -1.800497e+01  2.061960e+00  1.610339e+00  9.324946e+00 -5.606110e-01
[1281] -3.769478e+00 -3.188953e-01  2.996578e-01  5.333207e+00  1.014902e+00
[1286] -2.891563e-01  4.436226e-02  7.213476e-01  2.056154e+00 -1.128342e+00
[1291] -3.805533e-01  4.114328e-02  9.456199e-01 -6.292768e-01 -3.346555e+00
[1296] -2.623412e+00 -1.949778e-01 -2.754803e+00  8.693611e-01 -1.941687e-01
[1301]  4.367757e+01  3.129980e-01 -2.135803e-01 -1.107573e-01 -4.124977e+00
[1306]  6.882102e-02 -2.111226e+00  2.047826e-02  7.671117e-02  2.564707e+01
[1311]  3.914048e+00  6.884186e-01  7.188911e+01 -1.996231e-01 -1.684195e-01
[1316] -5.665191e-02  4.484934e-02  7.653056e-01  1.578829e+00 -2.459577e+00
[1321]  2.253264e+00  3.923927e-01  2.076641e+00  1.065897e+00  1.093305e+00
[1326] -8.897788e-01 -1.201599e+00  1.930572e+00  3.458466e+00 -2.436031e-02
[1331]  6.872392e-01 -1.003360e+00 -5.257889e+00  1.039966e+00 -1.244071e+00
[1336] -1.516177e+00  2.312215e+00 -1.066597e-01  2.444794e-01 -3.039232e+00
[1341]  1.474896e-01 -2.649165e-01  2.506742e+01 -1.492432e+00 -6.707755e-01
[1346]  2.806099e+00  2.068536e-01 -4.923679e-01  3.532635e-01  8.377204e-01
[1351] -1.213219e+00 -1.829727e+00  1.570845e+00  2.814588e-01 -1.411582e+01
[1356] -9.492171e-01 -3.175171e-01  1.524082e+00  1.928856e+01  7.849386e-01
[1361] -2.209952e+00 -2.567314e-01 -2.690592e-01 -9.207234e-02 -3.265241e+00
[1366] -5.449547e-01 -6.181818e-01  1.141631e+00 -2.539334e+04  2.801402e+00
[1371]  1.258075e-01 -2.091965e+00  5.203881e-02  7.474187e-02  2.278709e+00
[1376]  4.911899e-01 -2.405580e+00 -5.900470e-02  4.607797e-01  1.323525e+01
[1381] -1.060753e+00  3.898423e-01 -2.858375e+00 -4.969935e-01  6.341329e-01
[1386] -3.666111e+01 -7.762797e+01 -1.565118e-01  2.893289e-01  1.016853e+01
[1391] -5.442208e-01  9.140931e-01  7.522552e-01 -5.097371e+00  8.257308e-01
[1396] -3.976488e-01  7.099426e-01  8.413815e-01  1.627712e+02 -4.333006e+00
[1401] -4.246418e-01 -1.036610e+00  2.883036e-01 -9.898947e-01 -2.260156e-01
[1406]  2.384398e-01 -1.501389e-01  1.330141e-01 -3.857655e-01 -8.504048e-01
[1411]  4.439221e+01  3.287410e+00 -4.774551e-01 -1.106486e+00  7.761932e-01
[1416]  7.560984e-01 -2.319621e-01  1.252577e+00  5.939010e+00  2.060931e+00
[1421] -6.025362e-01  3.892838e-01 -5.998310e-01  3.144195e+00 -4.276884e-01
[1426] -5.925740e+00 -9.492689e-01 -3.190525e-01  7.860465e-01 -1.385198e+00
[1431]  1.427003e+00  1.379751e-01 -1.034983e+01  1.637118e+00 -2.101295e+00
[1436] -3.415250e-01  1.113141e-01 -6.508570e+00  1.004317e-01  3.357599e+00
[1441] -5.401576e-01  4.467789e+00  8.918693e-01  3.297575e-01 -5.420085e-01
[1446] -1.333580e+00  1.768457e+00  3.970348e-01  4.314054e-01 -1.771584e+00
[1451] -2.624193e-01 -1.822004e+00 -4.014881e-02  2.565963e+00 -6.494380e-01
[1456]  3.097026e+00  4.965170e+00  7.762524e+00  2.850881e+00 -8.115565e-01
[1461] -1.189914e+00 -2.554301e+00  5.602857e-01  3.111711e-02  2.258313e-01
[1466]  5.157637e+00  4.351779e-01 -9.478541e-01  1.738798e+00  1.199932e-01
[1471] -9.868047e-01  1.721920e+00  1.935472e+00  7.790838e-01  4.244813e+00
[1476]  9.170679e-01  9.240596e-01  5.388418e+00 -8.337947e-01 -3.247957e+00
[1481] -2.972008e+00 -4.316263e+00 -9.111904e-01  7.917617e-01  1.547652e+00
[1486]  3.825805e+00 -6.045992e-01 -1.612732e-01  1.813942e+00 -4.741026e-01
[1491]  1.158390e-01  1.300844e+00 -1.409018e+00 -3.752903e+00  7.204516e+00
[1496]  1.847788e-01 -2.018118e-01  2.031908e+00  1.615767e+00  2.017195e+00
[1501]  1.477561e-02  2.020911e-01  4.902673e+00 -7.827405e+00 -1.087481e+00
[1506] -3.539906e+00 -6.393606e-01  1.154223e-01 -2.972821e+00  1.994969e-01
[1511]  5.384226e-01  1.010606e+00  8.129919e+00  6.146468e+00 -1.920756e-02
[1516] -2.749100e-01  3.390690e+00 -2.989178e-01 -4.699271e+00 -1.522580e+00
[1521] -1.410740e-01 -1.679676e-01 -4.807234e-01  3.811050e-01  5.966846e-01
[1526]  2.531647e-01 -6.339016e-01 -3.999001e-01  3.371540e-01 -1.072410e+00
[1531] -7.650271e-01  1.403772e+00  8.998222e-01  8.562445e+00 -1.027552e-01
[1536] -1.505204e+00 -1.014692e+00  9.017822e-01 -6.561348e+01 -1.871003e-01
[1541]  8.603940e-01 -4.851821e-01  1.020966e+00  1.782927e+00 -6.613362e-01
[1546] -1.300237e+00 -4.018578e-01 -1.571109e-02 -5.430800e-01 -1.897305e+00
[1551]  3.541914e-01  2.374887e-01  1.799805e-01 -2.760838e-01 -3.683670e+00
[1556]  9.756342e-01 -2.556132e+00  4.018125e-01  8.122475e-02 -2.613247e-01
[1561] -6.284659e+01 -1.515382e-01 -2.228290e-01  3.287717e-01 -5.775723e-01
[1566] -9.844984e-01  5.156811e-01  2.217367e+00  1.448971e+00 -2.396298e+00
[1571] -4.679512e-01 -1.807504e+00 -2.355962e+00 -2.731806e-01 -1.012394e+01
[1576] -1.011640e+00 -1.904473e-01  1.577744e+00  1.777368e+00  1.390585e+00
[1581]  9.880575e-01 -3.599728e-01  2.066611e-01 -1.273271e+00  8.642750e-01
[1586]  7.854311e+00  1.407212e+01  2.484347e+00  3.882950e+00  1.496682e+00
[1591] -1.163976e+00 -1.920234e+00 -5.147848e+00  1.684023e+00  3.736945e-01
[1596] -1.253498e+00 -1.546388e+00  1.263823e+00  9.534706e-01 -2.703293e+00
[1601] -4.572332e+00  5.243894e+00 -8.235591e-01  1.342377e+00 -1.994015e+02
[1606] -3.905673e-01 -2.605339e+00  6.426856e-01 -4.565874e-02  1.290812e+00
[1611]  3.530318e+00  2.984105e+00  6.541281e-01  3.043562e-01 -7.303537e-01
[1616] -1.550896e+00 -2.631898e-01 -1.555300e+01  1.591833e+01  3.056705e-01
[1621] -3.593226e+00 -3.095342e+00  5.730116e-02 -1.897733e-01 -3.243379e+00
[1626] -4.576625e-01  1.450057e+00 -1.902341e-01 -7.888627e-01 -1.548973e+00
[1631]  2.739390e+00  1.157524e+00  3.261578e+00  6.617630e-01  1.102188e+00
[1636]  9.209614e-01  1.168015e+00 -3.715990e+00 -2.239065e+00  2.908633e+00
[1641] -1.704473e-01 -6.484509e-02  4.001469e-01 -1.767605e+00  2.767775e-01
[1646]  1.947317e+00  1.094773e+00  6.412599e-01  7.098265e+00  1.034667e+00
[1651]  8.325838e-01 -2.553403e+00  2.746585e-01 -5.196166e+00  2.700104e+00
[1656]  3.878112e-01  5.840038e-01  4.939662e-01 -3.456331e-02  1.740831e+00
[1661] -5.596460e-02 -1.780376e+00  6.742774e-01  4.818038e+00  1.229002e-01
[1666] -1.461580e+02 -2.235312e-01  2.946503e+00  9.321236e-01  1.965208e+00
[1671]  1.678952e-01 -4.836558e-01 -4.775133e-01  2.887286e-01 -3.440534e+00
[1676]  2.898559e-01 -5.677838e+00 -1.166587e-01 -5.623389e-02 -1.263458e+00
[1681] -2.004268e+00  1.590739e-01  3.668918e-01 -7.470350e-01  1.170123e+00
[1686] -1.333543e+00 -1.873727e+01 -2.986476e-01 -3.317048e+00 -8.852092e-02
[1691] -5.223598e-01  5.296624e-01  3.928596e-01 -2.060923e-02  2.256785e+00
[1696] -4.337341e-01 -9.020541e-02  6.100120e-02  2.883089e-01  4.624965e-02
[1701]  1.411723e+00 -2.092158e-01  6.396794e-01 -4.698162e-01  1.597883e+00
[1706] -1.584971e+01  8.778633e-01 -4.137467e-01 -6.016069e-01 -5.621515e-01
[1711]  7.014154e-01 -1.076916e+02 -3.092937e+00 -2.502246e-01  5.123601e-01
[1716]  1.506129e-01 -3.215109e+00 -4.251996e+00  2.150434e-01 -8.920640e+00
[1721] -3.558370e-01 -5.833906e-01 -4.717748e-01  1.422281e+00  4.884173e+00
[1726]  2.324949e+00  2.782438e+00 -1.400986e+00 -3.546967e-01  6.200030e+00
[1731]  1.026353e+00 -4.619495e-01 -1.280452e+00  1.535243e+00 -3.093054e+00
[1736] -1.259096e+00  1.005523e+00  1.644466e+00  1.573055e+00  3.601445e+00
[1741]  4.729774e-01  1.014807e+00 -2.654098e+00 -1.545310e-01  3.370606e+00
[1746]  3.578061e-01  2.182795e-01 -2.777573e+00 -3.512095e-01  1.417908e+00
[1751] -1.618205e+00 -4.311693e-02  5.945212e-01 -1.746364e+00 -3.289188e-01
[1756]  2.780187e-01  1.302894e-02  4.379490e-01  6.441604e+00 -4.732921e+00
[1761]  6.531134e-01  1.331896e+00  1.019700e+00  9.146952e-01 -1.321175e+01
[1766] -3.565883e+00  7.599903e-01 -7.769526e-01  4.456229e+00 -1.298932e+01
[1771] -7.152017e+00 -7.627542e-02  2.299794e+00  4.576451e-01  3.089971e+00
[1776] -9.334902e-01 -3.096143e-01  1.843739e-01  2.574611e-01  1.880262e-01
[1781] -1.594900e+01 -8.685944e-02  1.329614e+00 -3.962870e+00 -4.093027e+00
[1786] -3.311049e+00 -6.827531e-01  6.970140e-01 -3.138398e-01 -1.253925e+00
[1791]  2.536309e+00  6.656854e-01  1.180997e+00 -8.751125e-01  3.863820e-01
[1796] -4.851594e+00 -8.726801e-02  3.209573e-01 -3.034656e+00  8.849612e+00
[1801]  6.747373e+00 -2.681391e-01 -2.788802e+01  2.360071e-01 -3.211052e+00
[1806] -9.313890e-02  4.327340e+00 -1.417870e-01  9.138666e-01  1.110055e+00
[1811] -1.586061e+00 -1.189378e+00 -2.713589e+00  3.495186e-01  7.306870e-01
[1816]  8.124745e-01 -2.156832e+00  2.065987e-01  3.056295e+00  3.885726e+00
[1821] -7.845206e-01 -5.374409e+00 -1.133318e+00 -2.822940e+00 -5.929194e-01
[1826] -5.983842e-01  1.476116e+00 -2.925957e+00 -3.640208e-02 -1.374352e+00
[1831] -2.265816e-01 -4.810125e-01 -5.687178e-01 -9.113804e-01  3.178856e+01
[1836] -1.194178e+00  2.391717e+00 -1.057243e+00 -1.594302e+00  6.569956e-02
[1841] -1.262243e+00  5.284985e-01 -9.333968e-01  1.244959e+00 -1.454971e+00
[1846] -4.934559e-01 -1.527758e-01 -1.789261e-01 -4.101315e-01 -8.463818e-01
[1851]  3.073086e-01 -2.387619e+00 -2.033327e-01  9.347308e-03 -7.596913e-01
[1856]  2.362249e-01 -7.536272e-01  3.765633e+01  2.138059e+01  1.283422e+00
[1861] -1.908418e+00  9.997264e+00 -3.085821e-01  2.409238e+00 -7.670772e+00
[1866]  7.552045e+00 -1.256300e-01 -2.050395e+00  4.608787e-01  4.289894e-01
[1871]  6.646852e-01  5.724803e-01  3.912277e+00 -8.072783e-01  5.994430e-01
[1876] -1.011607e+01 -3.028354e-01  8.309129e-01 -7.639892e-01  9.152423e-01
[1881]  2.398053e+00  6.871904e-02  6.407940e-01  1.601909e+00 -8.950256e-01
[1886]  1.585273e+00 -1.298006e+00 -1.389231e+00  9.366890e+00 -3.389125e-01
[1891]  6.317154e-01 -1.323465e+00 -8.135333e-01  1.948408e-01  3.025829e-01
[1896]  6.155512e-01  1.966021e-01 -7.629072e-01  1.713525e+00 -7.225831e-01
[1901] -4.054766e+00  8.114823e-02 -1.503201e+01  3.609502e+00 -6.082425e+00
[1906]  1.780841e-01  2.444702e+00 -9.266974e-01  9.664476e-01  1.218929e+00
[1911]  3.903774e-02  8.715959e-01 -1.445504e-01 -1.596701e+00  8.155158e-02
[1916]  7.379162e-01  7.195825e-01 -1.070582e+00 -1.783908e+00  7.089787e-01
[1921] -1.043488e+00 -4.093101e-01  8.390263e-01 -1.927460e+00 -3.764600e-01
[1926]  1.570875e+00 -1.989254e+00 -5.943785e-01 -8.899083e-01 -6.733044e-02
[1931] -3.615410e+00  1.493245e+00  6.362756e+00  2.392458e-01 -1.238134e+01
[1936]  1.353417e+00 -3.844173e+00 -1.952006e+01  3.361529e-01 -2.491194e+00
[1941]  1.245370e-01 -6.134820e-01 -2.745981e+00  6.501214e-01  6.373867e-03
[1946]  1.601660e+00  4.666071e+00  2.955438e+00  9.246004e-02  7.718320e+00
[1951]  1.071499e+00 -1.611064e-01  3.085253e+00  6.185615e-01 -1.478259e+00
[1956]  2.337929e+00  1.377982e+00 -1.250216e+00  4.573685e-01  7.587108e-01
[1961] -2.776100e-01 -5.175874e+01 -8.641220e-01 -9.670877e-01 -5.706198e-01
[1966] -6.097956e-01 -4.679053e+01  2.807598e-01 -3.218104e-01 -7.790571e-02
[1971]  2.769717e-01 -4.174086e-01  3.040710e+00 -1.708693e+00  2.744364e+00
[1976]  2.357203e-01  4.365521e-01 -9.221430e-01  8.070762e+00  2.099746e+00
[1981] -8.402787e-02  5.977318e-01  1.784846e+00 -2.085202e-01 -8.733864e-01
[1986] -8.462970e-01 -5.903058e+00 -2.284765e-01 -7.702429e-02  4.758529e-01
[1991]  1.588117e+01  8.028088e-01  2.021347e-02  6.689348e+00 -9.767739e-01
[1996] -2.186503e+01  1.115676e+00  2.679515e-01  3.252536e-01 -8.553696e-02
[2001]  1.111674e+00  5.235531e-01 -3.434568e-01 -5.013793e+00  3.818247e+00
[2006] -6.513532e+00  1.325581e+00 -5.339886e+00 -2.878471e+00 -5.084372e+00
[2011]  3.826583e-01 -1.716207e+00  1.256916e+00  5.926651e+00  1.211415e+00
[2016] -1.022434e+00 -9.063731e+00 -1.079491e+00  3.309042e+00 -1.070196e+00
[2021] -3.842265e+00 -1.570838e+00  3.217643e+00 -1.826609e+00  3.587322e-01
[2026]  9.672458e-01 -1.834945e+00  1.567952e+00  5.528170e+00  4.715087e+00
[2031]  4.762741e+00 -2.157865e+00  2.201263e-02  1.353619e+00  1.230807e-01
[2036]  1.554314e+00  5.916899e-01  8.014567e-01  2.045352e-01  1.949876e+01
[2041]  1.485471e+00 -4.651289e+00  1.373981e+01 -1.431523e-02  1.189836e+00
[2046] -5.227658e-01  4.931729e-01  8.425788e-01 -8.259255e+00 -1.545345e+00
[2051]  5.310998e-01 -1.651657e+00  4.101933e-01 -1.839587e+00  1.392193e-01
[2056] -1.144568e+01 -2.540639e+00 -1.455204e+00  1.288773e-01  2.507838e+00
[2061] -3.713551e-01 -2.162938e-01 -2.145924e+00 -3.509798e-01  1.242361e+01
[2066]  5.250171e-01 -1.455512e+01  5.803383e-01  1.931623e-01 -4.335726e+00
[2071]  4.694927e-01  2.359008e+00  2.556874e+01  1.932899e-01  5.791214e-01
[2076] -1.621189e+00  3.952416e+00  1.296664e+00  2.185121e-01  6.994976e-01
[2081]  1.153983e+00 -3.324471e-01 -2.460752e-02 -2.886875e+00 -5.031491e-01
[2086]  1.691147e+00  1.133717e+00 -1.668991e+00  6.198206e+00 -2.986730e+01
[2091] -1.478215e+00  1.856355e+00 -7.767276e-01 -1.490836e+00  4.622314e-01
[2096] -5.052491e-01  5.420291e-01 -1.836686e+00  9.632047e-01  9.625885e+00
[2101] -3.328017e-01 -1.548174e+00 -7.228379e-01 -1.489684e-02 -3.111759e+00
[2106] -2.805802e+00  1.114501e+00 -3.884595e-01 -1.465454e+00 -7.543600e-01
[2111]  1.533163e+00  2.583283e-01 -1.133535e-03  1.642396e+00  2.369276e-02
[2116]  6.069423e-01  2.041837e-01  5.688097e-01  3.186968e+00 -1.605943e+00
[2121] -1.437319e+00 -1.158757e+00  1.565784e-01  4.908447e-01  9.569406e-01
[2126] -1.479647e+00 -1.427666e+00 -4.617388e+00  1.227220e+00 -2.309635e-01
[2131] -2.281222e+00 -1.688470e+01  1.269062e+00 -1.012167e+00  1.281981e+00
[2136] -2.560217e+00  6.947185e+00  1.838154e-01  9.155317e-01  5.899559e-01
[2141] -1.143331e+00  5.846052e+00 -6.409123e-01 -7.937512e+00  2.799239e-02
[2146] -1.858898e+00  4.399454e+00 -6.480302e-01 -2.130195e+00 -4.382969e+00
[2151]  5.435263e-01  1.654628e-01  1.032985e+01 -5.165389e-01  2.651794e+00
[2156] -1.113397e+00  2.522320e+01 -9.480667e-02 -3.777304e-01 -1.361166e-01
[2161] -6.967938e-01 -7.677110e+00 -4.484681e+00 -7.449997e-01 -9.374488e-01
[2166] -4.122238e-01  9.026965e-01  3.020804e+00 -1.386374e+00 -1.873359e+01
[2171] -1.070408e+00  5.521024e+00 -4.116253e-01 -2.577428e-01 -2.512488e+00
[2176]  7.983223e-01  1.581338e+00 -3.257811e-01 -3.198663e-01 -2.595229e+00
[2181]  6.390141e-01 -8.418747e-02 -3.970085e-01 -1.705716e-01 -1.776100e+01
[2186] -2.175716e+00 -1.126550e+00  8.975584e+00 -4.012066e-01  1.399403e+01
[2191]  1.587782e+01  1.023151e-01  7.059435e-01  4.161542e-01 -4.013470e+00
[2196]  1.189279e-01 -6.673784e-01 -4.198970e-01  1.108788e+00  4.016482e-01
[2201] -9.222420e+00  2.315440e+01  2.131762e+00 -3.374852e-01 -7.923102e+00
[2206]  1.490549e-01 -1.837561e+00 -2.478501e-01  2.260515e+00  2.817259e+00
[2211]  1.417058e+00  1.728184e+00  1.020994e+00 -2.929953e+00  1.419116e-01
[2216]  2.614197e+00  1.390382e+00  1.339087e-01  2.109118e+00 -7.054273e+00
[2221]  2.095708e-01  7.451882e-01 -2.301187e-01  1.631462e+00  1.075897e+00
[2226]  1.437309e+00  2.981027e-01  3.271638e+00  2.340605e-01 -6.274342e-01
[2231] -6.041938e-01  8.411647e-01  7.535063e-02  1.478397e+01 -2.023845e+01
[2236] -1.057925e+00 -3.562701e-01 -2.587477e-01  9.261567e-01  2.544068e-01
[2241] -4.956176e-01  9.569976e-01  5.058740e-01  7.945952e-02  1.426947e+01
[2246] -3.236090e-01 -1.597363e-02  1.568278e+00  2.745446e+00 -6.624559e-01
[2251] -6.620051e-01  6.929064e+00 -3.395485e-01 -7.331020e-01  2.007203e+00
[2256] -2.928672e+00 -1.684684e-01  1.375844e+00  2.454376e+02  7.990356e-01
[2261] -1.027425e+01 -5.857654e-01 -1.900024e+00 -2.195226e+00  2.781591e-01
[2266]  4.038760e-01 -1.544292e-01  4.711869e-02  4.841462e+00  1.031867e-01
[2271] -8.611969e-01 -1.664425e+00 -1.228268e+00 -1.152710e+00 -1.168115e+01
[2276]  5.205492e+00  1.192407e+00  1.200924e+00  5.200826e-01 -2.963393e-01
[2281]  2.231061e+00  3.532329e-01 -4.784655e+00  1.508867e+00  2.391733e+02
[2286] -5.575948e+00 -1.660505e-01 -2.378567e+00  8.412162e-02  3.120898e-01
[2291] -1.642957e-01 -1.859242e+00  2.374683e+01  1.317778e+00 -2.493574e-02
[2296]  1.062495e+00  7.719270e-01 -4.542170e-01  4.122966e+00 -3.845125e-01
[2301] -6.505943e-01  1.153148e+00  3.064804e+00  4.628565e-01  4.365101e-01
[2306]  1.007231e+00 -2.445697e+00  1.205804e+00  3.215264e+00 -1.096839e-02
[2311] -1.120888e+00 -7.122192e-01 -1.702755e+00 -1.361407e+01  1.208343e+00
[2316] -9.282947e-02  9.673931e-01 -2.245762e+00 -2.566566e+00  2.481839e+00
[2321] -4.869585e+00 -1.452603e+00 -7.807805e-01 -8.431710e-01  7.992314e+00
[2326] -1.888179e+00  4.546482e-01 -3.173849e+00  3.002449e-01  7.025764e-01
[2331] -9.136911e-01 -1.102757e+00 -6.582601e-01  3.699767e-01 -1.929952e+00
[2336] -1.477368e-01 -1.014731e-01  2.623496e+00 -5.435010e+00 -1.892819e+00
[2341] -9.874076e-01 -3.913674e-01 -5.734874e-01  2.779174e+00 -3.627486e-01
[2346] -3.115675e-01  3.088604e+00  3.175347e-02 -1.582482e+00  4.001477e-01
[2351]  1.587834e+00  6.483626e-02 -4.194138e+00  3.153073e+00  7.830437e-01
[2356]  3.646169e-02 -9.009853e-02  2.944153e-01 -7.213604e+00 -3.426930e-01
[2361]  3.127621e+00 -9.015495e+02  1.517887e-02  5.475867e-01  5.085444e-01
[2366] -1.696348e-01 -2.515755e-01  4.172328e-01 -1.543427e-01 -9.988567e-01
[2371] -1.220910e+00 -1.888139e+00  5.107525e-01 -1.817646e+00  1.122587e+00
[2376]  5.188007e+00 -1.436607e-01 -7.283602e-01 -2.939507e-01  1.366986e+00
[2381]  2.445594e+00  1.547766e-01  1.835611e+00 -3.802635e+00  6.188904e+00
[2386] -4.445503e+00 -3.810106e-01 -9.348390e-02  4.668712e+00  1.294260e+00
[2391]  8.172335e-01  5.374584e-01  2.432251e-01  9.955533e-02  1.448967e-01
[2396] -3.314081e+00  2.542721e+00  6.983017e-01 -6.458744e-01 -6.176532e-01
[2401] -5.937590e-01  9.409167e-02  3.566087e+00  1.453226e+00 -8.081475e-01
[2406]  4.409328e-01  6.708021e-01  1.577516e-01  6.399901e-01  3.546097e+00
[2411] -8.004703e-01  3.632253e-01 -8.415333e+00 -3.702194e-01 -8.296650e-01
[2416]  3.009139e+00  6.484510e-01  1.094918e+00 -5.071789e-01  6.628444e-01
[2421]  1.000349e+01  1.057433e+00 -5.231171e+00  2.439074e-01 -4.081160e-02
[2426] -1.837006e+00 -2.744675e-02 -1.372985e+00 -2.660858e+00  6.535175e+00
[2431] -6.236143e+00 -2.017299e+00  4.698356e-02  5.169047e-02  8.897124e-01
[2436]  7.957988e+00 -2.984390e+00  9.342397e+00 -9.242789e-01 -5.093230e+00
[2441] -7.295703e-01 -1.466964e+01 -1.925611e+00  2.076944e+01  1.823310e+01
[2446] -1.197977e+01  8.858440e-01 -1.858427e+00  1.029292e+00 -3.152319e+00
[2451]  5.340341e-01 -3.601272e-01 -1.481907e+00 -1.879257e+00 -1.061363e-01
[2456] -2.310645e+00  4.285935e+00 -1.187563e+00  4.890591e-01 -2.759514e-01
[2461] -1.150631e+00  8.266556e-01 -1.362800e+00  1.898852e+00  2.397034e+00
[2466]  1.355404e-01 -2.450776e-01  4.828021e+00  2.277789e+00  4.312064e+01
[2471] -1.784173e+00 -3.974256e-01 -9.660343e-03  5.518524e+00 -2.558096e+00
[2476] -6.516618e-01 -8.158139e-01  6.488007e-01 -1.725979e+00  7.313601e-01
[2481]  1.146640e+00 -6.837250e+00 -6.380321e-01 -2.951361e+00  1.318089e+00
[2486] -1.098856e-01 -1.983885e-01  1.593636e+00  8.070401e-01  1.265922e+00
[2491]  3.268355e-02  1.799492e+00 -1.603049e+00 -9.831718e-03  1.443522e+00
[2496]  9.992700e-01  2.920489e+00 -4.011872e-01  5.938940e+00  8.748821e-01
[2501] -6.919905e-01  1.557974e+00 -6.313153e-01 -2.055251e-01 -7.919839e+00
[2506]  3.856785e-01  5.763520e-01  1.150808e+00 -1.558471e+00 -1.033345e+00
[2511] -8.173815e+00 -5.897060e-01  1.161366e+02  3.216342e+00  1.269217e+00
[2516]  1.747736e+01  1.941339e-01  4.228383e-01 -4.520854e-01  4.887517e-01
[2521]  1.105577e-01  7.621124e-01  1.217176e+00 -3.301156e-01  5.399641e+00
[2526] -7.608653e-01 -3.818551e-01 -1.679674e+00 -1.364855e+00  2.495743e-03
[2531]  2.594035e-01 -4.009856e+00 -1.345773e-01  5.655198e-01 -9.319315e-01
[2536]  3.388005e-01 -7.744349e-02 -3.049836e-01  7.151786e-01  3.439014e+00
[2541]  5.118921e+00  4.311455e-01  4.606926e-01  1.205890e+00 -1.207054e+00
[2546]  4.089263e+00  1.905583e-02  7.724552e+00  1.362968e+00  1.494276e+00
[2551] -3.269299e+00  2.223071e-01 -1.132179e+00  6.834272e-01 -1.700551e+01
[2556] -2.608193e-01  9.249654e-01  1.154789e+00  2.364271e+00 -1.678808e+01
[2561] -4.151747e+00 -2.755081e-02 -5.863597e+01  1.765348e+00  2.313895e+00
[2566]  1.577600e+00 -5.318798e+00 -2.043864e+00  1.111372e+01 -1.426554e-01
[2571] -1.034129e+00 -3.624913e-01 -4.388549e+00 -8.741467e-02 -2.545405e+00
[2576] -5.149294e+00 -6.272082e-01  6.242000e-01  1.505638e+02  1.134311e+00
[2581]  1.884527e+00  8.964464e-01 -5.199942e-01  1.245842e+01  4.825545e+00
[2586] -5.152462e+00 -4.863407e-01  1.157504e+00 -1.349312e+00 -2.273211e+00
[2591]  4.465990e+00 -2.893241e-01 -6.665130e+01  8.675580e-01 -1.024979e-01
[2596]  8.134523e-01 -1.623703e+00  1.774601e-01  1.525187e+00  2.445989e+00
[2601]  5.883799e-01  6.826467e+00  1.739545e+01 -2.533275e+00 -1.369719e+00
[2606]  9.188665e-01 -1.609322e+00  3.615605e-01 -2.547942e-01 -4.882620e+00
[2611]  5.766900e-01  3.943216e-01  2.738188e+00 -1.379117e+00  1.273311e+01
[2616]  1.644068e-01 -2.298211e-01 -1.552618e+00 -6.614022e-01  5.767623e-02
[2621]  5.903923e-01  2.850927e-01  1.560086e-01 -1.031598e+00 -1.783176e+00
[2626] -5.785265e-01 -3.242228e+00  6.486471e-02  9.054975e+00  8.430136e+00
[2631]  2.090138e+00  9.055522e-01  3.080065e-01  2.293308e-02 -3.029137e-01
[2636] -3.337696e-01  4.647278e-01 -1.367451e+00  9.213761e-01 -5.269949e-01
[2641] -3.819374e+00 -8.212975e-01  2.312021e+00 -4.576093e-01 -2.176979e+00
[2646] -1.188157e+00  1.626448e-02  1.195211e+00 -9.305476e-02 -1.361829e+00
[2651]  3.329701e-01  5.179596e-01  2.431901e-02  4.107411e-01 -4.710770e-03
[2656] -1.223900e+00 -1.001683e+00 -1.007265e+00 -7.684857e-01 -4.772682e+00
[2661]  7.349981e-01 -3.744062e-01 -6.964300e+00  7.920583e-01  1.075507e+00
[2666] -9.190582e-01  2.018958e-01 -3.749236e+00  2.018597e-01  5.470670e-01
[2671]  4.372488e+00 -6.795079e+00  3.549843e-01 -4.344860e-01 -1.503172e-01
[2676]  1.604659e+00  3.134478e-01 -4.768389e+00  1.013293e+00  2.067673e+00
[2681] -1.710896e+00 -2.339986e+00  7.288077e-03  3.879799e+02 -3.012467e-01
[2686] -2.668603e+00  1.296057e+00 -2.138961e+00  7.746865e-01 -1.079447e+00
[2691]  1.994043e+00  4.024894e+00  2.662427e+00 -2.083882e-01  1.054093e-01
[2696]  6.086611e-02 -1.137524e+00 -2.364196e-01  3.604608e+01 -4.724862e-01
[2701]  2.365026e-02 -1.490207e-01  1.613295e+01  8.085748e+00  1.719217e+01
[2706] -1.064835e+00  1.050395e+00 -6.907746e-01 -3.879344e-01 -7.743911e-01
[2711] -1.485287e-01  1.496811e-01  2.726332e-01  7.267601e-01 -1.618168e-01
[2716] -2.174398e+00 -3.549249e-02 -1.922208e-01  6.370158e-01 -1.129411e+00
[2721] -5.550778e-01 -5.036746e-02  2.745947e+00 -2.596614e-01 -8.014858e-01
[2726] -3.987347e+00 -6.728768e-01 -6.196387e-01 -1.616402e-01  3.002976e+00
[2731] -1.374565e+01 -5.101138e-01 -4.331653e-01 -1.092685e+01  2.260876e+03
[2736] -6.743823e-01  1.004565e+01  1.101006e+00 -4.921519e-01 -2.886811e-02
[2741] -3.389472e+00 -7.419360e-01  4.833159e+00  1.064062e+00 -8.531710e-01
[2746] -6.516511e+00 -8.368392e-01  7.672728e+00 -2.737205e+00 -1.359190e-01
[2751] -3.164440e+00  3.210993e-01 -5.013334e+00  4.192548e+00 -1.013212e+00
[2756]  5.649816e-01 -3.578292e+00  2.990193e-01 -2.748537e+00 -1.149130e+02
[2761] -1.805436e-01  1.099316e+00 -6.366515e+00 -1.378379e-01  5.918250e+00
[2766] -2.719091e+00 -1.513666e+00  2.380077e+00 -1.036940e+00  9.058026e-01
[2771] -2.792829e-01 -6.960041e-01  5.350321e+00  2.246719e+01 -2.548144e-01
[2776]  1.381613e+00  3.505807e-01  1.234373e+00  5.664191e-01  7.297533e-01
[2781] -9.432139e-01  4.955174e+00  1.130480e-01  1.244739e+00 -8.460194e-01
[2786]  1.716642e+00 -1.906162e-01 -6.307434e-02  2.340546e-01  7.882998e-01
[2791] -1.354319e+00 -1.977408e-01  3.735242e+00 -1.194822e+01 -1.509884e+00
[2796]  2.138854e+02 -1.178270e-01  5.202586e+00  8.013299e-01  4.157607e+00
[2801] -1.207542e+00  4.136550e-01  1.591696e+01 -1.234681e-01  6.175136e-01
[2806] -2.557834e-01  6.140661e+00 -1.326598e+00  4.056077e-01  2.236237e+00
[2811]  9.184381e-01 -2.743574e-01  1.579259e-01  3.990463e-02 -5.232019e+00
[2816] -1.238661e-01  2.659248e-01  2.076539e+01 -1.053547e+00  1.372038e+01
[2821]  6.865532e-01 -1.820947e+00  3.458969e+00  1.879850e-01  4.996692e+00
[2826] -1.514405e+00  7.393726e-01 -1.186750e+00  8.849866e-01  1.198520e+00
[2831] -4.419545e+00 -6.660609e-01  1.934769e+00  2.218232e+00 -2.529734e+00
[2836] -3.755929e+01  5.165601e-01 -4.364110e-01 -1.523929e-01  4.915297e-01
[2841] -1.329500e+00 -1.475594e+00  2.384610e+01 -2.856726e-01  4.110670e+00
[2846]  2.345061e+00 -1.011010e+00 -1.944961e-01 -6.254516e+00  1.549622e-02
[2851] -1.073241e-01 -2.875372e+00  7.383447e-01 -4.656006e+00  9.998547e-01
[2856]  3.804569e-01 -5.046360e-01  5.288398e-01 -9.715348e-01 -9.032028e-03
[2861]  3.342879e-01 -6.318179e+00 -8.169749e-01  1.787235e-01 -1.934503e+00
[2866]  3.887659e+00  8.965495e+00 -1.180045e+00  7.068791e-01 -1.069159e+01
[2871]  1.608465e+02  2.031721e-01 -1.023574e+02  1.245887e+00  4.582032e-01
[2876]  2.110232e-01  5.588956e+00  9.500410e-01 -1.911224e-01  3.677433e-01
[2881] -2.812286e-01 -2.865546e+00  8.222419e+00  7.454856e+00 -2.992647e+00
[2886]  7.300747e-01  2.378071e+00  5.455473e-02 -3.398087e-01  4.744211e-01
[2891] -1.960757e-01  2.242375e-03  1.964201e+00 -2.366120e-02 -7.746977e+00
[2896] -4.155851e+00  8.306955e-02  1.642736e-01  6.690180e+00 -6.863428e-01
[2901]  1.368845e+01  9.223755e-01  1.637098e-01 -3.757902e+00 -6.553826e+02
[2906]  7.831761e-01  1.574047e+00  1.799615e+00 -1.793972e-01  2.791800e+00
[2911] -2.668755e-01  7.592448e+00  2.927964e-02  1.193100e+00 -1.739341e-01
[2916] -6.944873e-01 -3.478033e-01 -5.089429e-01  4.036644e-01 -5.859033e-02
[2921] -7.115606e-01 -1.109136e+00  1.860117e-01  6.355500e+00 -7.563989e+00
[2926]  7.555960e-01 -7.936334e-01  2.496343e+00 -3.619412e-01 -9.447408e-01
[2931]  5.302988e+00  8.832128e-01  1.903504e+00 -8.346487e-02 -6.431830e-01
[2936] -7.470384e-01 -2.514164e-02 -9.691739e-01 -1.739317e+00  1.186529e-01
[2941]  5.045539e-01  2.150329e+00  2.681812e+00  1.215883e+00  1.393922e+00
[2946] -1.181362e+00 -1.204755e+00 -1.909122e-01 -2.913363e-01 -2.153660e+00
[2951]  3.442874e-01 -1.026860e+00  5.117173e-01  1.911153e+00  1.006775e+01
[2956]  1.282338e+00 -2.422656e-01  4.000361e+00  7.137975e-02  5.714096e-01
[2961] -3.239112e+01 -7.199710e+00 -1.844968e+00  1.004543e+00 -1.302042e+00
[2966] -2.905025e+00 -1.288644e-02  8.805554e-01  4.881398e-01  1.259601e-01
[2971] -9.096210e-02  2.043809e+00 -2.212003e+00 -7.632823e+00 -2.371578e+00
[2976]  1.282500e+00 -9.881613e-01  8.140565e+00 -7.826804e-01  8.513173e-01
[2981] -3.006690e-01 -9.417505e+00  1.821428e+02  4.456433e+00 -1.015069e-01
[2986]  5.002642e-01 -1.218473e+00  2.313520e+00 -6.459776e-01 -1.414830e+00
[2991] -6.616008e-01  1.232815e+00  4.021827e-01 -8.876648e-01  9.632576e-02
[2996]  5.174113e+00 -2.479289e+01  1.925218e+00 -2.648477e+00 -1.443089e+00
[3001] -1.157169e+00 -6.129981e+00 -2.547988e+00  1.243126e+01  4.883749e+00
[3006]  3.776356e-01  5.792466e+00  6.899655e+00  1.274015e+00 -6.243833e-01
[3011]  8.660653e-02  1.198164e-01 -8.779536e-01  3.808287e-01  1.099070e+00
[3016] -3.778717e-01 -2.389182e+00  9.406634e-01  4.851954e-01 -2.111106e-01
[3021] -3.686257e-01  1.547950e+01 -2.303328e+00  2.678492e+00 -5.939734e-02
[3026]  1.195658e+00  8.877145e-02  2.118036e+00 -2.373041e-01 -1.124930e+00
[3031] -5.571549e-02  7.734866e-01 -1.320815e+01 -2.964059e+00  4.909368e-01
[3036] -6.513831e-01  7.792857e-01 -1.765007e-01  1.293935e+00 -1.907386e+00
[3041]  1.172402e+00  2.846001e+00 -2.222782e+00  1.341149e+00  3.966205e-01
[3046]  1.589212e+00  1.241178e+00  3.427163e-01 -1.142755e-01  1.485080e+00
[3051]  3.438227e+00 -5.346389e-01  5.255636e-01  9.416708e-02 -5.937414e-02
[3056]  3.701245e+02  3.076081e+00 -1.725031e+00  4.636661e-01 -4.415193e-01
[3061]  3.160438e+00 -2.526746e+00  5.595594e-01  1.096307e+01 -8.734857e-02
[3066] -2.704408e+01 -1.659893e-01  7.116440e-02 -9.373096e-01 -5.014239e-01
[3071] -6.167062e+00  1.069338e+00  6.294380e-01  3.986429e+00 -1.182015e+00
[3076] -3.764714e-01 -7.737672e-01  1.343471e+00 -2.057391e-01  1.566162e-01
[3081]  7.607349e-01 -4.733491e-01 -7.382148e-02  4.945743e+00 -1.776324e+01
[3086] -2.666675e+00  1.929369e-01  1.339300e+01 -2.502861e-01 -2.396538e+00
[3091] -9.164429e-01  3.139467e+00 -6.018853e-01  6.884513e-02 -1.388443e+00
[3096]  1.291904e+00 -1.349605e+00  2.847573e+01 -2.258592e+00 -6.201619e+01
[3101]  3.628448e+01 -9.822942e+00  5.604783e-01 -9.702302e-02 -4.252974e-01
[3106]  7.331337e+00 -1.816015e+00  2.475169e+00 -3.107355e+00  6.176239e-01
[3111] -1.936246e+01 -1.747592e+00  4.373004e-01 -2.079267e+00  2.216883e-01
[3116] -5.929888e-01 -2.783763e+00 -1.360599e-01 -3.954566e-01  1.988662e+00
[3121] -6.401113e+00 -7.352314e-01 -7.196474e+00 -1.954109e+01  1.527324e+00
[3126] -7.085867e-02 -3.638052e-01 -2.721929e+00 -1.707698e+00 -6.493865e-01
[3131]  2.094247e-01  1.139026e+01 -3.737330e-03  2.704014e+00  4.735232e-01
[3136] -3.586512e-01  1.282605e-01 -1.679146e-01 -1.176813e+00 -3.728934e-01
[3141]  3.583402e+00  4.573743e-01  1.308155e+00 -5.202563e+00  1.417679e+00
[3146]  1.018163e+00 -1.690710e-01  5.760388e+00 -2.652267e+00  4.827488e+00
[3151]  5.218130e-02  3.793664e-01  1.233752e+00  9.644310e-01  1.963983e-01
[3156]  2.492194e-01 -1.572543e+00 -5.874611e-01 -2.071227e+00  3.393395e-01
[3161]  8.121743e-01 -1.665744e+00 -1.883127e-03  3.909539e+00 -1.638274e+00
[3166] -1.011503e-01 -2.017335e-02 -1.745392e+00 -2.202657e+00  4.745969e-02
[3171] -1.041060e+01  1.014707e+00 -2.522848e-01 -2.010167e+00 -3.833724e+00
[3176]  1.845965e+00  4.069421e+00 -6.833320e-01 -8.720540e-01 -4.970608e-02
[3181]  1.150115e-01 -2.058736e-01  2.189381e-01 -7.349001e-01  1.235403e-02
[3186] -6.549065e+00  5.730121e-01  1.829993e+00  8.736078e-01  8.894031e-01
[3191] -2.848849e+00 -2.823020e+00  1.486103e+00 -7.835921e-01 -2.782773e+00
[3196]  2.620247e+00 -8.510346e+00  7.143274e-01  1.706844e+00  3.592538e-01
[3201] -1.620777e+00  4.281099e+00  7.461365e+00 -1.382182e+00  1.646608e+00
[3206] -7.626862e-01 -1.122112e+00  3.325899e-01  2.379159e+00  8.258665e-01
[3211]  6.441468e-01 -3.891893e-02  5.347382e-02 -1.004449e+00 -1.187052e+00
[3216]  1.525971e-01  1.197373e+00  2.930177e-01  1.005557e+01  1.117235e+00
[3221]  1.067489e+00 -4.145204e+00  5.205867e-01  2.767915e-01 -2.273377e+00
[3226] -2.058799e+00 -4.115239e-01  1.354813e+00  3.993453e-01 -6.194439e-01
[3231]  1.312204e-01  1.748014e+01  1.452457e-01 -5.636754e-01  2.578022e+00
[3236] -7.586496e-01 -2.077407e+00  2.338689e+00 -3.119422e-01 -2.998528e-01
[3241]  7.579075e-01 -4.422478e+00  2.554004e+00 -9.946236e+00  3.322353e-01
[3246]  1.492620e-01  5.959426e-01 -2.814516e-01 -1.641219e+00  1.631100e+00
[3251] -7.110270e-02  3.878982e-01  1.139033e+00 -3.156502e+00 -1.989699e+01
[3256] -1.621369e+00 -6.586946e-01 -8.973636e+00 -5.620280e+00  4.151769e+00
[3261]  5.388855e-01  2.918568e+00 -7.231213e-01  8.747311e+00 -1.062649e+00
[3266] -1.611676e+00 -6.959764e+00 -2.700489e-01 -2.116058e-01 -5.038533e-01
[3271] -7.401579e+00 -1.279414e-01  5.079213e-01 -7.329180e-01 -3.178067e+00
[3276]  8.272097e-01 -3.222390e+00 -1.740496e+00 -2.330986e-01  4.281137e+00
[3281]  1.909486e+00 -3.446449e-01  2.344778e+00 -1.098702e+00  5.852456e-02
[3286] -1.234878e+00 -1.423257e-02 -3.784586e+00 -5.045406e-01  1.959351e-02
[3291] -4.361162e-01  4.423998e+00 -1.071305e+00  4.293906e-01 -2.862059e+00
[3296] -1.690860e-01 -3.264950e+00  2.179744e-01  1.037334e+00  9.794702e-01
[3301] -4.347260e-01  3.435392e+00 -2.251060e-01 -9.983598e-01  4.037627e-02
[3306]  2.179343e+00  1.930272e-01  1.472342e+00 -5.575046e+00 -5.325577e-01
[3311] -1.839710e+00  9.403823e-01  3.171680e-01 -3.330972e-01 -1.746176e+00
[3316] -7.802676e-01  2.868154e+00 -5.999381e+00 -2.279704e+00 -4.098558e+00
[3321]  1.189166e+00 -2.484474e-01  2.933733e-01 -4.900574e-01 -4.551348e+00
[3326]  8.647454e-01 -1.494112e-01 -1.377113e-01 -5.141441e-01 -4.501775e+00
[3331]  2.783587e+00  2.758424e+01  8.443622e-01 -6.322208e+00 -2.059789e+00
[3336] -2.105826e+00  1.981044e+00  1.437592e+00  1.802685e+02  1.431836e+00
[3341] -6.938599e-01  4.289017e+00  1.053529e+01 -3.885706e+00 -2.116095e+00
[3346]  2.854998e+01 -2.255923e+00 -6.752634e+00 -1.452324e+00 -5.194441e-01
[3351] -8.686281e-01 -3.384332e-02 -1.533123e-01  2.746638e+01 -2.921479e-01
[3356] -3.110950e+00 -2.245586e-02 -4.416091e-01 -5.041209e-01  1.984713e+02
[3361] -6.591739e-01  3.993460e-01  4.136819e-02 -3.718244e-01  1.789976e+00
[3366]  9.829238e-01 -1.451165e+01 -3.548248e-01 -1.311181e+00 -1.726493e-02
[3371] -2.816960e-01  1.504187e-01  1.398442e+00  2.510851e-01  1.166266e+01
[3376] -2.609885e-01 -1.056991e+01 -1.122126e+00 -2.454111e+00  8.233418e-01
[3381]  4.744964e-01  4.657001e-01 -4.197180e+00  5.321687e+01 -4.411189e-01
[3386] -2.375793e+00 -4.870240e-01 -3.032427e-01  2.816295e-01 -2.087663e+01
[3391]  9.792403e-02 -2.880571e+00  1.986539e+00 -7.060810e-01 -2.131032e+00
[3396] -1.318063e+00  5.429507e+00  2.156589e+00  1.156694e+00  7.576830e-02
[3401] -2.317524e-01 -5.652549e-02 -1.591484e+00  9.390867e+00  1.118494e+00
[3406]  1.715209e+00  3.160154e-01  1.679223e-01 -5.308812e+00 -2.986249e+00
[3411] -8.235869e-01  8.465372e-01  3.139631e+00  4.169529e+00  1.197824e+00
[3416] -7.009170e+00 -4.541192e+00 -4.779096e-01 -1.681806e+00 -5.187006e-01
[3421] -1.246859e+00 -1.646641e+00  1.082890e+00 -1.048142e-01  6.264084e+00
[3426] -8.752327e-01  9.358551e-01 -4.963141e+00 -4.457547e-01 -1.242790e+00
[3431] -7.441865e+00  2.828420e+00 -1.187690e-01 -1.564146e+00 -1.625656e-01
[3436] -5.246629e-01 -1.944087e+00  1.568053e+00 -2.758284e-01 -8.587086e-01
[3441] -1.890942e+00  5.592465e-01 -4.459494e+00  8.778960e-01  3.245891e+00
[3446]  1.379888e+00 -3.127727e+00  7.239854e-02  1.467235e+01  1.395544e+00
[3451] -2.073272e-01  3.664525e+00  5.199523e-01 -1.470783e-01  1.249467e-01
[3456]  2.071551e+00  5.493369e-01 -2.023576e-01 -3.237232e+01 -3.160376e+00
[3461] -1.049296e-01  1.717314e+00 -2.593689e-01  5.584059e-01 -2.583565e-01
[3466]  8.505178e-01 -1.757210e-01 -1.191520e+00 -5.601132e+00  1.122537e+02
[3471]  4.182639e+00  5.569048e-01 -6.919545e-01 -6.436071e-01 -8.021273e-01
[3476]  3.857845e-01 -1.007958e+00 -1.549281e+00  5.289172e-01 -7.356341e-01
[3481] -2.252411e-01  1.426880e+00  1.077326e+00  1.549625e+00 -7.300651e-01
[3486]  2.633299e-01  3.284974e-01 -8.868426e-01  4.422662e-01 -3.445445e-01
[3491]  1.991456e+00  3.263163e+01 -3.534457e-01  5.154969e+00 -1.338318e+00
[3496] -9.883042e-01 -1.995606e+01 -2.282613e-01  6.027317e-01  2.248372e+00
[3501]  7.223632e+00  8.389344e-01 -1.030250e+00 -2.415053e-01 -9.231820e+00
[3506]  5.418471e-01  2.487087e+00  4.381769e+00  1.076200e+00 -6.138662e+00
[3511] -3.742805e-01 -2.833059e-01  1.821330e+00  1.953553e+00 -1.241453e+00
[3516]  1.269813e+00 -4.035807e+00 -2.623311e+00 -1.249901e+00  4.676940e+00
[3521]  3.952812e-01  9.137264e-01  8.232696e-01 -2.847861e-01 -1.514342e+00
[3526]  5.363358e-01 -2.796424e-01 -1.306449e+00 -6.349354e-02  6.712229e+00
[3531] -2.361345e+00 -3.207247e-02  1.161234e-01  6.701439e-01  4.736202e+00
[3536] -1.400518e+00  3.095968e-01  2.318106e+01 -9.355460e+00  7.935388e-01
[3541] -2.222384e+00 -8.689649e-01 -1.367753e+00  7.296377e-01 -8.896150e-02
[3546] -1.485118e+00  2.545346e-01  5.817141e-01  9.835350e-01 -2.474080e-01
[3551]  3.676591e+00 -9.512038e-01  1.110174e+01 -3.186304e+00 -3.038580e+01
[3556] -1.652746e-01  1.139456e+00 -5.914430e-01 -7.877249e-01 -2.062669e+00
[3561]  3.159921e-01 -7.268210e-02  1.538497e-01  8.605571e-01  7.414036e-01
[3566]  9.703574e-02 -9.894662e-01 -1.371595e+01  3.446280e-01 -7.905141e+00
[3571]  1.703760e-01 -3.661620e+00  2.748840e+00  2.726982e-01 -2.758299e+00
[3576]  5.012421e-01 -1.951417e-01  1.989792e-01 -2.408155e+00 -4.379631e-01
[3581] -2.351007e-01 -7.463257e-01 -6.303043e-01 -3.514313e+00  2.994087e+00
[3586]  2.303571e+00  1.915269e+00 -1.048907e+00  2.343525e+00  1.955974e-01
[3591] -4.654761e+01  1.489282e+00 -8.590761e-01  4.293108e+00 -6.201211e-01
[3596]  3.561348e-01 -2.439519e-02  7.320877e-01  3.222001e+00 -2.090350e+00
[3601]  7.963314e+00 -1.495370e+00 -5.051503e-01 -5.249255e-01 -4.542426e-01
[3606] -9.078993e-01 -1.574700e+00  1.827011e+00  1.605848e+00 -1.476919e+00
[3611] -2.603402e-01 -8.990229e-01  3.408260e+00 -2.565161e-01  3.054100e-01
[3616]  1.040507e+00 -1.177612e-01 -2.071058e+00  1.816584e+00  8.956200e+00
[3621]  1.617753e+00 -2.172705e+00 -6.833003e-01  9.378811e-01 -1.545935e+00
[3626]  8.411715e-01 -1.234221e+00  2.949170e+00 -4.755474e-01  4.396234e+00
[3631] -3.801291e-01  6.053110e-01  1.474366e+01  5.419029e+00 -1.140540e+00
[3636]  1.464072e+00  1.587495e+00  6.482482e-02  7.268655e-01 -8.415497e-01
[3641] -1.031923e+00 -2.588255e+00  1.846480e+00  3.458723e-01  7.882751e+00
[3646] -5.265448e-01 -7.535303e-01 -4.158971e-01 -1.516699e-01  5.479488e-01
[3651] -6.577216e-02  6.356719e-01 -1.898429e+02 -3.552698e+01 -1.191612e-01
[3656] -2.417650e+00 -7.225493e+00  2.945918e-01  1.578779e-01 -7.763222e-01
[3661]  8.125505e-01 -5.569515e-01  5.070760e-01  4.074785e-01 -1.274851e+00
[3666] -3.500656e+00 -1.212448e-01  3.512139e-01  1.810580e+00 -1.449860e-01
[3671]  1.098947e-01  3.775910e-01 -4.296744e-01 -1.118344e+00  5.593056e-01
[3676]  9.961817e-02  9.372262e-01 -3.858298e+00  1.171551e+01  3.762278e+00
[3681] -1.042404e-01 -2.365304e+00  1.031428e+00 -1.311083e+00 -1.885038e+00
[3686] -2.213389e+00  1.610543e-01  7.366706e+00  2.122968e-01 -3.065079e+00
[3691]  1.024416e+01  2.500711e-02 -3.080425e+00 -6.210310e-01  4.204067e-01
[3696]  1.710029e+00 -3.458445e+00  7.505376e+00  5.373030e-01  5.586223e+00
[3701]  1.244446e-01 -1.384025e+00 -9.809359e+00 -4.867494e-02  2.267091e-01
[3706]  1.207749e+01  6.023497e-01 -2.997571e+00  1.287506e+00 -2.519516e-01
[3711] -8.617084e+00  1.926113e+00 -3.306969e+00 -1.721307e+00 -1.513541e+00
[3716]  4.227904e-01  2.126175e+00  1.714784e+02 -1.299363e+00 -4.690841e-01
[3721]  2.460020e+00 -2.686629e+00 -4.430320e-01 -1.045494e-01 -3.973288e-01
[3726] -5.478736e+01  3.335980e+00 -9.792836e-01  2.033550e-01 -5.558787e+00
[3731] -5.464843e-01 -3.748487e-01  6.248667e+00 -2.229574e+00  8.784275e+00
[3736] -1.201689e+00 -2.455076e-02  5.164359e-01  7.189235e+00  1.435354e+00
[3741] -9.908312e-01 -6.405897e-01 -1.701228e+02 -7.965780e+00 -1.538686e+00
[3746] -9.331105e+00  1.043072e+00  3.304424e-01 -2.974133e+00 -1.332391e+00
[3751] -1.085245e+00  3.310437e+00 -2.642783e-02 -5.557477e-01 -3.292065e-01
[3756] -1.064761e+00  1.134183e+00  1.034589e+00 -4.002225e+00 -1.187685e+00
[3761]  2.769520e+00 -1.479536e+00  1.180211e+00 -9.028214e-01  4.725802e-01
[3766]  1.641531e+00 -2.705758e+00 -1.555030e+01 -3.993281e+00  9.684113e+00
[3771] -6.971772e-01 -2.859899e+00 -3.364934e+00 -5.335719e-03  2.970540e+00
[3776]  8.481290e+00  6.337802e-02  1.881617e+00  7.088344e+00  1.185774e-01
[3781]  4.016650e+00 -2.404269e-01  1.983642e+00  1.270141e+00 -3.751150e+00
[3786]  2.674283e+00  8.876443e+00  4.525067e-01 -5.231408e-01  1.585257e-01
[3791]  3.697809e+01  2.251768e+00 -1.102302e+00  1.117070e-01 -1.053623e-01
[3796] -1.100615e+00  6.338987e-01  2.478740e-01  1.024970e+00 -2.633222e+00
[3801] -4.009569e+00 -1.101052e+00 -4.060655e-01  3.004637e+00  5.814043e-01
[3806] -6.327610e-02  3.325765e-01  2.064858e+00 -2.145155e+00  7.460232e-01
[3811]  5.290967e+00  1.528458e+01 -6.205097e-01 -9.838407e+01  8.461809e+00
[3816]  6.677553e+00 -1.820412e+00  2.157305e-01  3.334248e+00 -2.530015e-02
[3821]  9.525268e-02 -5.161167e+01 -6.152761e-01  7.416282e-01  2.635613e-01
[3826]  5.437256e-01 -2.380667e+00  3.974642e-02 -1.728096e+00  4.071759e-01
[3831]  2.690098e-01  1.591545e+00 -2.775746e+00 -8.718777e-01  1.110227e+00
[3836] -4.071743e-01  3.461507e+00  7.713410e-01 -2.973885e+00 -1.573023e-01
[3841]  1.234028e-01  6.264572e-01  9.885863e-01 -3.327504e-01 -7.345798e-01
[3846]  3.497987e-01  6.711337e-01  5.861236e+00 -3.196129e-01  3.082762e-01
[3851] -1.922805e+00  1.025224e-01 -3.521623e-01  2.144386e-01  1.817203e+01
[3856]  4.077217e-01 -1.285562e+00 -3.985437e-01  3.109252e+00  1.656315e-01
[3861] -1.286470e+00 -1.837142e+00  8.029093e-01  4.744065e-01 -7.949851e+00
[3866] -1.717412e+00 -4.962705e+00 -1.379434e+00 -5.257068e-02  6.861902e-01
[3871] -4.647929e+00  2.089369e+00  1.304218e+01 -6.226730e-01  1.512918e-01
[3876] -1.486341e+00  3.742063e+00 -1.213660e+00  2.417520e+00  1.152834e-01
[3881]  3.358816e+00  1.060214e+00 -1.588688e+00 -6.833458e-01  1.389630e+00
[3886] -9.266602e-01  6.447597e-01 -1.681534e+00  1.769815e+01  2.035199e+00
[3891]  2.939207e-01  6.041787e+00 -1.288368e+02 -2.173490e+00 -4.036653e-01
[3896] -2.958568e-02 -7.446158e-01 -1.571518e-02  2.398758e+00  5.684703e+01
[3901] -1.685815e+00 -1.355883e+00 -4.635198e-01 -3.324906e-01  1.085364e+00
[3906]  3.646224e+00  1.213343e+00 -1.124866e-01 -1.051977e+00 -1.289229e+00
[3911]  1.042275e+00 -1.177983e+00 -3.311629e+00  1.009457e+00 -4.567665e-01
[3916] -1.090413e+00  1.302620e+01 -3.756236e-01 -1.728149e+00 -6.126915e+00
[3921] -1.892961e+00  6.088260e-01  7.672290e-02  7.027673e-01 -2.258337e+00
[3926] -1.050254e+00  6.923946e-01 -3.168746e+00  8.096458e-01  2.653325e+00
[3931]  1.704836e+00  9.847437e-01 -3.465838e-01 -3.183693e-01  8.118799e+00
[3936] -3.091133e+00 -4.307849e-01  2.294197e-01  5.804242e-03 -8.115063e-01
[3941] -6.565940e-01 -1.141588e+00 -3.229612e-01 -4.579888e-01 -1.297318e+00
[3946] -5.584553e-01 -1.311275e+00  3.552158e-01  2.614657e+01  7.671520e-01
[3951] -1.023908e+00 -2.987707e-01  4.520979e+00 -1.510258e+00  1.056455e+00
[3956]  4.857066e-02 -2.303134e-01  8.620867e-01 -1.246282e+00  1.459209e+00
[3961] -8.286817e+00 -1.646985e+00  4.307915e+00  7.109435e-01 -1.168944e+00
[3966] -2.485401e+01  5.878702e-01  1.044863e-01  7.548677e+00 -5.818995e+00
[3971]  5.026403e+00  2.140157e+00 -4.031617e-01 -4.068551e-01  6.024553e-01
[3976]  6.640828e-03  1.396460e+00 -8.827639e-01 -2.049025e+00  6.400908e-01
[3981] -1.903370e+00  4.245265e-01 -6.115154e-01 -9.950276e-01 -4.869529e-01
[3986]  1.210167e-01  1.376209e+00  2.940083e-01 -1.630650e+00 -2.053272e+01
[3991]  1.652995e+00 -5.975635e-01 -5.587384e+00  6.830938e-01  1.806467e+01
[3996]  4.212418e-01 -1.124877e+00  4.628983e+00  6.713240e-01 -3.570027e-01


(c) Usando las funciones de la librería patchwork ponga en un mismo gráfico las cuatro
gráficas de las funciones de masa del inicio (a).

eliminar_outliers<-function(data){
  # Calculamos el primer cuartil (Q1) y el tercer cuartil (Q3)
  Q1 <- quantile(data, 0.25)
  Q3 <- quantile(data, 0.75)
  
  # Calculamos el rango intercuartil (IQR)
  IQR <- Q3 - Q1
  
  # Establecemos límites para detectar outliers
  lower_bound <- Q1 - 1.5 * IQR
  upper_bound <- Q3 + 1.5 * IQR
  
  # Identificamos y eliminamos outliers
  return(data[data > lower_bound & data < upper_bound])
}

crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 1, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}

# Creamos histogramas (3 por la tardanza)
hist_n100 <- crear_histograma(eliminar_outliers(med_arit[1:1000]), "Histograma de n = 100")
hist_n1000 <- crear_histograma(eliminar_outliers(med_arit[1001:2000]), "Histograma de n = 1000")
hist_n10000 <- crear_histograma(eliminar_outliers(med_arit[2001:3000]), "Histograma de n = 10000")
hist_n100000 <- crear_histograma(eliminar_outliers(med_arit[3001:4000]), "Histograma de n = 100000")

# Organizamos los histogramas en una matriz 2x2 utilizando patchwork
(hist_n100 | hist_n1000) / (hist_n10000 | hist_n100000)

(d) ¿Qué densidad dirÍa que tiene \(\bar{X}\)?

Parece una normal con \(media=0\)
(e) ¿DirÍa que se violenta el Teorema del LÍmite Central?

No se violenta, dado que se trata de una Cauchy, sabemos que su media es indeterminada



14. Responda las siguientes preguntas:


(a) Considere el lanzamiento de 2 dados y sea \(X\) la suma sus valores. Lleve a cabo 100,000
simulaciones y obtenga una aproximación de la función de masa de \(X\)

dados_simulacion <- function(n) {
  dados <- 1:6
  resultados <- numeric(n)
  
  for (i in 1:n) {
    muestra <- sample(dados, 2, replace = FALSE)
    suma <- sum(muestra)
    resultados[i] <- suma
  }
  
  return(resultados)
}

sim100000<-dados_simulacion(100000)
crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 1, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}

# Crear histogramas 
hist_n100 <- crear_histograma(sim100000, "Histograma de n = 100")
hist_n100


(b) Considere dos hexaedros, uno con todas las caras marcadas con “5”; el otro tiene 3
marcas de “2” y el resto de “6”. Simule el lanzamiento de estos dos dados y sea \(Y\) la
suma de sus valores. Lleve a cabo 100,000 simulaciones y obtenga una aproximación
de la función de masa de \(Y\)

hexa_simulacion <- function(n) {
  dados <- c(2,2,2,6,6,6)
  resultados <- numeric(n)
  
  for (i in 1:n) {
    muestra <- sample(dados, 1, replace = FALSE)
    suma <- 5+muestra
    resultados[i] <- suma
  }
  
  return(resultados)
}

sim_hex100000<-hexa_simulacion(100000)


crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 1, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}

# Creamos histogramas 
hist_hex <- crear_histograma(sim_hex100000, "Histograma de n = 100")
hist_hex


(c) Considere el lanzamiento de dos hexaedros, uno marcado con las etiquetas “1”, “2”,
“2”, “3”, “3”, “4” en cada cara; el otro tiene las etiquetas “1”, “3”, “4”, “5”, “6” y
“8”. Sea \(Z\) la suma de sus valores. Lleve a cabo 100,000 simulaciones y obtenga una
aproximación de la función de masa de \(Z\).

hexa2_simulacion <- function(n) {
  dados <- c(1,2,2,3,3,4)
  dados2 <- c(1,3,4,5,6,8)
  
  resultados <- numeric(n)
  
  for (i in 1:n) {
    muestra <- sample(dados, 1, replace = FALSE)
    muestra2 <- sample(dados2, 1, replace = FALSE)
    suma <- muestra2+muestra
    resultados[i] <- suma
  }
  
  return(resultados)
}

sim_hex100000<-hexa2_simulacion(100000)


crear_histograma <- function(datos, titulo) {
  df <- data.frame(x = datos)
  ggplot(df, aes(x)) +
    geom_histogram(binwidth = 1, color = "black", fill = "lightblue", boundary = 0.5) +
    scale_x_continuous(breaks = seq(min(datos), max(datos), 1)) +
    labs(title = titulo, x = "(X)", y = "Frecuencia") +
    theme_minimal()
}

# Creamos histogramas 
hist_hex <- crear_histograma(sim_hex100000, "Histograma de n = 100")
hist_hex


(d) ¿Qué puede decir de las densidades de \(X\), \(Y\) y \(Z\)?

La primera no tiene pinta de una distribución que yo conozca.

La segunda se distribuye bernoulli soporte \((7,11)\) con \(p=.5\)

La tercera parece una normal centrada en 7