# Mindanao State University
# General Santos City
# Submitted by: Roland Fritz C. Adam & AJ Ardaniel

# ggplot2 Tutorial 2 - Theme

# Setup
options(scipen=999)
library(ggplot2)
data("midwest", package = "ggplot2")
theme_set(theme_bw())
# midwest <- read.csv("http://goo.gl/G1K41K")  # bkup data source

# Add plot components --------------------------------
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# Call plot ------------------------------------------
plot(gg)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).

# Adding Plot and Axis Titles

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# Modify theme components -------------------------------------------
gg + theme(plot.title=element_text(size=20, 
                                   face="bold", 
                                   family="American Typewriter",
                                   color="tomato",
                                   hjust=0.5,
                                   lineheight=1.2),  # title
           plot.subtitle=element_text(size=15, 
                                      family="American Typewriter",
                                      face="bold",
                                      hjust=0.5),  # subtitle
           plot.caption=element_text(size=15),  # caption
           axis.title.x=element_text(vjust=10,  
                                     size=15),  # X axis title
           axis.title.y=element_text(size=15),  # Y axis title
           axis.text.x=element_text(size=10, 
                                    angle = 30,
                                    vjust=.5),  # X axis text
           axis.text.y=element_text(size=10))  # Y axis text
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# Modifying Legend

# Method 1: Using labs()
library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

gg + labs(color="State", size="Density")  # modify legend title
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# Method 2: Using guides()

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

gg <- gg + guides(color=guide_legend("State"), size=guide_legend("Density"))  # modify legend title
plot(gg)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# Method 3: Using scale_aesthetic_vartype() format

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# Modify Legend
gg + scale_color_discrete(name="State") + scale_size_continuous(name = "Density", guide = FALSE)  # turn off legend for size
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).
## Warning: The `guide` argument in `scale_*()` cannot be `FALSE`. This was deprecated in
## ggplot2 3.3.4.
## ℹ Please use "none" instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

# How to Change Legend Labels and Point Colors for Categories

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

gg + scale_color_manual(name="State", 
                        labels = c("Illinois", 
                                   "Indiana", 
                                   "Michigan", 
                                   "Ohio", 
                                   "Wisconsin"), 
                        values = c("IL"="blue", 
                                   "IN"="red", 
                                   "MI"="green", 
                                   "OH"="brown", 
                                   "WI"="orange"))
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).

# Change the Order of Legend

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

gg + guides(colour = guide_legend(order = 1),
            size = guide_legend(order = 2))
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# How to Style the Legend Title, Text and Key

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

gg + theme(legend.title = element_text(size=12, color = "firebrick"), 
           legend.text = element_text(size=10),
           legend.key=element_rect(fill='springgreen')) + 
  guides(colour = guide_legend(override.aes = list(size=2, stroke=1.5))) 
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# How to Remove the Legend and Change Legend Positions

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# No legend --------------------------------------------------
gg + theme(legend.position="None") + labs(subtitle="No Legend")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# Legend to the left -----------------------------------------
gg + theme(legend.position="left") + labs(subtitle="Legend on the Left")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# legend at the bottom and horizontal ------------------------
gg + theme(legend.position="bottom", legend.box = "horizontal") + labs(subtitle="Legend at Bottom")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# legend at bottom-right, inside the plot --------------------
gg + theme(legend.title = element_text(size=12, color = "salmon", face="bold"),
           legend.justification=c(1,0), 
           legend.position=c(0.95, 0.05),  
           legend.background = element_blank(),
           legend.key = element_blank()) + 
  labs(subtitle="Legend: Bottom-Right Inside the Plot")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# legend at top-left, inside the plot -------------------------
gg + theme(legend.title = element_text(size=12, color = "salmon", face="bold"),
           legend.justification=c(0,1), 
           legend.position=c(0.05, 0.95),
           legend.background = element_blank(),
           legend.key = element_blank()) + 
  labs(subtitle="Legend: Top-Left Inside the Plot")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# 3. Adding Text, Label and Annotation
# How to Add Text and Label around the Points

library(ggplot2)

# Filter required rows.
midwest_sub <- midwest[midwest$poptotal > 300000, ]
midwest_sub$large_county <- ifelse(midwest_sub$poptotal > 300000, midwest_sub$county, "")

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# Plot text and label ------------------------------------------------------
gg + geom_text(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggplot2::geom_text") + theme(legend.position = "None")   # text
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).
## Warning: Removed 14 rows containing missing values (`geom_text()`).

gg + geom_label(aes(label=large_county), size=2, data=midwest_sub, alpha=0.25) + labs(subtitle="With ggplot2::geom_label") + theme(legend.position = "None")  # label
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
## Warning: Removed 14 rows containing missing values (`geom_label()`).

# Plot text and label that REPELS eachother (using ggrepel pkg) ------------
install.packages('ggrepel')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
library(ggrepel)
gg + geom_text_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_text_repel") + theme(legend.position = "None")   # text
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
## Warning: Removed 14 rows containing missing values (`geom_text_repel()`).

gg + geom_label_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_label_repel") + theme(legend.position = "None")   # label
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
## Warning: Removed 14 rows containing missing values (`geom_label_repel()`).
# How to Add Annotations Anywhere inside Plot

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")

# Define and add annotation -------------------------------------
library(grid)
my_text <- "This text is at x=0.7 and y=0.8!"
my_grob = grid.text(my_text, x=0.7,  y=0.8, gp=gpar(col="firebrick", fontsize=14, fontface="bold"))

gg + annotation_custom(my_grob)
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).

# 4. Flipping and Reversing X and Y Axis
# How to flip the X and Y axis?

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="X and Y axis Flipped") + theme(legend.position = "None")

# Flip the X and Y axis -------------------------------------------------
gg + coord_flip()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# How to reverse the scale of an axis?

library(ggplot2)

# Base Plot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + 
  labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="Axis Scales Reversed") + theme(legend.position = "None")

# Reverse the X and Y Axis ---------------------------
gg + scale_x_reverse() + scale_y_reverse()
## Scale for x is already present.
## Adding another scale for x, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## `geom_smooth()` using formula = 'y ~ x'

# 5. Faceting: Draw multiple plots within one figure

library(ggplot2)
data(mpg, package="ggplot2")  # load data
# mpg <- read.csv("http://goo.gl/uEeRGu")  # alt data source

g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  labs(title="hwy vs displ", caption = "Source: mpg") +
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme
plot(g)
## `geom_smooth()` using formula = 'y ~ x'

# Facet Wrap

library(ggplot2)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme

# Facet wrap with common scales
g + facet_wrap( ~ class, nrow=3) + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure")  # Shared scales
## `geom_smooth()` using formula = 'y ~ x'

# Facet wrap with free scales
g + facet_wrap( ~ class, scales = "free") + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure with free scales")  # Scales free
## `geom_smooth()` using formula = 'y ~ x'

# Facet Grid

library(ggplot2)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure") +
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme

# Add Facet Grid
g1 <- g + facet_grid(manufacturer ~ class)  # manufacturer in rows and class in columns
plot(g1)
## `geom_smooth()` using formula = 'y ~ x'

library(ggplot2)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Facet Grid - Multiple plots in one figure") +
  theme_bw()  # apply bw theme

# Add Facet Grid
g2 <- g + facet_grid(cyl ~ class)  # cyl in rows and class in columns.
plot(g2)
## `geom_smooth()` using formula = 'y ~ x'

install.packages('gridExtra')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
# Draw Multiple plots in same figure.
library(gridExtra)
gridExtra::grid.arrange(g1, g2, ncol=2)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

# 6. Modifying Plot Background, Major and Minor Axis
# How to Change Plot background

library(ggplot2)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme

# Change Plot Background elements -----------------------------------
g + theme(panel.background = element_rect(fill = 'khaki'),
          panel.grid.major = element_line(colour = "burlywood", size=1.5),
          panel.grid.minor = element_line(colour = "tomato", 
                                          size=.25, 
                                          linetype = "dashed"),
          panel.border = element_blank(),
          axis.line.x = element_line(colour = "darkorange", 
                                     size=1.5, 
                                     lineend = "butt"),
          axis.line.y = element_line(colour = "darkorange", 
                                     size=1.5)) +
  labs(title="Modified Background", 
       subtitle="How to Change Major and Minor grid, Axis Lines, No Border")
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'

# Change Plot Margins -----------------------------------------------
g + theme(plot.background=element_rect(fill="salmon"), 
          plot.margin = unit(c(2, 2, 1, 1), "cm")) +  # top, right, bottom, left
  labs(title="Modified Background", subtitle="How to Change Plot Margin")  
## `geom_smooth()` using formula = 'y ~ x'

# How to Remove Major and Minor Grid, Change Border, Axis Title, Text and Ticks

library(ggplot2)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme

g + theme(panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank(), 
          panel.border = element_blank(),
          axis.title = element_blank(), 
          axis.text = element_blank(),
          axis.ticks = element_blank()) +
  labs(title="Modified Background", subtitle="How to remove major and minor axis grid, border, axis title, text and ticks") 
## `geom_smooth()` using formula = 'y ~ x'

# Add an Image in Background
install.packages('png')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('grid')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
## Warning: package 'grid' is a base package, and should not be updated
library(ggplot2)
library(grid)
library(png)

img <- png::readPNG("Rlogo.png")  # source: https://www.r-project.org/
g_pic <- rasterGrob(img,interpolate=TRUE)

# Base Plot
g <- ggplot(mpg, aes(x=displ, y=hwy)) + 
  geom_point() + 
  geom_smooth(method="lm", se=FALSE) + 
  theme_bw()  # apply bw theme

g + theme(panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank(), 
          plot.title = element_text(size = rel(1.5), face = "bold"),
          axis.ticks = element_blank()) + 
  annotation_custom(g_pic, xmin=5, xmax=7, ymin=30, ymax=45)
## `geom_smooth()` using formula = 'y ~ x'