Cumulative incidence curve for death, with LT as a competing event

tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission , data = master) %>%
  ggcuminc(linetype_aes = T) +
  add_confidence_interval() +
  add_risktable()+
  scale_x_continuous(breaks = seq(0, 90, by = 30), limits = c(0, 90))+
  theme(panel.background = element_rect(fill = "white", color = NA),
        plot.background = element_rect(fill = "white", color = NA),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())
## Plotting outcome "1".

Cumulative incidence at 30 60 90 days by group

tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission , data = master) %>% 
  tbl_cuminc(
    times = c(30,60,90), 
    label_header = "**{time}-month cuminc**") %>% 
  add_p() %>% add_n(location = "level")
Characteristic N 30-month cuminc 60-month cuminc 90-month cuminc p-value1
alcoholic_hepatitis_admission 0.026
    0 1,759 25% (23%, 27%) 34% (32%, 36%) 38% (35%, 40%)
    1 303 31% (25%, 36%) 41% (35%, 47%) 45% (39%, 51%)
1 Gray’s Test

Subdistribution hazard model

tidycmprsk::crr(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE)
Characteristic HR1 95% CI1 p-value
alcoholic_hepatitis_admission 1.24 1.03, 1.50 0.024
1 HR = Hazard Ratio, CI = Confidence Interval

Univariate subdistribution hazard model

tidycmprsk::crr(Surv(time_90days,status_90days) ~ age_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() 
Characteristic N HR1 95% CI1 p-value
age_admission 2,062 1.00 1.00, 1.01 0.9
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~ MELD_Na_baseline, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() %>% 
  as_gt() %>%
  gt::tab_source_note(gt::md("*With 63 missing values*"))
## 63 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
MELD_Na_baseline 1,999 1.06 1.05, 1.07 <0.001
With 63 missing values
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~ CLIF_C_Score, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() 
Characteristic N HR1 95% CI1 p-value
CLIF_C_Score 2,062 1.07 1.07, 1.08 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~ final_type_of_aki, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() 
Characteristic N HR1 95% CI1 p-value
final_type_of_aki 2,062
    1
    2 3.02 2.43, 3.77 <0.001
    3 3.24 2.72, 3.86 <0.001
    4 1.08 0.74, 1.58 0.7
    5 2.52 1.92, 3.31 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() 
Characteristic N HR1 95% CI1 p-value
alcoholic_hepatitis_admission 2,062 1.24 1.03, 1.50 0.024
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~ aki_stage_4, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n() 
## 17 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
aki_stage_4 2,045
    1
    2 1.58 1.26, 1.97 <0.001
    3 2.45 2.00, 3.00 <0.001
    4 3.91 3.18, 4.80 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval

Multivariate

#age, sex, MELD Na and alc hep

tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+MELD_Na_baseline+ alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998
    1
    2 1.07 0.92, 1.24 0.4
MELD_Na_baseline 1,998 1.07 1.06, 1.08 <0.001
alcoholic_hepatitis_admission 1,998 1.00 0.81, 1.24 >0.9
1 HR = Hazard Ratio, CI = Confidence Interval
#age, sex, ACLF stage and alc hep
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+aclf_grade+ alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 1 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 2,061 1.01 1.00, 1.02 0.002
sex 2,061
    1
    2 1.08 0.93, 1.25 0.3
aclf_grade 2,061
    1
    2 1.82 1.31, 2.53 <0.001
    3 4.79 3.54, 6.49 <0.001
alcoholic_hepatitis_admission 2,061 1.11 0.90, 1.36 0.3
1 HR = Hazard Ratio, CI = Confidence Interval
#age, sex, CLIF-C ACLF and alc hep
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ clif_score + alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 1 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 2,061 1.02 1.01, 1.02 <0.001
sex 2,061
    1
    2 1.06 0.91, 1.23 0.4
clif_score 2,061 1.36 1.32, 1.40 <0.001
alcoholic_hepatitis_admission 2,061 1.01 0.81, 1.24 >0.9
1 HR = Hazard Ratio, CI = Confidence Interval
#age, sex, MELD Na, AKI phenotype and alc hep 
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ final_type_of_aki +MELD_Na_baseline+ alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998
    1
    2 1.02 0.88, 1.19 0.8
final_type_of_aki 1,998
    1
    2 2.24 1.77, 2.83 <0.001
    3 2.77 2.31, 3.32 <0.001
    4 1.15 0.79, 1.67 0.5
    5 2.36 1.79, 3.10 <0.001
MELD_Na_baseline 1,998 1.05 1.04, 1.06 <0.001
alcoholic_hepatitis_admission 1,998 0.97 0.78, 1.20 0.8
1 HR = Hazard Ratio, CI = Confidence Interval
#  MELD Na and alc hep 
tidycmprsk::crr(Surv(time_90days,status_90days) ~MELD_Na_baseline + alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 63 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
MELD_Na_baseline 1,999 1.06 1.05, 1.07 <0.001
alcoholic_hepatitis_admission 1,999 0.88 0.72, 1.08 0.2
1 HR = Hazard Ratio, CI = Confidence Interval

#age, sex, MELD Na and alc hep with interaction final_type_of_aki*alcoholic_hepatitis_admission

#age, sex, MELD Na, AKI phenotype and alc hep 
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ final_type_of_aki*alcoholic_hepatitis_admission +MELD_Na_baseline, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()  %>%
add_global_p()
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998 0.8
    1
    2 1.02 0.88, 1.19
final_type_of_aki 1,998 <0.001
    1
    2 2.08 1.60, 2.70
    3 2.94 2.41, 3.58
    4 1.11 0.74, 1.66
    5 2.44 1.83, 3.26
alcoholic_hepatitis_admission 1,998 1.08 0.73, 1.60 0.7
MELD_Na_baseline 1,998 1.05 1.04, 1.06 <0.001
final_type_of_aki * alcoholic_hepatitis_admission 1,998 0.065
    2 * alcoholic_hepatitis_admission 1.46 0.83, 2.56
    3 * alcoholic_hepatitis_admission 0.71 0.44, 1.16
    4 * alcoholic_hepatitis_admission 1.44 0.49, 4.27
    5 * alcoholic_hepatitis_admission 0.77 0.33, 1.80
1 HR = Hazard Ratio, CI = Confidence Interval

#age, sex, MELD Na and alc hep with interaction aki_stage_4i*alcoholic_hepatitis_admission

#age, sex, MELD Na, AKI phenotype and alc hep 
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ aki_stage_4*alcoholic_hepatitis_admission +MELD_Na_baseline, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()  %>%
add_global_p()
## 80 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,982 1.02 1.01, 1.02 <0.001
sex 1,982 0.9
    1
    2 0.99 0.85, 1.15
aki_stage_4 1,982 <0.001
    1
    2 1.48 1.17, 1.89
    3 2.04 1.61, 2.59
    4 2.97 2.31, 3.82
alcoholic_hepatitis_admission 1,982 1.25 0.74, 2.13 0.4
MELD_Na_baseline 1,982 1.05 1.04, 1.06 <0.001
aki_stage_4 * alcoholic_hepatitis_admission 1,982 0.8
    2 * alcoholic_hepatitis_admission 0.77 0.38, 1.55
    3 * alcoholic_hepatitis_admission 0.73 0.39, 1.36
    4 * alcoholic_hepatitis_admission 0.81 0.43, 1.50
1 HR = Hazard Ratio, CI = Confidence Interval

#create meld score quantiles multivariate model

master <- master %>%  mutate(meld_na_4 = cut(MELD_Na_baseline,breaks = quantile(MELD_Na_baseline, probs = c(0, 0.25, 0.5, 0.75, 1), na.rm = TRUE), labels = c("Q1", "Q2", "Q3", "Q4"), include.lowest = TRUE))

master$meld_na_4 <- as.factor(master$meld_na_4)
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ aki_stage_4+alcoholic_hepatitis_admission +meld_na_4, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()  
## 80 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,982 1.02 1.01, 1.02 <0.001
sex 1,982
    1
    2 0.96 0.82, 1.12 0.6
aki_stage_4 1,982
    1
    2 1.45 1.15, 1.81 0.002
    3 1.97 1.58, 2.46 <0.001
    4 3.13 2.49, 3.95 <0.001
alcoholic_hepatitis_admission 1,982 1.06 0.86, 1.32 0.6
meld_na_4 1,982
    Q1
    Q2 1.54 1.22, 1.94 <0.001
    Q3 2.20 1.73, 2.81 <0.001
    Q4 2.52 1.95, 3.25 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval
tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+ final_type_of_aki+alcoholic_hepatitis_admission +meld_na_4, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()  
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998
    1
    2 0.99 0.85, 1.15 0.9
final_type_of_aki 1,998
    1
    2 2.29 1.81, 2.89 <0.001
    3 2.86 2.39, 3.42 <0.001
    4 1.13 0.77, 1.64 0.5
    5 2.39 1.81, 3.14 <0.001
alcoholic_hepatitis_admission 1,998 1.04 0.84, 1.28 0.8
meld_na_4 1,998
    Q1
    Q2 1.68 1.34, 2.12 <0.001
    Q3 2.38 1.87, 3.02 <0.001
    Q4 3.02 2.36, 3.86 <0.001
1 HR = Hazard Ratio, CI = Confidence Interval

#AH vs no AH and 90 day alive vs dead

master_rrt <- master %>% filter(rrt==1)
master_rrt$alcoholic_hepatitis_admission <- factor(master_rrt$alcoholic_hepatitis_admission,
                                                  levels = c(0, 1),
                                                  labels = c("No", "Yes"))

# Create a new factor variable with custom labels for death_in_90days_status
labels_death <- c("Alive", "Dead")  # Custom labels
master_rrt$death_in_90days_status <- factor(master_rrt$death_in_90days_status,
                                            levels = c(0, 1),
                                            labels = c("Alive", "Dead"))
table <- table(master_rrt$alcoholic_hepatitis_admission,master_rrt$death_in_90days_status)
table
##      
##       Alive Dead
##   No    124  176
##   Yes    26   47
chisq.test(table)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table
## X-squared = 0.57806, df = 1, p-value = 0.4471

#cumulative incidence curve for death,competing risk LT in subgroup of patient with AH, comparing ATN vs HRS vs pre renal, with corresponding % death 95%CI at 30, 60 and 90d.

master_ah <- master %>% filter(alcoholic_hepatitis_admission==1,final_type_of_aki %in% c(1,2,3))
master_ah$final_type_of_aki <- factor(master_ah$final_type_of_aki)
levels(master_ah$final_type_of_aki) <- c("Prerenal","HRS","ATN")
master_ah$status_90days <- factor(master_ah$status_90days)
master_ah <- master_ah %>% rename(Group=final_type_of_aki)

str(master_ah$status_90days)
##  Factor w/ 3 levels "0","1","2": 1 2 1 2 1 1 1 1 1 1 ...
tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ Group , data = master_ah) %>%
  ggcuminc() +
  add_confidence_interval() +
  add_risktable()+
  scale_x_continuous(breaks = seq(0, 90, by = 30), limits = c(0, 90))+
  theme(panel.background = element_rect(fill = "white", color = NA),
        plot.background = element_rect(fill = "white", color = NA),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())
## Plotting outcome "1".

Cumulative incidence at 30 60 90 days by group

tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ Group , data = master_ah) %>% 
  tbl_cuminc(
    times = c(30,60,90), 
    label_header = "**{time}-month cuminc**") %>% 
  add_p() %>% add_n(location = "level")
Characteristic N 30-month cuminc 60-month cuminc 90-month cuminc p-value1
Group <0.001
    Prerenal 111 13% (7.5%, 20%) 23% (15%, 31%) 27% (19%, 36%)
    HRS 42 47% (29%, 62%) 75% (54%, 87%) 78% (58%, 89%)
    ATN 119 43% (33%, 52%) 50% (40%, 59%) 53% (43%, 62%)
1 Gray’s Test

1. Additional MVA

tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+tb_admit+inr_admit+creatinine_admission+na_admit+alcoholic_hepatitis_admission, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998
    1
    2 1.07 0.92, 1.25 0.4
tb_admit 1,998 1.04 1.03, 1.05 <0.001
inr_admit 1,998 1.16 1.09, 1.25 <0.001
creatinine_admission 1,998 1.04 0.99, 1.09 0.11
na_admit 1,998 1.00 0.99, 1.01 0.4
alcoholic_hepatitis_admission 1,998 0.87 0.69, 1.09 0.2
1 HR = Hazard Ratio, CI = Confidence Interval

interaction MVA

tidycmprsk::crr(Surv(time_90days,status_90days) ~alcoholic_hepatitis_admission*tb_admit +age_admission+sex+inr_admit+creatinine_admission+na_admit, data = master) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 64 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
alcoholic_hepatitis_admission 1,998 0.97 0.70, 1.34 0.9
tb_admit 1,998 1.04 1.03, 1.05 <0.001
age_admission 1,998 1.01 1.01, 1.02 <0.001
sex 1,998
    1
    2 1.07 0.92, 1.25 0.4
inr_admit 1,998 1.16 1.09, 1.24 <0.001
creatinine_admission 1,998 1.04 0.99, 1.09 0.10
na_admit 1,998 1.00 0.99, 1.01 0.4
alcoholic_hepatitis_admission * tb_admit 1,998 0.99 0.98, 1.01 0.4
1 HR = Hazard Ratio, CI = Confidence Interval

2. APASL ACLF

master <- master %>% mutate(ACLF=case_when(tb_admit>=5 & inr_admit>=1.5 & ( ascites_admission==1 |encephalopathy_admission ==1) ~ 1,
                                           TRUE ~ 0))


gmodels::CrossTable(master$alcoholic_hepatitis_admission,master$ACLF, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
           prop.t=F)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |-------------------------|
## 
##  
## Total Observations in Table:  2062 
## 
##  
##                                      | master$ACLF 
## master$alcoholic_hepatitis_admission |         0 |         1 | Row Total | 
## -------------------------------------|-----------|-----------|-----------|
##                                    0 |      1388 |       371 |      1759 | 
## -------------------------------------|-----------|-----------|-----------|
##                                    1 |       119 |       184 |       303 | 
## -------------------------------------|-----------|-----------|-----------|
##                         Column Total |      1507 |       555 |      2062 | 
## -------------------------------------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  206.4137     d.f. =  1     p =  8.323706e-47 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  204.4038     d.f. =  1     p =  2.284941e-46 
## 
## 

CKD

# CKD-EPI Creatinine Equation (2021)

# sex 1: male 2: female 

ckd_epi_gfr <- function(creat, sex, age) {
  k <- ifelse(sex == 1, 0.9, 0.7)
  a <- ifelse(sex == 1, -0.302, -0.241)
  m <- ifelse(sex == 1, 1, 1.012)
  gfr <- 142 * min(c(creat/k,1))^a * max(c(creat/k,1))^-1.2 * 0.9938^age * m
  return(gfr)
}

#  creat new variables  




master$eGFR <- mapply(ckd_epi_gfr , master$creatinine_last_available,master$sex,master$age_admission)

master_ckd <- master %>% filter(ckd==1)
master_ckd <-master_ckd %>% mutate(eGFR_cat =case_when(eGFR<15 ~ "<15",
                                                       eGFR>=15 & eGFR < 30 ~ "15-29",
                                                       eGFR>=30 & eGFR < 45 ~ "30-44", 
                                                       eGFR>=45 & eGFR < 60~ "45-59"))
gmodels::CrossTable(master_ckd$alcoholic_hepatitis_admission,master_ckd$eGFR_cat, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
           prop.t=F)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |-------------------------|
## 
##  
## Total Observations in Table:  491 
## 
##  
##                                          | master_ckd$eGFR_cat 
## master_ckd$alcoholic_hepatitis_admission |       <15 |     15-29 |     30-44 |     45-59 | Row Total | 
## -----------------------------------------|-----------|-----------|-----------|-----------|-----------|
##                                        0 |        86 |       145 |       129 |       100 |       460 | 
## -----------------------------------------|-----------|-----------|-----------|-----------|-----------|
##                                        1 |         7 |        10 |         9 |         5 |        31 | 
## -----------------------------------------|-----------|-----------|-----------|-----------|-----------|
##                             Column Total |        93 |       155 |       138 |       105 |       491 | 
## -----------------------------------------|-----------|-----------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  0.6739554     d.f. =  3     p =  0.8793121 
## 
## 
## 

excluding ckd

master_exclduing_ckd <- master %>% filter(ckd!=1)


#create table one for expourse response#
T1 <- CreateTableOne(vars = all_var,strata ="alcoholic_hepatitis_admission" ,includeNA = F,addOverall = TRUE,data = master_exclduing_ckd, factorVars = cat_var)
## Warning in ModuleReturnVarsExist(vars, data): The data frame does not have:
## days_icu days_discharge_to_transplant Dropped
#print table one 
T1_print <-  print(T1,exact = c("kidney_transplant","Alcoholic_hepatitis","HCC"), nonnormal=num_var,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
#save 
write.csv(T1_print, file = "C:\\Users\\to909\\Desktop\\Projects\\alcoholic_hepatitis_admission\\Table_1_excluding_ckd .csv")

Cumulative incidence at 30 60 90 days by group

tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission , data = master_exclduing_ckd) %>% 
  tbl_cuminc(
    times = c(30,60,90), 
    label_header = "**{time}-month cuminc**") %>% 
  add_p() %>% add_n(location = "level")
Characteristic N 30-month cuminc 60-month cuminc 90-month cuminc p-value1
alcoholic_hepatitis_admission 0.2
    0 1,178 29% (27%, 32%) 37% (34%, 40%) 41% (38%, 44%)
    1 256 33% (27%, 39%) 43% (36%, 49%) 46% (40%, 53%)
1 Gray’s Test

excluding ckd Cumulative incidence curve for death, with LT as a competing event

tidycmprsk::cuminc(Surv(time_90days,status_90days) ~ alcoholic_hepatitis_admission , data = master_exclduing_ckd) %>%
  ggcuminc(linetype_aes = T) +
  add_confidence_interval() +
  add_risktable()+
  scale_x_continuous(breaks = seq(0, 90, by = 30), limits = c(0, 90))+
  theme(panel.background = element_rect(fill = "white", color = NA),
        plot.background = element_rect(fill = "white", color = NA),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())
## Plotting outcome "1".

# excluding ckd 90 days morality, with LT as a competing event

tidycmprsk::crr(Surv(time_90days,status_90days) ~age_admission+sex+MELD_Na_baseline+ alcoholic_hepatitis_admission, data = master_exclduing_ckd) %>% 
  tbl_regression(exp = TRUE) %>% add_n()
## 31 cases omitted due to missing values
Characteristic N HR1 95% CI1 p-value
age_admission 1,403 1.02 1.01, 1.02 <0.001
sex 1,403
    1
    2 1.10 0.93, 1.31 0.3
MELD_Na_baseline 1,403 1.06 1.05, 1.08 <0.001
alcoholic_hepatitis_admission 1,403 0.99 0.79, 1.24 >0.9
1 HR = Hazard Ratio, CI = Confidence Interval

#4. Acute kidney disease (AKD) and de novo CKD as outcomes

master <- master %>% mutate(de_novo_ckd=case_when(
    ckd==1 ~ "Pre-exisiting CKD",
    ckd!=1 & eGFR<60 ~ "De-novo CKD",
    ckd!=1 & eGFR>=60 ~ "no CKD at 90 days",
    is.na(creatinine_last_available) | days_liver<90 ~ "no GFR at 90 days available"
  ))


denovo_cohort <- master %>% filter(death_in_90days_status==0,liver_transplant ==0,ckd==0) %>% mutate(denovo_ckd=ifelse(eGFR<60,"De-novo CKD","No CKD")) %>% filter(!is.na(denovo_ckd))


gmodels::CrossTable(denovo_cohort$alcoholic_hepatitis_admission,denovo_cohort$denovo_ckd, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
           prop.t=F)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |-------------------------|
## 
##  
## Total Observations in Table:  157 
## 
##  
##                                             | denovo_cohort$denovo_ckd 
## denovo_cohort$alcoholic_hepatitis_admission | De-novo CKD |      No CKD |   Row Total | 
## --------------------------------------------|-------------|-------------|-------------|
##                                           0 |          50 |          83 |         133 | 
## --------------------------------------------|-------------|-------------|-------------|
##                                           1 |           8 |          16 |          24 | 
## --------------------------------------------|-------------|-------------|-------------|
##                                Column Total |          58 |          99 |         157 | 
## --------------------------------------------|-------------|-------------|-------------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  0.1584351     d.f. =  1     p =  0.6906014 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  0.02832104     d.f. =  1     p =  0.8663563 
## 
## 
gmodels::CrossTable(denovo_cohort$rrt,denovo_cohort$denovo_ckd, prop.chisq=F,chisq = T,prop.r=F, prop.c=F,
           prop.t=F)
## Warning in chisq.test(t, correct = TRUE, ...): Chi-squared approximation may be
## incorrect
## Warning in chisq.test(t, correct = FALSE, ...): Chi-squared approximation may
## be incorrect
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |-------------------------|
## 
##  
## Total Observations in Table:  157 
## 
##  
##                   | denovo_cohort$denovo_ckd 
## denovo_cohort$rrt | De-novo CKD |      No CKD |   Row Total | 
## ------------------|-------------|-------------|-------------|
##                 0 |          53 |          94 |         147 | 
## ------------------|-------------|-------------|-------------|
##                 1 |           5 |           5 |          10 | 
## ------------------|-------------|-------------|-------------|
##      Column Total |          58 |          99 |         157 | 
## ------------------|-------------|-------------|-------------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  0.7816761     d.f. =  1     p =  0.376629 
## 
## Pearson's Chi-squared test with Yates' continuity correction 
## ------------------------------------------------------------
## Chi^2 =  0.2976461     d.f. =  1     p =  0.5853619 
## 
##