1 Raw distributions: Demographics/CBC

2 Log distributions: Demo/CBC variables

SG_raw_transformed<-SG_raw %>% select(-Arm, -Sex, -Cohort, -Subject_ID,-Group,-Remission, -Response )
SG_raw_transformed$MONO_BL<-as.numeric(SG_raw_transformed$MONO_BL)

vars_transformed<-c(names(SG_raw_transformed))

#natural log transform
SG_raw_transformed[vars_transformed]<-log(SG_raw_transformed[vars_transformed])

SG_raw_transformed %>% purrr::keep(is.numeric) %>% tidyr::gather() %>%  ggplot(aes(value)) + facet_wrap(~ key, scales = "free") +  geom_density() 

Take home: log transform looks better except for age, HAMD17_BL, HAMD17_WK8

3 KP/Cytokine inspection (RAW)

SMRI_Data_031317 <- read_excel("~/Desktop/SG_SII_SIRI/SMRI_Data_031317.xlsx")
biomarkers_all<-SMRI_Data_031317 %>% dplyr::select(-c(1:15)) %>% dplyr::select(-contains("WK4"))


# Distribution of kynurenines (baseline)
library(gtsummary)

biomarker_KP_BL<-biomarkers_all %>%
  dplyr::select(-contains("WK8")) %>%
  dplyr::select(contains("KP")) %>%
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_KP_BL)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of kynurenines (WK8)

biomarker_KP_WK8<-biomarkers_all %>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("KP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_KP_WK8)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of growth factors (BL)
      
biomarker_GF_BL<-biomarkers_all %>% 
  dplyr::select(-contains("WK8")) %>% 
  dplyr::select(contains("GF")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_GF_BL)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of growth factors (WK8)

biomarker_GF_WK8<-biomarkers_all%>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("GF")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_GF_WK8)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of cytokines (BL)
      
biomarker_CYTOKINES_BL<-biomarkers_all %>% 
  dplyr::select(-contains("WK8")) %>% 
    dplyr::select(-contains("Week8")) %>% 
  dplyr::select(contains("IL"), contains("TNF"), contains("IFN"), contains("CRP"), contains("MCP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_CYTOKINES_BL)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distributions of cytokines (WK8)

biomarker_CYTOKINES_WK8<-biomarkers_all%>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("IL"), contains("TNF"), contains("IFN"), contains("CRP"), contains("MCP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_CYTOKINES_WK8)) %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# KP/Cytokines (log transformations)

# Distribution of kynurenines (baseline)
library(gtsummary)

biomarker_KP_BL<-biomarkers_all %>%
  dplyr::select(-contains("WK8")) %>%
  dplyr::select(contains("KP")) %>%
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_KP_BL)) %>% 
        log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of kynurenines (WK8)

biomarker_KP_WK8<-biomarkers_all%>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("KP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_KP_WK8)) %>% 
                log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of growth factors (BL)
      
biomarker_GF_BL<-biomarkers_all %>% 
  dplyr::select(-contains("WK8")) %>% 
  dplyr::select(contains("GF")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_GF_BL)) %>% 
                log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of growth factors (WK8)

biomarker_GF_WK8<-biomarkers_all %>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("GF")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_GF_WK8)) %>% 
                log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distribution of cytokines (BL)
      
biomarker_CYTOKINES_BL<-biomarkers_all%>% 
  dplyr::select(-contains("WK8")) %>% 
    dplyr::select(-contains("Week8")) %>% 
  dplyr::select(contains("IL"), contains("TNF"), contains("IFN"), contains("CRP"), contains("MCP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_CYTOKINES_BL)) %>% 
                log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

# Distributions of cytokines (WK8)

biomarker_CYTOKINES_WK8<-biomarkers_all %>% 
  dplyr::select(-contains("BL")) %>% 
  dplyr::select(contains("IL"), contains("TNF"), contains("IFN"), contains("CRP"), contains("MCP")) %>% 
  names()

      SMRI_Data_031317 %>%
        select(all_of(biomarker_CYTOKINES_WK8)) %>% 
                log() %>% 
        tidyr::gather() %>% 
        ggplot(aes(value)) +
          facet_wrap(~ key, scales = "free") +
          geom_density() 

NOTE: SQRT transformations checked, not as good as log

4 Merging with log-transformed

#making df of KP/inflammatory log transformed markers

SMRI_Data_031317 <- read_excel("~/Desktop/SG_SII_SIRI/SMRI_Data_031317.xlsx")

biomarkers_all<-SMRI_Data_031317 %>%
  dplyr::select(-c(1:15)) %>%
  dplyr::select(-contains("WK4")) %>%
  names()


DF1<-SMRI_Data_031317[,biomarkers_all]+2
DF1_log<-mutate_at(DF1, setNames(biomarkers_all, paste0("log_", biomarkers_all)), log) %>% select(contains("log"))
DF2<-SMRI_Data_031317 %>% select(Subject_ID)
Newdf<-cbind(DF2, DF1_log) 


#making df of CBC/demo transformed markers

SG_bx_transformed<-SG_raw %>% select(-Arm, -Sex, -Age, -Subject_ID,-Group,-Remission, -Response, -Cohort, -HAMD17_BL,-HAMD17_WK8 ) %>% names()

SG_raw_log<-mutate_at(SG_raw, setNames(SG_bx_transformed, paste0("log_", SG_bx_transformed)), log) %>% dplyr::select(Subject_ID,Sex, Age,  Group,Arm, Cohort,  HAMD17_BL,HAMD17_WK8,Remission,Response,contains("log"))


#Merging
combined_df<-merge(SG_raw_log, Newdf, by="Subject_ID", all.x=TRUE, all.y=TRUE) 

5 TABLE 1

combined_df$Cohort<-factor(combined_df$Cohort, levels=c("HC", "PBO_ESC", "CBX_ESC"))
table1<-createTable(compareGroups(Cohort~. -Subject_ID -Group -Arm, data=combined_df))

6 Clinical outcome inspection

SG_df_new_long <- read_excel("~/Desktop/SG_SII_SIRI/SG_df_new_long_05082023.xlsx")
SG_df_new_long <- SG_df_new_long %>% subset(Pt_Group=="TRBDD")
SG_df_new_long$Pt_Group<-as.factor(SG_df_new_long$Pt_Group)
SG_df_new_long$Treatment<-as.factor(SG_df_new_long$Treatment)
SG_df_new_long$Sex<-as.factor(SG_df_new_long$Sex)
SG_df_new_long$Timepoint<-as.factor(SG_df_new_long$Timepoint)

ggplot(SG_df_new_long, aes(x = Timepoint, y = log(HAMD17_total)))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Treatment)+
  theme_bw()+   
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=4)

7 Group comparison by remission status

byremission<-createTable(compareGroups(Remission~.-Subject_ID-Cohort-HAMD17_WK8-Response, data=combined_df))

strataTable( byremission, "Arm")
## 
## --------Summary descriptives table ---------
## 
## _____________________________________________________________________________________________
##                                     PBO_ESC                             CBX_ESC              
##                         ________________________________  ___________________________________
##                         Non-remitter Remitter  p.overall  Non-remitter   Remitter   p.overall 
##                             N=19        N=1                   N=14         N=13               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
## Sex:                                             1.000                                0.322   
##     Male                 12 (63.2%)  1 (100%)              6 (42.9%)    9 (69.2%)             
##     Female               7 (36.8%)   0 (0.00%)             8 (57.1%)    4 (30.8%)             
## Age                     46.9 (13.4)  32.0 (.)      .      37.4 (9.83)  41.7 (11.6)    0.315   
## Group:                                             .                                    .     
##     HC                   0 (0.00%)   0 (0.00%)             0 (0.00%)    0 (0.00%)             
##     PT                   19 (100%)   1 (100%)              14 (100%)    13 (100%)             
## Arm:                                               .                                    .     
##     PBO_ESC              19 (100%)   1 (100%)              0 (0.00%)    0 (0.00%)             
##     CBX_ESC              0 (0.00%)   0 (0.00%)             14 (100%)    13 (100%)             
## HAMD17_BL               23.6 (6.38)  21.0 (.)      .      27.6 (6.12)  22.2 (4.79)    0.017   
## log_BMI                 3.49 (0.18)  3.39 (.)      .      3.44 (0.17)  3.38 (0.27)    0.495   
## log_PLT_BL              5.44 (0.29)    . (.)       .      5.33 (0.25)  5.44 (0.22)    0.254   
## log_MONO_BL             -0.69 (0.41)   . (.)       .      -0.79 (0.27) -0.75 (0.34)   0.772   
## log_NEUT_BL             1.39 (0.35)    . (.)       .      1.23 (0.33)  1.29 (0.43)    0.658   
## log_LYMPH_BL            0.62 (0.30)    . (.)       .      0.67 (0.30)  0.64 (0.27)    0.757   
## log_PLT_WK8             5.33 (0.35)  5.36 (.)      .      5.34 (0.21)  5.42 (0.22)    0.345   
## log_MONO_WK8            -0.65 (0.39) -1.20 (.)     .      -0.76 (0.39) -0.85 (0.41)   0.586   
## log_NEUT_WK8            1.43 (0.44)  1.13 (.)      .      1.31 (0.42)  1.23 (0.34)    0.611   
## log_LYMPH_WK8           0.64 (0.31)  0.00 (.)      .      0.75 (0.37)  0.58 (0.35)    0.261   
## log_SII_BL              6.19 (0.45)    . (.)       .      5.89 (0.40)  6.09 (0.63)    0.355   
## log_SII_WK8             6.08 (0.52)    . (.)       .      5.81 (0.34)  6.08 (0.57)    0.172   
## log_SIRI_BL             0.07 (0.59)    . (.)       .      -0.23 (0.40) -0.09 (0.78)   0.585   
## log_SIRI_WK8            0.09 (0.54)    . (.)       .      -0.30 (0.40) -0.21 (0.72)   0.710   
## log_IL1A_BL             0.75 (0.06)    . (.)       .      0.74 (0.08)  0.71 (0.04)    0.445   
## log_IL1A_WK8            0.72 (0.05)    . (.)       .      0.69 (0.00)  0.72 (0.05)    0.173   
## log_IL1B_BL             0.82 (0.16)    . (.)       .      0.72 (0.09)  0.83 (0.22)    0.311   
## log_IL1B_WK8            0.75 (0.12)    . (.)       .      0.78 (0.14)  0.84 (0.20)    0.556   
## log_IL2_BL              0.89 (0.53)    . (.)       .      0.69 (0.00)  0.91 (0.53)    0.363   
## log_IL2_WK8             0.69 (0.00)    . (.)       .      0.97 (0.67)  0.87 (0.47)    0.778   
## log_IL6_BL              1.39 (0.38)    . (.)       .      1.36 (0.42)  1.07 (0.24)    0.154   
## log_IL6_WK8             1.21 (0.22)    . (.)       .      1.31 (0.33)  1.24 (0.23)    0.687   
## log_IL8_BL              1.64 (0.59)    . (.)       .      1.62 (0.54)  1.47 (0.73)    0.678   
## log_IL8_WK8             1.89 (0.99)    . (.)       .      1.23 (0.26)  1.78 (0.89)    0.156   
## log_IFNG_BL             0.85 (0.27)    . (.)       .      1.01 (0.44)  0.69 (0.00)    0.102   
## log_IFNG_WK8            0.69 (0.00)    . (.)       .      0.77 (0.18)  0.84 (0.25)    0.557   
## log_TNFA_BL             1.51 (0.92)    . (.)       .      1.57 (0.91)  1.20 (0.30)    0.340   
## log_TNFA_WK8            2.04 (1.37)    . (.)       .      1.23 (0.19)  1.49 (0.53)    0.269   
## log_MCP1_BL             4.69 (0.38)    . (.)       .      4.68 (0.42)  4.50 (0.18)    0.345   
## log_MCP1_WK8            4.39 (0.71)    . (.)       .      4.44 (0.68)  4.68 (0.47)    0.485   
## log_CRPSet1_ug_ml_BL    1.37 (0.38)    . (.)       .      1.81 (0.78)  1.88 (1.00)    0.915   
## log_CRPSet1_ug_ml_WK8   0.97 (0.17)    . (.)       .      1.78 (0.73)  1.35 (0.85)    0.420   
## log_CRPSet2_µg_ml_BL    1.40 (0.71)    . (.)       .      1.62 (0.83)  1.21 (0.68)    0.230   
## log_CRPSet2_µg_ml_WK8   2.06 (0.72)    . (.)       .      1.19 (0.63)  1.35 (0.70)    0.591   
## log_IL1ARaox_7_16_BL    0.86 (0.07)    . (.)       .      0.83 (0.04)  0.85 (0.02)    0.144   
## log_IL1ARaox_7_16_WK8   0.83 (0.03)    . (.)       .      0.81 (0.02)  0.83 (0.03)    0.200   
## log_IL1BRaox_7_16_BL    1.15 (0.14)    . (.)       .      1.08 (0.12)  1.13 (0.15)    0.389   
## log_IL1BRaox_7_16_WK8   1.16 (0.13)    . (.)       .      1.05 (0.06)  1.08 (0.12)    0.407   
## log_IL2-Raox_7_16_BL    1.47 (0.13)    . (.)       .      1.45 (0.10)  1.59 (0.19)    0.088   
## log_IL2-Raox_7_16_WK8   1.48 (0.15)    . (.)       .      1.41 (0.12)  1.48 (0.20)    0.363   
## log_IL6Raox_7_16_BL     1.17 (0.21)    . (.)       .      1.24 (0.31)  1.13 (0.15)    0.279   
## log_IL6Raox_7_16_WK8    1.12 (0.21)    . (.)       .      1.20 (0.23)  1.15 (0.19)    0.633   
## log_IL8Raox_7_16_BL     1.87 (1.07)    . (.)       .      1.98 (1.02)  1.81 (0.73)    0.668   
## log_IL8Raox_7_16_WK8    1.76 (0.69)    . (.)       .      1.85 (1.23)  1.80 (0.72)    0.916   
## log_IFNGRaox_7_16_BL    0.94 (0.16)    . (.)       .      0.89 (0.09)  0.87 (0.08)    0.563   
## log_IFNGRaox_7_16_Week8 0.88 (0.05)    . (.)       .      0.87 (0.10)  0.88 (0.11)    0.842   
## log_TNFARaox_7_16_BL    1.94 (1.56)    . (.)       .      2.11 (1.55)  1.96 (1.18)    0.801   
## log_TNFARaox_7_16_WK8   2.12 (1.46)    . (.)       .      1.78 (1.50)  1.78 (1.08)    0.992   
## log_MCP1Raox_7_16_BL    4.46 (0.47)    . (.)       .      4.42 (0.72)  4.51 (0.36)    0.740   
## log_MCP1Raox_7_16_WK8   4.44 (0.56)    . (.)       .      4.31 (0.81)  4.61 (1.14)    0.499   
## log_IL4_BL              1.10 (0.41)    . (.)       .      1.22 (0.25)  1.09 (0.28)    0.356   
## log_IL4_WK8             1.11 (0.29)    . (.)       .      0.86 (0.26)  1.07 (0.26)    0.169   
## log_IL10_BL             0.95 (0.25)    . (.)       .      0.82 (0.22)  0.89 (0.22)    0.552   
## log_IL10_WK8            0.82 (0.25)    . (.)       .      1.02 (0.37)  0.98 (0.19)    0.795   
## log_IL4Raox_7_16_BL     1.51 (0.10)    . (.)       .      1.49 (0.15)  1.62 (0.09)    0.029   
## log_IL4Raox_7_16_WK8    1.54 (0.13)    . (.)       .      1.48 (0.17)  1.54 (0.19)    0.453   
## log_IL10Raox_7_16_BL    1.13 (0.35)    . (.)       .      1.06 (0.12)  1.10 (0.12)    0.449   
## log_IL10Raox_7_16_WK8   1.07 (0.09)    . (.)       .      1.04 (0.09)  1.07 (0.09)    0.460   
## log_FGF_BL              1.40 (0.29)    . (.)       .      1.05 (0.67)  1.35 (0.28)    0.453   
## log_FGF_WK8               0.69 (.)     . (.)       .      1.29 (0.73)  1.21 (0.15)    0.813   
## log_VEGF-Elisa_BL       3.47 (0.28)    . (.)       .      3.81 (0.42)  3.55 (0.31)    0.122   
## log_VEGF-Elisa_WK8      3.66 (0.46)    . (.)       .      3.81 (0.41)  3.55 (0.40)    0.156   
## log_VEGFRaoxold_BL      3.40 (0.65)    . (.)       .      3.34 (0.34)  3.20 (0.26)    0.429   
## log_VEGFRaoxold_WK8     3.28 (0.71)    . (.)       .      3.18 (0.48)  3.23 (0.38)    0.814   
## log_VEGFRaoxnew_BL      2.71 (0.55)    . (.)       .      2.79 (0.57)  2.74 (0.32)    0.802   
## log_VEGFRaoxnew_WK8     2.68 (0.56)    . (.)       .      2.71 (0.57)  2.67 (0.35)    0.841   
## log_EGF_BL              1.26 (0.42)    . (.)       .      1.24 (0.49)  1.16 (0.53)    0.790   
## log_EGF_WK8             1.32 (0.20)    . (.)       .      1.24 (0.44)  1.51 (0.55)    0.339   
## log_EGFRaox_7_16_BL     1.82 (0.43)    . (.)       .      1.56 (0.23)  1.83 (0.31)    0.044   
## log_EGFRaox_7_16_WK8    1.69 (0.29)    . (.)       .      1.50 (0.20)  1.75 (0.40)    0.094   
## log_KP_AA_BL            1.75 (0.42)  1.53 (.)      .      1.49 (0.30)  1.64 (0.26)    0.216   
## log_KP_AA_WK8           1.81 (0.48)  1.39 (.)      .      1.69 (0.59)  1.61 (0.21)    0.644   
## log_KP_KynA_BL          2.24 (0.28)  2.21 (.)      .      2.28 (0.42)  2.26 (0.28)    0.873   
## log_KP_KynA_WK8         2.13 (0.29)  1.99 (.)      .      2.28 (0.35)  2.22 (0.38)    0.648   
## log_KP_Trp_BL           9.60 (0.20)  9.57 (.)      .      9.65 (0.21)  9.72 (0.28)    0.482   
## log_KP_Trp_WK8          9.55 (0.21)  9.85 (.)      .      9.67 (0.26)  9.61 (0.24)    0.548   
## log_KP_Kyn_BL           5.84 (0.34)  5.65 (.)      .      5.65 (0.31)  5.85 (0.32)    0.131   
## log_KP_Kyn_WK8          5.79 (0.25)  5.68 (.)      .      5.67 (0.33)  5.74 (0.38)    0.605   
## log_KP_Xan_BL           1.53 (0.25)  1.82 (.)      .      1.65 (0.45)  1.56 (0.24)    0.543   
## log_KP_Xan_WK8          1.42 (0.24)  1.63 (.)      .      1.66 (0.40)  1.73 (0.36)    0.695   
## log_KP_Pic_BL           3.12 (0.47)  1.39 (.)      .      3.04 (0.39)  3.11 (0.55)    0.697   
## log_KP_Pic_WK8          3.08 (0.68)  1.55 (.)      .      3.13 (0.48)  3.06 (0.63)    0.755   
## log_KP_Quin_BL          4.20 (0.50)  3.61 (.)      .      3.98 (0.39)  4.00 (0.41)    0.904   
## log_KP_Quin_WK8         4.09 (0.48)  3.52 (.)      .      4.04 (0.42)  3.94 (0.31)    0.474   
## log_KP_QuinaldA_BL      1.26 (0.37)  1.34 (.)      .      1.37 (0.29)  1.37 (0.20)    0.989   
## log_KP_QuinaldA_WK8     1.23 (0.28)  1.39 (.)      .      1.35 (0.27)  1.40 (0.26)    0.612   
## log_KP_3HK_BL           2.90 (0.52)  3.28 (.)      .      2.82 (0.68)  2.82 (0.51)    0.993   
## log_KP_3HK_WK8          2.79 (0.51)  3.19 (.)      .      2.74 (0.50)  2.80 (0.50)    0.759   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

8 Pearson heatmap: TRBDD patients at baseline

list_vars<-combined_df %>% dplyr::select(-Sex, -Arm, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))

heatmap_bl<-heatmap_df %>% select(-contains("WK8"), -contains("Week8")) %>% select(-log_IL2_BL) %>% tidyr::drop_na()
heatmap_bl<-as.matrix(sapply(heatmap_bl, as.numeric)) #IL2BL was problematic so removed

corr <- round(cor(heatmap_bl, use="pairwise.complete.obs"), 2)

ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE, lab_size=1.5, insig="blank", tl.cex=5, title = "Pearson Correlation Matrix (TRBDD cohort at baseline)")

9 Pearson heatmap: TRBDD patients at week 8

list_vars<-combined_df %>% dplyr::select(-Sex, -Arm, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))

heatmap_wk8<-heatmap_df %>% select(-contains("BL")) %>% tidyr::drop_na()
heatmap_wk8<-as.matrix(sapply(heatmap_wk8, as.numeric)) 


corr <- round(cor(heatmap_wk8, use="pairwise.complete.obs"), 2)

ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE, lab_size=1.5, insig="blank", tl.cex=5, title = "Pearson Correlation Matrix (TRBDD cohort at Week 8)")

10 Pearson heatmap: Non-remitters at baseline

list_vars<-combined_df %>% dplyr::select(-Sex, -Arm, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))

heatmap_df_remitters <- heatmap_df[which(heatmap_df$Remission=="Non-remitter"), ] 
heatmap_df_remitters_bl<-heatmap_df_remitters %>% select(contains("BL")) %>% select(-log_IL1A_BL,-log_IL2_BL,-log_IFNG_BL) %>% tidyr::drop_na()
heatmap_df_remitters_bl<-as.matrix(sapply(heatmap_df_remitters_bl, as.numeric)) 

corr <- round(cor(heatmap_df_remitters_bl, use="pairwise.complete.obs"), 2)

ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE, lab_size=1.5, insig="blank", tl.cex=5, title = "Pearson Correlation Matrix (Non-remitters at Baseline)")

11 Pearson heatmap: Remitters at baseline

list_vars<-combined_df %>% dplyr::select(-Sex, -Arm, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))

heatmap_df_remitters <- heatmap_df[which(heatmap_df$Remission=="Remitter"), ] 
heatmap_df_remitters_bl<-heatmap_df_remitters %>% select(contains("BL")) %>% select(-log_IL1A_BL,-log_IL2_BL,-log_IFNG_BL) %>% tidyr::drop_na()
heatmap_df_remitters_bl<-as.matrix(sapply(heatmap_df_remitters_bl, as.numeric)) 

corr <- round(cor(heatmap_df_remitters_bl, use="pairwise.complete.obs"), 2)

ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE, lab_size=1.5, insig="blank", tl.cex=5, title = "Pearson Correlation Matrix (Remitters at Baseline)")

12 Univariate screen by SII_BL

list_vars<-combined_df %>% dplyr::select(-Sex, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))
heatmap_df <- heatmap_df[which(heatmap_df$Arm!=c("HC")), ] %>% select(-Arm)

gtsummary::tbl_uvregression(
  heatmap_df,
  lm,
  log_SII_BL,
  conf.int=TRUE
)
Characteristic N Beta 95% CI1 p-value
Age 48 -0.01 -0.02, 0.01 0.3
HAMD17_BL 43 -0.01 -0.03, 0.02 0.6
HAMD17_WK8 43 0.00 -0.02, 0.02 0.8
Remission 43
Non-remitter — —
Remitter 0.03 -0.31, 0.38 0.8
log_BMI 47 -0.17 -1.0, 0.66 0.7
log_PLT_BL 50 0.90 0.41, 1.4 <0.001
log_MONO_BL 50 0.32 -0.08, 0.72 0.11
log_NEUT_BL 50 1.0 0.79, 1.3 <0.001
log_LYMPH_BL 50 -0.60 -1.1, -0.10 0.020
log_PLT_WK8 49 0.51 -0.05, 1.1 0.073
log_MONO_WK8 48 0.28 -0.09, 0.65 0.13
log_NEUT_WK8 48 0.57 0.27, 0.87 <0.001
log_LYMPH_WK8 48 -0.13 -0.61, 0.34 0.6
log_SII_WK8 48 0.91 0.73, 1.1 <0.001
log_SIRI_BL 50 0.63 0.47, 0.78 <0.001
log_SIRI_WK8 48 0.65 0.46, 0.83 <0.001
log_IL1A_BL 21 -1.0 -4.4, 2.5 0.6
log_IL1A_WK8 18 1.7 -4.7, 8.1 0.6
log_IL1B_BL 22 -0.56 -1.8, 0.73 0.4
log_IL1B_WK8 18 0.58 -1.0, 2.2 0.4
log_IL2_BL 21 0.10 -0.41, 0.62 0.7
log_IL2_WK8 18 0.02 -0.53, 0.56 >0.9
log_IL6_BL 21 -0.19 -0.75, 0.38 0.5
log_IL6_WK8 20 -0.08 -1.0, 0.83 0.9
log_IL8_BL 21 -0.06 -0.43, 0.30 0.7
log_IL8_WK8 18 0.01 -0.33, 0.35 >0.9
log_IFNG_BL 21 -0.54 -1.2, 0.09 0.089
log_IFNG_WK8 18 0.03 -1.3, 1.4 >0.9
log_TNFA_BL 21 -0.08 -0.36, 0.21 0.6
log_TNFA_WK8 18 -0.07 -0.42, 0.27 0.7
log_MCP1_BL 21 -0.39 -1.0, 0.22 0.2
log_MCP1_WK8 18 -0.11 -0.55, 0.34 0.6
log_CRPSet1_ug_ml_BL 15 0.14 -0.28, 0.56 0.5
log_CRPSet1_ug_ml_WK8 13 0.14 -0.28, 0.55 0.5
log_CRPSet2_µg_ml_BL 32 0.12 -0.14, 0.38 0.4
log_CRPSet2_µg_ml_WK8 31 0.24 0.00, 0.48 0.048
log_IL1ARaox_7_16_BL 30 1.1 -3.0, 5.2 0.6
log_IL1ARaox_7_16_WK8 30 0.50 -6.5, 7.5 0.9
log_IL1BRaox_7_16_BL 30 0.51 -1.0, 2.0 0.5
log_IL1BRaox_7_16_WK8 30 1.8 0.19, 3.5 0.030
log_IL2-Raox_7_16_BL 25 1.0 -0.24, 2.3 0.11
log_IL2-Raox_7_16_WK8 30 0.35 -0.89, 1.6 0.6
log_IL6Raox_7_16_BL 30 -0.16 -1.0, 0.69 0.7
log_IL6Raox_7_16_WK8 31 0.09 -0.86, 1.0 0.8
log_IL8Raox_7_16_BL 30 -0.13 -0.35, 0.08 0.2
log_IL8Raox_7_16_WK8 30 0.03 -0.19, 0.25 0.8
log_IFNGRaox_7_16_BL 30 0.36 -1.4, 2.1 0.7
log_IFNGRaox_7_16_Week8 30 1.0 -1.3, 3.2 0.4
log_TNFARaox_7_16_BL 30 -0.09 -0.23, 0.05 0.2
log_TNFARaox_7_16_WK8 30 0.04 -0.11, 0.19 0.6
log_MCP1Raox_7_16_BL 30 -0.15 -0.52, 0.23 0.4
log_MCP1Raox_7_16_WK8 30 -0.15 -0.38, 0.07 0.2
log_IL4_BL 26 -0.60 -1.3, 0.07 0.075
log_IL4_WK8 18 0.23 -0.69, 1.2 0.6
log_IL10_BL 21 0.08 -0.85, 1.0 0.9
log_IL10_WK8 18 -0.30 -1.2, 0.63 0.5
log_IL4Raox_7_16_BL 30 -0.51 -2.1, 1.1 0.5
log_IL4Raox_7_16_WK8 30 -0.20 -1.4, 1.0 0.7
log_IL10Raox_7_16_BL 30 -0.67 -1.6, 0.22 0.14
log_IL10Raox_7_16_WK8 30 -1.1 -3.4, 1.1 0.3
log_FGF_BL 15 0.17 -0.48, 0.83 0.6
log_FGF_WK8 9 -0.06 -0.81, 0.69 0.9
log_VEGF-Elisa_BL 31 -0.63 -1.1, -0.16 0.011
log_VEGF-Elisa_WK8 30 -0.33 -0.78, 0.13 0.2
log_VEGFRaoxold_BL 21 -0.23 -0.71, 0.24 0.3
log_VEGFRaoxold_WK8 18 -0.15 -0.71, 0.40 0.6
log_VEGFRaoxnew_BL 30 -0.26 -0.67, 0.14 0.2
log_VEGFRaoxnew_WK8 30 -0.06 -0.47, 0.35 0.8
log_EGF_BL 21 -0.14 -0.60, 0.31 0.5
log_EGF_WK8 18 0.04 -0.53, 0.60 0.9
log_EGFRaox_7_16_BL 30 0.38 -0.19, 0.94 0.2
log_EGFRaox_7_16_WK8 30 0.45 -0.15, 1.0 0.14
log_KP_AA_BL 39 0.14 -0.31, 0.58 0.5
log_KP_AA_WK8 37 -0.05 -0.41, 0.30 0.8
log_KP_KynA_BL 39 -0.27 -0.75, 0.21 0.3
log_KP_KynA_WK8 37 -0.37 -0.83, 0.10 0.12
log_KP_Trp_BL 39 -0.30 -1.0, 0.37 0.4
log_KP_Trp_WK8 37 -0.49 -1.2, 0.18 0.14
log_KP_Kyn_BL 39 0.04 -0.45, 0.52 0.9
log_KP_Kyn_WK8 37 -0.16 -0.67, 0.36 0.5
log_KP_Xan_BL 38 -0.23 -0.73, 0.27 0.4
log_KP_Xan_WK8 33 -0.35 -0.84, 0.14 0.2
log_KP_Pic_BL 39 0.06 -0.28, 0.40 0.7
log_KP_Pic_WK8 37 0.13 -0.14, 0.40 0.3
log_KP_Quin_BL 39 0.13 -0.22, 0.48 0.5
log_KP_Quin_WK8 37 0.01 -0.38, 0.41 >0.9
log_KP_QuinaldA_BL 39 -0.09 -0.62, 0.43 0.7
log_KP_QuinaldA_WK8 37 0.01 -0.58, 0.61 >0.9
log_KP_3HK_BL 39 -0.24 -0.50, 0.03 0.082
log_KP_3HK_WK8 37 -0.13 -0.46, 0.20 0.4
1 CI = Confidence Interval

13 Univariate screen by NEUT_BL

list_vars<-combined_df %>% dplyr::select(-Sex, -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))
heatmap_df <- heatmap_df[which(heatmap_df$Arm!=c("HC")), ] %>% select(-Arm)

gtsummary::tbl_uvregression(
  heatmap_df,
  lm,
  log_NEUT_BL,
  conf.int=TRUE
)
Characteristic N Beta 95% CI1 p-value
Age 48 -0.01 -0.02, 0.00 0.13
HAMD17_BL 43 -0.01 -0.03, 0.01 0.3
HAMD17_WK8 43 0.01 -0.01, 0.02 0.5
Remission 43
Non-remitter — —
Remitter -0.02 -0.28, 0.23 0.9
log_BMI 47 -0.12 -0.74, 0.49 0.7
log_PLT_BL 50 0.22 -0.20, 0.64 0.3
log_MONO_BL 50 0.49 0.22, 0.76 <0.001
log_LYMPH_BL 50 0.13 -0.27, 0.52 0.5
log_PLT_WK8 49 0.18 -0.25, 0.60 0.4
log_MONO_WK8 48 0.34 0.07, 0.60 0.014
log_NEUT_WK8 48 0.58 0.39, 0.77 <0.001
log_LYMPH_WK8 48 0.28 -0.06, 0.63 0.11
log_SII_BL 50 0.58 0.44, 0.72 <0.001
log_SII_WK8 48 0.59 0.42, 0.76 <0.001
log_SIRI_BL 50 0.52 0.43, 0.62 <0.001
log_SIRI_WK8 48 0.52 0.40, 0.65 <0.001
log_IL1A_BL 21 -1.1 -4.1, 1.8 0.4
log_IL1A_WK8 18 -0.32 -6.0, 5.4 >0.9
log_IL1B_BL 22 -0.39 -1.5, 0.69 0.5
log_IL1B_WK8 18 0.01 -1.4, 1.4 >0.9
log_IL2_BL 21 0.04 -0.41, 0.48 0.9
log_IL2_WK8 18 -0.07 -0.55, 0.40 0.7
log_IL6_BL 21 0.01 -0.47, 0.49 >0.9
log_IL6_WK8 20 0.12 -0.68, 0.92 0.8
log_IL8_BL 21 -0.01 -0.32, 0.30 >0.9
log_IL8_WK8 18 -0.04 -0.34, 0.25 0.8
log_IFNG_BL 21 0.16 -0.41, 0.73 0.6
log_IFNG_WK8 18 -0.23 -1.4, 1.0 0.7
log_TNFA_BL 21 0.09 -0.14, 0.33 0.4
log_TNFA_WK8 18 -0.05 -0.35, 0.26 0.8
log_MCP1_BL 21 -0.36 -0.87, 0.15 0.2
log_MCP1_WK8 18 -0.05 -0.45, 0.34 0.8
log_CRPSet1_ug_ml_BL 15 0.20 -0.10, 0.51 0.2
log_CRPSet1_ug_ml_WK8 13 0.13 -0.16, 0.42 0.4
log_CRPSet2_µg_ml_BL 32 0.03 -0.16, 0.23 0.7
log_CRPSet2_µg_ml_WK8 31 0.03 -0.16, 0.22 0.8
log_IL1ARaox_7_16_BL 30 -0.21 -3.3, 2.9 0.9
log_IL1ARaox_7_16_WK8 30 0.19 -5.0, 5.4 >0.9
log_IL1BRaox_7_16_BL 30 0.65 -0.46, 1.7 0.2
log_IL1BRaox_7_16_WK8 30 1.1 -0.15, 2.4 0.083
log_IL2-Raox_7_16_BL 25 0.75 -0.35, 1.9 0.2
log_IL2-Raox_7_16_WK8 30 0.45 -0.46, 1.4 0.3
log_IL6Raox_7_16_BL 30 -0.03 -0.67, 0.61 >0.9
log_IL6Raox_7_16_WK8 31 0.21 -0.48, 0.91 0.5
log_IL8Raox_7_16_BL 30 -0.02 -0.18, 0.14 0.8
log_IL8Raox_7_16_WK8 30 0.03 -0.13, 0.20 0.7
log_IFNGRaox_7_16_BL 30 0.72 -0.54, 2.0 0.3
log_IFNGRaox_7_16_Week8 30 0.46 -1.2, 2.1 0.6
log_TNFARaox_7_16_BL 30 0.01 -0.10, 0.12 0.8
log_TNFARaox_7_16_WK8 30 0.04 -0.07, 0.15 0.4
log_MCP1Raox_7_16_BL 30 -0.10 -0.38, 0.17 0.4
log_MCP1Raox_7_16_WK8 30 -0.10 -0.26, 0.07 0.3
log_IL4_BL 26 -0.35 -0.81, 0.11 0.13
log_IL4_WK8 18 0.35 -0.45, 1.2 0.4
log_IL10_BL 21 0.10 -0.69, 0.89 0.8
log_IL10_WK8 18 -0.14 -1.0, 0.69 0.7
log_IL4Raox_7_16_BL 30 -1.0 -2.1, 0.17 0.091
log_IL4Raox_7_16_WK8 30 -0.34 -1.2, 0.54 0.4
log_IL10Raox_7_16_BL 30 -0.50 -1.2, 0.17 0.14
log_IL10Raox_7_16_WK8 30 -1.6 -3.2, -0.07 0.042
log_FGF_BL 15 0.01 -0.50, 0.52 >0.9
log_FGF_WK8 9 0.20 -0.29, 0.70 0.4
log_VEGF-Elisa_BL 31 -0.10 -0.49, 0.30 0.6
log_VEGF-Elisa_WK8 30 -0.03 -0.38, 0.32 0.9
log_VEGFRaoxold_BL 21 -0.02 -0.43, 0.39 >0.9
log_VEGFRaoxold_WK8 18 0.03 -0.47, 0.52 >0.9
log_VEGFRaoxnew_BL 30 -0.04 -0.35, 0.27 0.8
log_VEGFRaoxnew_WK8 30 0.04 -0.26, 0.34 0.8
log_EGF_BL 21 -0.12 -0.50, 0.27 0.5
log_EGF_WK8 18 -0.07 -0.57, 0.43 0.8
log_EGFRaox_7_16_BL 30 -0.03 -0.46, 0.40 0.9
log_EGFRaox_7_16_WK8 30 0.02 -0.44, 0.48 >0.9
log_KP_AA_BL 39 0.08 -0.26, 0.43 0.6
log_KP_AA_WK8 37 0.00 -0.27, 0.27 >0.9
log_KP_KynA_BL 39 -0.06 -0.44, 0.32 0.7
log_KP_KynA_WK8 37 -0.19 -0.56, 0.17 0.3
log_KP_Trp_BL 39 0.08 -0.44, 0.60 0.7
log_KP_Trp_WK8 37 -0.26 -0.78, 0.26 0.3
log_KP_Kyn_BL 39 0.30 -0.07, 0.66 0.10
log_KP_Kyn_WK8 37 -0.04 -0.43, 0.36 0.9
log_KP_Xan_BL 38 -0.06 -0.45, 0.33 0.8
log_KP_Xan_WK8 33 -0.31 -0.66, 0.05 0.091
log_KP_Pic_BL 39 0.18 -0.08, 0.44 0.2
log_KP_Pic_WK8 37 0.18 -0.02, 0.38 0.069
log_KP_Quin_BL 39 0.12 -0.15, 0.38 0.4
log_KP_Quin_WK8 37 -0.03 -0.33, 0.27 0.8
log_KP_QuinaldA_BL 39 0.18 -0.22, 0.58 0.4
log_KP_QuinaldA_WK8 37 0.15 -0.31, 0.60 0.5
log_KP_3HK_BL 39 -0.09 -0.31, 0.12 0.4
log_KP_3HK_WK8 37 -0.06 -0.32, 0.19 0.6
1 CI = Confidence Interval

14 Univariate screen by SIRI_BL

list_vars<-combined_df %>% dplyr::select(-Sex,  -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))
heatmap_df <- heatmap_df[which(heatmap_df$Arm!=c("HC")), ] %>% select(-Arm)

gtsummary::tbl_uvregression(
  heatmap_df,
  lm,
  log_SIRI_BL,
  conf.int=TRUE
)
Characteristic N Beta 95% CI1 p-value
Age 48 -0.01 -0.02, 0.01 0.2
HAMD17_BL 43 -0.03 -0.06, 0.00 0.055
HAMD17_WK8 43 0.01 -0.01, 0.03 0.4
Remission 43
Non-remitter — —
Remitter -0.03 -0.44, 0.39 >0.9
log_BMI 47 -0.55 -1.5, 0.44 0.3
log_PLT_BL 50 0.16 -0.52, 0.84 0.6
log_MONO_BL 50 1.2 0.83, 1.5 <0.001
log_NEUT_BL 50 1.4 1.1, 1.6 <0.001
log_LYMPH_BL 50 -0.37 -1.0, 0.27 0.3
log_PLT_WK8 49 0.06 -0.63, 0.75 0.9
log_MONO_WK8 48 0.80 0.41, 1.2 <0.001
log_NEUT_WK8 48 0.77 0.42, 1.1 <0.001
log_LYMPH_WK8 48 0.10 -0.47, 0.67 0.7
log_SII_BL 50 0.92 0.69, 1.1 <0.001
log_SII_WK8 48 0.88 0.59, 1.2 <0.001
log_SIRI_WK8 48 1.0 0.83, 1.1 <0.001
log_IL1A_BL 21 -2.6 -6.4, 1.2 0.2
log_IL1A_WK8 18 -1.5 -9.6, 6.6 0.7
log_IL1B_BL 22 -0.80 -2.3, 0.66 0.3
log_IL1B_WK8 18 -0.27 -2.3, 1.8 0.8
log_IL2_BL 21 0.01 -0.58, 0.61 >0.9
log_IL2_WK8 18 -0.19 -0.86, 0.49 0.6
log_IL6_BL 21 -0.30 -0.93, 0.33 0.3
log_IL6_WK8 20 -0.43 -1.5, 0.69 0.4
log_IL8_BL 21 -0.02 -0.44, 0.40 >0.9
log_IL8_WK8 18 0.09 -0.34, 0.51 0.7
log_IFNG_BL 21 -0.01 -0.79, 0.77 >0.9
log_IFNG_WK8 18 -0.67 -2.4, 1.0 0.4
log_TNFA_BL 21 0.06 -0.27, 0.38 0.7
log_TNFA_WK8 18 0.09 -0.34, 0.53 0.7
log_MCP1_BL 21 -0.92 -1.5, -0.35 0.003
log_MCP1_WK8 18 -0.13 -0.69, 0.43 0.6
log_CRPSet1_ug_ml_BL 15 0.15 -0.35, 0.66 0.5
log_CRPSet1_ug_ml_WK8 13 0.09 -0.34, 0.52 0.7
log_CRPSet2_µg_ml_BL 32 0.08 -0.23, 0.39 0.6
log_CRPSet2_µg_ml_WK8 31 0.07 -0.24, 0.38 0.7
log_IL1ARaox_7_16_BL 30 1.5 -3.4, 6.5 0.5
log_IL1ARaox_7_16_WK8 30 -1.7 -10, 6.8 0.7
log_IL1BRaox_7_16_BL 30 1.0 -0.78, 2.8 0.3
log_IL1BRaox_7_16_WK8 30 1.9 -0.17, 4.0 0.070
log_IL2-Raox_7_16_BL 25 1.6 0.03, 3.2 0.046
log_IL2-Raox_7_16_WK8 30 0.47 -1.1, 2.0 0.5
log_IL6Raox_7_16_BL 30 -0.17 -1.2, 0.86 0.7
log_IL6Raox_7_16_WK8 31 -0.04 -1.2, 1.1 >0.9
log_IL8Raox_7_16_BL 30 -0.09 -0.35, 0.17 0.5
log_IL8Raox_7_16_WK8 30 0.07 -0.20, 0.34 0.6
log_IFNGRaox_7_16_BL 30 0.76 -1.3, 2.8 0.5
log_IFNGRaox_7_16_Week8 30 0.45 -2.3, 3.2 0.7
log_TNFARaox_7_16_BL 30 -0.02 -0.19, 0.16 0.8
log_TNFARaox_7_16_WK8 30 0.09 -0.09, 0.27 0.3
log_MCP1Raox_7_16_BL 30 -0.32 -0.75, 0.12 0.15
log_MCP1Raox_7_16_WK8 30 -0.24 -0.51, 0.03 0.075
log_IL4_BL 26 -0.65 -1.3, 0.04 0.063
log_IL4_WK8 18 0.17 -1.0, 1.3 0.8
log_IL10_BL 21 0.35 -0.70, 1.4 0.5
log_IL10_WK8 18 -0.74 -1.9, 0.38 0.2
log_IL4Raox_7_16_BL 30 -1.5 -3.3, 0.34 0.11
log_IL4Raox_7_16_WK8 30 -0.47 -1.9, 1.0 0.5
log_IL10Raox_7_16_BL 30 -0.60 -1.7, 0.49 0.3
log_IL10Raox_7_16_WK8 30 -2.3 -4.9, 0.37 0.090
log_FGF_BL 15 0.16 -0.63, 0.95 0.7
log_FGF_WK8 9 0.02 -0.75, 0.80 >0.9
log_VEGF-Elisa_BL 31 -0.31 -0.94, 0.32 0.3
log_VEGF-Elisa_WK8 30 -0.21 -0.78, 0.36 0.4
log_VEGFRaoxold_BL 21 -0.33 -0.86, 0.21 0.2
log_VEGFRaoxold_WK8 18 -0.11 -0.81, 0.59 0.7
log_VEGFRaoxnew_BL 30 -0.24 -0.73, 0.26 0.3
log_VEGFRaoxnew_WK8 30 -0.13 -0.63, 0.37 0.6
log_EGF_BL 21 -0.17 -0.69, 0.35 0.5
log_EGF_WK8 18 -0.32 -1.0, 0.37 0.3
log_EGFRaox_7_16_BL 30 0.02 -0.67, 0.72 >0.9
log_EGFRaox_7_16_WK8 30 0.21 -0.55, 1.0 0.6
log_KP_AA_BL 39 0.39 -0.17, 1.0 0.2
log_KP_AA_WK8 37 0.08 -0.37, 0.53 0.7
log_KP_KynA_BL 39 0.06 -0.57, 0.69 0.9
log_KP_KynA_WK8 37 -0.09 -0.70, 0.51 0.8
log_KP_Trp_BL 39 -0.11 -1.0, 0.76 0.8
log_KP_Trp_WK8 37 -0.35 -1.2, 0.51 0.4
log_KP_Kyn_BL 39 0.27 -0.35, 0.90 0.4
log_KP_Kyn_WK8 37 -0.07 -0.71, 0.58 0.8
log_KP_Xan_BL 38 0.11 -0.54, 0.77 0.7
log_KP_Xan_WK8 33 -0.35 -0.94, 0.25 0.2
log_KP_Pic_BL 39 0.26 -0.18, 0.69 0.2
log_KP_Pic_WK8 37 0.29 -0.03, 0.62 0.078
log_KP_Quin_BL 39 0.32 -0.12, 0.76 0.15
log_KP_Quin_WK8 37 0.24 -0.25, 0.73 0.3
log_KP_QuinaldA_BL 39 0.46 -0.20, 1.1 0.2
log_KP_QuinaldA_WK8 37 0.50 -0.23, 1.2 0.2
log_KP_3HK_BL 39 -0.24 -0.60, 0.11 0.2
log_KP_3HK_WK8 37 -0.15 -0.56, 0.27 0.5
1 CI = Confidence Interval

15 Univariate screen by MONO_BL

list_vars<-combined_df %>% dplyr::select(-Sex,  -Response, -Subject_ID, -Group, -Cohort) %>% names()
heatmap_df<-combined_df %>% dplyr::select(all_of(list_vars))
heatmap_df <- heatmap_df[which(heatmap_df$Arm!=c("HC")), ] %>% select(-Arm)

gtsummary::tbl_uvregression(
  heatmap_df,
  lm,
  log_MONO_BL,
  conf.int=TRUE
)
Characteristic N Beta 95% CI1 p-value
Age 49 0.00 -0.01, 0.01 0.5
HAMD17_BL 43 -0.02 -0.03, 0.00 0.058
HAMD17_WK8 43 0.01 -0.01, 0.02 0.4
Remission 43
Non-remitter — —
Remitter -0.01 -0.25, 0.22 >0.9
log_BMI 48 -0.18 -0.78, 0.42 0.6
log_PLT_BL 51 0.25 -0.16, 0.66 0.2
log_NEUT_BL 50 0.44 0.20, 0.68 <0.001
log_LYMPH_BL 51 0.43 0.06, 0.80 0.022
log_PLT_WK8 50 0.12 -0.30, 0.53 0.6
log_MONO_WK8 49 0.74 0.58, 0.91 <0.001
log_NEUT_WK8 49 0.39 0.17, 0.61 <0.001
log_LYMPH_WK8 49 0.49 0.17, 0.81 0.003
log_SII_BL 50 0.16 -0.04, 0.36 0.11
log_SII_WK8 48 0.11 -0.11, 0.34 0.3
log_SIRI_BL 50 0.40 0.28, 0.53 <0.001
log_SIRI_WK8 48 0.39 0.25, 0.54 <0.001
log_IL1A_BL 21 -1.8 -4.1, 0.38 0.10
log_IL1A_WK8 18 -2.5 -6.5, 1.5 0.2
log_IL1B_BL 22 -0.17 -1.1, 0.71 0.7
log_IL1B_WK8 18 -0.29 -1.3, 0.76 0.6
log_IL2_BL 21 0.23 -0.11, 0.57 0.2
log_IL2_WK8 18 -0.07 -0.42, 0.29 0.7
log_IL6_BL 21 0.24 -0.13, 0.61 0.2
log_IL6_WK8 20 -0.02 -0.65, 0.61 >0.9
log_IL8_BL 21 0.11 -0.13, 0.35 0.4
log_IL8_WK8 18 0.11 -0.10, 0.32 0.3
log_IFNG_BL 21 0.22 -0.24, 0.67 0.3
log_IFNG_WK8 18 -0.89 -1.7, -0.12 0.026
log_TNFA_BL 21 0.16 -0.01, 0.34 0.068
log_TNFA_WK8 18 0.14 -0.07, 0.36 0.2
log_MCP1_BL 21 -0.31 -0.71, 0.10 0.13
log_MCP1_WK8 18 -0.09 -0.38, 0.20 0.5
log_CRPSet1_ug_ml_BL 15 0.15 -0.11, 0.40 0.2
log_CRPSet1_ug_ml_WK8 13 0.06 -0.14, 0.27 0.5
log_CRPSet2_µg_ml_BL 32 0.09 -0.06, 0.24 0.2
log_CRPSet2_µg_ml_WK8 31 -0.07 -0.22, 0.08 0.4
log_IL1ARaox_7_16_BL 30 0.83 -1.6, 3.3 0.5
log_IL1ARaox_7_16_WK8 30 1.5 -2.7, 5.7 0.5
log_IL1BRaox_7_16_BL 30 0.63 -0.24, 1.5 0.15
log_IL1BRaox_7_16_WK8 30 0.62 -0.45, 1.7 0.2
log_IL2-Raox_7_16_BL 25 0.88 0.06, 1.7 0.036
log_IL2-Raox_7_16_WK8 30 0.62 -0.11, 1.3 0.092
log_IL6Raox_7_16_BL 30 0.43 -0.05, 0.92 0.078
log_IL6Raox_7_16_WK8 31 0.41 -0.13, 1.0 0.13
log_IL8Raox_7_16_BL 30 0.09 -0.03, 0.22 0.14
log_IL8Raox_7_16_WK8 30 0.04 -0.09, 0.18 0.5
log_IFNGRaox_7_16_BL 30 0.81 -0.17, 1.8 0.10
log_IFNGRaox_7_16_Week8 30 -0.38 -1.7, 1.0 0.6
log_TNFARaox_7_16_BL 30 0.09 0.01, 0.17 0.035
log_TNFARaox_7_16_WK8 30 0.06 -0.03, 0.15 0.2
log_MCP1Raox_7_16_BL 30 -0.03 -0.25, 0.20 0.8
log_MCP1Raox_7_16_WK8 30 -0.02 -0.16, 0.12 0.7
log_IL4_BL 26 0.13 -0.27, 0.52 0.5
log_IL4_WK8 18 0.00 -0.62, 0.61 >0.9
log_IL10_BL 21 0.62 0.05, 1.2 0.034
log_IL10_WK8 18 -0.37 -1.0, 0.22 0.2
log_IL4Raox_7_16_BL 30 -0.44 -1.4, 0.50 0.4
log_IL4Raox_7_16_WK8 30 0.08 -0.66, 0.81 0.8
log_IL10Raox_7_16_BL 30 0.11 -0.44, 0.66 0.7
log_IL10Raox_7_16_WK8 30 -0.61 -2.0, 0.74 0.4
log_FGF_BL 15 0.13 -0.28, 0.54 0.5
log_FGF_WK8 9 0.15 -0.20, 0.49 0.3
log_VEGF-Elisa_BL 31 0.03 -0.28, 0.35 0.8
log_VEGF-Elisa_WK8 30 -0.03 -0.31, 0.26 0.8
log_VEGFRaoxold_BL 21 0.21 -0.11, 0.52 0.2
log_VEGFRaoxold_WK8 18 0.12 -0.24, 0.48 0.5
log_VEGFRaoxnew_BL 30 0.19 -0.05, 0.43 0.11
log_VEGFRaoxnew_WK8 30 0.11 -0.14, 0.35 0.4
log_EGF_BL 21 0.13 -0.18, 0.44 0.4
log_EGF_WK8 18 -0.22 -0.58, 0.13 0.2
log_EGFRaox_7_16_BL 30 0.04 -0.30, 0.39 0.8
log_EGFRaox_7_16_WK8 30 0.19 -0.18, 0.57 0.3
log_KP_AA_BL 39 0.30 -0.02, 0.61 0.065
log_KP_AA_WK8 37 0.16 -0.10, 0.42 0.2
log_KP_KynA_BL 39 0.30 -0.05, 0.65 0.093
log_KP_KynA_WK8 37 0.20 -0.15, 0.55 0.2
log_KP_Trp_BL 39 -0.04 -0.54, 0.46 0.9
log_KP_Trp_WK8 37 -0.04 -0.55, 0.47 0.9
log_KP_Kyn_BL 39 0.35 0.01, 0.69 0.044
log_KP_Kyn_WK8 37 0.19 -0.18, 0.57 0.3
log_KP_Xan_BL 38 0.20 -0.17, 0.56 0.3
log_KP_Xan_WK8 33 -0.08 -0.44, 0.28 0.6
log_KP_Pic_BL 39 -0.01 -0.27, 0.24 >0.9
log_KP_Pic_WK8 37 0.05 -0.15, 0.25 0.6
log_KP_Quin_BL 39 0.26 0.01, 0.50 0.039
log_KP_Quin_WK8 37 0.29 0.02, 0.57 0.036
log_KP_QuinaldA_BL 39 0.30 -0.07, 0.68 0.11
log_KP_QuinaldA_WK8 37 0.33 -0.10, 0.76 0.13
log_KP_3HK_BL 39 0.03 -0.17, 0.24 0.7
log_KP_3HK_WK8 37 0.07 -0.17, 0.32 0.5
1 CI = Confidence Interval

16 SII by timepoint and remission

ggplot(SG_df_new_long, aes(x = Timepoint, y = log(SII)))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Treatment)+
  theme_bw()+   
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=4)

ggplot(SG_df_new_long, aes(x = Timepoint, y = log(SII)))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Remission)+
  theme_bw()+   
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=4)

17 SIRI by timepoint and remission

ggplot(SG_df_new_long, aes(x = Timepoint, y = log(SIRI)))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Treatment)+
  theme_bw()+   
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=4)

ggplot(SG_df_new_long, aes(x = Timepoint, y = log(SIRI)))+
  geom_boxplot(aes(fill=Timepoint))+
 geom_jitter(width = 0.1)+
  facet_wrap(~Remission)+
  theme_bw()+   
  theme(legend.position = "none")+
  ggpubr::stat_compare_means(method="t.test", label.y=4)

18 MODEL 1A: SII by HAMD17*Timepoint

19 MODEL 1B: SIRI by HAMD17*Timepoint

20 MODEL 2A: HAMD17_WK8 by SII_BL

# SII_model<-lm(HAMD17_WK8~Arm+HAMD17_BL+log(SII_BL), data=combined_df)
# sjPlot::tab_model(SII_model)

SII_model<-lm(HAMD17_WK8~Sex+Age+log_BMI+Arm+HAMD17_BL+log_SII_BL, data=combined_df)
sjPlot::tab_model(SII_model)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) -21.11 -75.08 – 32.87 0.433
Sex [Female] 4.75 0.23 – 9.27 0.040
Age 0.11 -0.07 – 0.30 0.216
log BMI 3.40 -8.06 – 14.87 0.551
Arm [CBX ESC] -5.55 -10.24 – -0.85 0.022
HAMD17 BL 0.29 -0.06 – 0.64 0.100
log SII BL 1.75 -2.90 – 6.40 0.450
Observations 43
R2 / R2 adjusted 0.332 / 0.220

21 MODEL 2B: HAMD17_WK8 by SIRI_BL

# SII_model<-lm(HAMD17_WK8~Arm+HAMD17_BL+log(SII_BL), data=combined_df)
# sjPlot::tab_model(SII_model)

SII_model<-lm(HAMD17_WK8~Sex+Age+log_BMI+Arm+HAMD17_BL+log_SIRI_BL, data=combined_df)
sjPlot::tab_model(SII_model)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) -15.64 -56.10 – 24.83 0.438
Sex [Female] 4.39 0.15 – 8.63 0.043
Age 0.12 -0.06 – 0.29 0.198
log BMI 4.61 -6.91 – 16.14 0.422
Arm [CBX ESC] -5.30 -9.89 – -0.71 0.025
HAMD17 BL 0.34 -0.02 – 0.69 0.061
log SIRI BL 2.48 -1.34 – 6.29 0.196
Observations 43
R2 / R2 adjusted 0.352 / 0.244

22 MODEL 3A: HAMD17_WK8 by SII_BL*interaction

# SII_model_interaction<-lm(HAMD17_WK8~Arm+HAMD17_BL+SII_BL*Age, data=combined_df)
# # plot(SII_model_interaction, which=c(2,6))
# sjPlot::tab_model(SII_model_interaction)
# reg_cohend(SII_model_interaction)
# interactions::interact_plot(SII_model_interaction, pred = SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SII-to-Age interaction")

SII_model_interaction<-lm(HAMD17_WK8~Sex+Age+log_BMI+Arm+HAMD17_BL+log_SII_BL*Age, data=combined_df)
# plot(SII_model_interaction, which=c(2,6))
sjPlot::tab_model(SII_model_interaction)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) 87.27 4.18 – 170.37 0.040
Sex [Female] 4.33 0.30 – 8.36 0.036
Age -2.47 -4.10 – -0.85 0.004
log BMI 6.21 -4.15 – 16.56 0.232
Arm [CBX ESC] -4.66 -8.88 – -0.45 0.031
HAMD17 BL 0.12 -0.20 – 0.45 0.445
log SII BL -17.12 -29.63 – -4.61 0.009
Age * log SII BL 0.43 0.16 – 0.70 0.003
Observations 43
R2 / R2 adjusted 0.486 / 0.384

23 MODEL 3B: HAMD17_WK8 by SIRI_BL*interaction

# SII_model_interaction<-lm(HAMD17_WK8~Arm+HAMD17_BL+SII_BL*Age, data=combined_df)
# # plot(SII_model_interaction, which=c(2,6))
# sjPlot::tab_model(SII_model_interaction)
# reg_cohend(SII_model_interaction)
# interactions::interact_plot(SII_model_interaction, pred = SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SII-to-Age interaction")

SII_model_interaction<-lm(HAMD17_WK8~Sex+Age+log_BMI+Arm+HAMD17_BL*log_SIRI_BL, data=combined_df)
# plot(SII_model_interaction, which=c(2,6))
sjPlot::tab_model(SII_model_interaction)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) -10.29 -47.75 – 27.17 0.581
Sex [Female] 6.02 1.93 – 10.11 0.005
Age 0.05 -0.12 – 0.22 0.525
log BMI 3.31 -7.35 – 13.96 0.533
Arm [CBX ESC] -5.13 -9.36 – -0.90 0.019
HAMD17 BL 0.42 0.09 – 0.75 0.014
log SIRI BL -17.85 -33.26 – -2.44 0.024
HAMD17 BL * log SIRI BL 0.91 0.24 – 1.59 0.009
Observations 43
R2 / R2 adjusted 0.467 / 0.361

24 MODEL 4A (reduced/final): HAMD17_WK8 by SII_BL*interaction

# SII_model_interaction<-lm(HAMD17_WK8~Arm+HAMD17_BL+SII_BL*Age, data=combined_df)
# # plot(SII_model_interaction, which=c(2,6))
# sjPlot::tab_model(SII_model_interaction)
# reg_cohend(SII_model_interaction)
# interactions::interact_plot(SII_model_interaction, pred = SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SII-to-Age interaction")

SII_model_interaction<-lm(HAMD17_WK8~Sex+Age+Arm+log_SII_BL*Age, data=combined_df)
# plot(SII_model_interaction, which=c(2,6))
sjPlot::tab_model(SII_model_interaction)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) 117.65 43.97 – 191.34 0.003
Sex [Female] 3.68 -0.28 – 7.63 0.067
Age -2.53 -4.07 – -0.98 0.002
Arm [CBX ESC] -4.67 -8.82 – -0.52 0.028
log SII BL -18.19 -30.11 – -6.27 0.004
Age * log SII BL 0.44 0.19 – 0.70 0.001
Observations 43
R2 / R2 adjusted 0.449 / 0.375
interactions::interact_plot(SII_model_interaction, pred = log_SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SII-to-Age interaction")

25 MODEL 4B (reduced/final): HAMD17_WK8 by SIRI_BL*interaction

# SII_model_interaction<-lm(HAMD17_WK8~Arm+HAMD17_BL+SII_BL*Age, data=combined_df)
# # plot(SII_model_interaction, which=c(2,6))
# sjPlot::tab_model(SII_model_interaction)
# reg_cohend(SII_model_interaction)
# interactions::interact_plot(SII_model_interaction, pred = SII_BL, modx = Age, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SII-to-Age interaction")

SII_model_interaction<-lm(HAMD17_WK8~Sex+Arm+HAMD17_BL*log_SIRI_BL, data=combined_df)
# plot(SII_model_interaction, which=c(2,6))
sjPlot::tab_model(SII_model_interaction)
  HAMD 17 WK 8
Predictors Estimates CI p
(Intercept) 3.16 -5.39 – 11.72 0.459
Sex [Female] 6.05 2.06 – 10.05 0.004
Arm [CBX ESC] -5.76 -9.66 – -1.87 0.005
HAMD17 BL 0.45 0.13 – 0.77 0.007
log SIRI BL -20.09 -34.37 – -5.81 0.007
HAMD17 BL * log SIRI BL 0.99 0.36 – 1.63 0.003
Observations 43
R2 / R2 adjusted 0.454 / 0.380
interactions::interact_plot(SII_model_interaction, pred = log_SIRI_BL, modx = HAMD17_BL, jitter=0.1, plot.points = TRUE,  main.title = "Tx outcomes linked to baseline SIRI-to-HAMD17_BL interaction")