1 Setup

Libraries and functions

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", "ggcorrplot",
    "corrplot", "effects"
    )

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

1.1 Load Data

# read in data files
gjg <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/Institutional Signaling/Institutional Virtue Signaling Pilot 2.csv")

1.2 Functions

plot_cooker <- function(data, iv, dv, title) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
    ggtitle(title)
  ggpar(part1, legend = "none")
}

wrapped_plot_cooker <- function(data, iv, dv, title, facet_var) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2, 
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
    ggtitle(title) +
    facet_wrap(vars({{facet_var}}))
  ggpar(part1, legend = "none")
}

by_line <- function(data, iv, dv, x_label, y_label, color_label, plot_title) {
  ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
    stat_summary(fun.data = "mean_cl_normal", geom = "line") +
    geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.2) +
    labs(x = x_label, y = y_label, color = color_label, title = plot_title)
}

1.3 Reshaping data

#### filtering people who failed the attn check ####
filtered_gjg <-  gjg %>% filter(attentionCheck_text == "Companies' Social Media")

#### make dataset long ####
gjg_long<-filtered_gjg %>% gather(stim, resp, "B_S_Chic_staticNorm":"C_N_Tar_Prior") 

gjg_long<-gjg_long %>%
  separate(stim, into= c("social_issue", "signal", "company", "DV"), sep="_")

## shift dataset back to wide format ##
gjg_long <- spread(gjg_long, DV, resp)
names(gjg_long)
##  [1] "StartDate"             "EndDate"               "Status"               
##  [4] "IPAddress"             "Progress"              "Duration..in.seconds."
##  [7] "Finished"              "RecordedDate"          "ResponseId"           
## [10] "RecipientLastName"     "RecipientFirstName"    "RecipientEmail"       
## [13] "ExternalReference"     "LocationLatitude"      "LocationLongitude"    
## [16] "DistributionChannel"   "UserLanguage"          "prolificID"           
## [19] "consent"               "attentionCheck"        "attentionCheck_text"  
## [22] "inc"                   "inc_text"              "edu"                  
## [25] "edu_text"              "age"                   "gen"                  
## [28] "gen_3_TEXT"            "gen_text"              "pol"                  
## [31] "pol_text"              "pid"                   "pid_text"             
## [34] "area"                  "area_text"             "race"                 
## [37] "race_text"             "post_Real_Check"       "openFeedback"         
## [40] "confusion"             "PID"                   "PROLIFIC_PID"         
## [43] "STUDY_ID"              "SESSION_ID"            "cluster"              
## [46] "social_issue"          "signal"                "company"              
## [49] "dyNorm"                "noisyMin"              "OComp"                
## [52] "OLike"                 "OMotivate"             "OTrust"               
## [55] "peerPress"             "Prior"                 "Profit"               
## [58] "pubPress"              "Rep"                   "riskInact"            
## [61] "SComp"                 "SGen"                  "SImport"              
## [64] "SLike"                 "SRelImport"            "staticNorm"           
## [67] "STrust"                "surprise"
gjg_long <- gjg_long %>% mutate_at(c("dyNorm", "noisyMin", "OComp", "OLike", "OMotivate", "OTrust", "peerPress", "Prior", "Profit", "pubPress", "Rep", "riskInact", "SComp", "SGen", "SImport", "SLike", "SRelImport", "staticNorm", "STrust", "surprise","post_Real_Check", "age", "pid", "area", "pol", "edu", "gen", "inc"), as.numeric)

## Rename Vignettes
gjg_long <- gjg_long %>%
  mutate(companyLeaning = case_when(
    company == "Bud" ~ "R",
    company == "CAR" ~ "R",
    company == "Chic" ~ "R",
    company == "Dis" ~ "L",
    company == "Pop" ~ "L",
    company == "Star" ~ "L",
    company == "Tar" ~ "L",
    company == "Wal" ~ "R",
    company == "WNBA" ~ "L",
    company == "Fox" ~ "R",
    company == "NBC" ~ "L",
    company == "NBA" ~ "L",
    company == "NFL" ~ "R",
    TRUE ~ company  # if none of the above conditions are met, keep the original value
  ))

gjg_long$condition <- paste0(gjg_long$companyLeaning, gjg_long$signal)

gjg_long <- subset(gjg_long, !(condition == "CS" & company == "Chic" & !is.na(Rep)))

gjg_long <- gjg_long %>%
  mutate(condition = case_when(
    condition == "LS" ~ "Liberal \n\ Signal",
    condition == "LN" ~ "Liberal \n\ Control",
    condition == "RS" ~ "Conservative \n\ Signal",
    condition == "RN" ~ "Conservative \n\ Control",
    TRUE ~ condition  # if none of the above conditions are met, keep the original value
  ))

gjg_long <- gjg_long %>%
  mutate(companyLeaning = case_when(
    companyLeaning == "R" ~ "Right",
    companyLeaning == "L" ~ "Left",
    TRUE ~ companyLeaning  # if none of the above conditions are met, keep the original value
  ))


gjg_long <- gjg_long %>%
  mutate(company = case_when(
    company == "Bud" ~ "Budweiser",
    company == "CAR" ~ "NASCAR",
    company == "Chic" ~ "Chick-fil-A",
    company == "Dis" ~ "Disney",
    company == "Pop" ~ "Popeyes",
    company == "Star" ~ "Starbucks",
    company == "Tar" ~ "Target",
    company == "Wal" ~ "Walmart",
    TRUE ~ company  # if none of the above conditions are met, keep the original value
  ))

## Rename Conditions
gjg_long$signal <- as.factor(gjg_long$signal)
gjg_long <- gjg_long %>%
  mutate(signal = case_when(
    signal == "S" ~ "Signal",
    signal == "N" ~ "No Signal",
    TRUE ~ signal  # if none of the above conditions are met, keep the original value
  ))

gjg_long$social_issue <- as.factor(gjg_long$social_issue)
gjg_long <- gjg_long %>%
  mutate(social_issue = case_when(
    social_issue == "T" ~ "Transgendered Representation",
    social_issue == "C" ~ "Climate Change",
    social_issue == "L" ~ "LGBTQ Representation",
    social_issue == "B" ~ "BLM",
    TRUE ~ social_issue  # if none of the above conditions are met, keep the original value
  ))

## data frame just with signaling messages
signal_gjg_long <- gjg_long %>%
  filter(signal == "Signal")

## filter out rows for condition-vignette pairs people DON'T see
gjg_long <- gjg_long %>% filter(is.na(dyNorm) == FALSE)

2 Attention Check

gjg %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

59/801 people failed the attention check.

3 Demographics

# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen_text", "race_text", "inc_text", "edu_text", "pol_text", "pid_text", "area_text")]

# Age
mean(gjg$age, na.rm=TRUE)
## [1] 42.75062
sd(gjg$age, na.rm=TRUE)
## [1] 14.02753
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_gjg)) {
  {
    freq_table <- as.data.frame(table(demo_gjg[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}
## 
## Table of frequencies for gen_text :
##             Var1 Freq Percent
## 1                  30     3.6
## 2 I identify as:   10     1.2
## 3            Man  399    47.9
## 4          Woman  394    47.3
## 
## Table of frequencies for race_text :
##                                                                                                                                                                                 Var1
## 1                                                                                                                                                                                   
## 2                                                                                                                                                 American Indian and Native Alaskan
## 3                                                                                                                                           American Indian and Native Alaskan,Black
## 4  American Indian and Native Alaskan,Black,East Asian,South Asian,Southeast Asian,Pacific Islander or Native Hawaiian,Hispanic or Latino/a/x,Middle Eastern and North African,White
## 5                                                                             American Indian and Native Alaskan,Black,Hispanic or Latino/a/x,Middle Eastern and North African,White
## 6                                                                                                              American Indian and Native Alaskan,Black,Hispanic or Latino/a/x,White
## 7                                                                                                                    American Indian and Native Alaskan,Hispanic or Latino/a/x,White
## 8                                                                                                                                           American Indian and Native Alaskan,White
## 9                                                                                                                                                                              Black
## 10                                                                                                                                     Black,East Asian,Hispanic or Latino/a/x,White
## 11                                                                                                                                                      Black,Hispanic or Latino/a/x
## 12                                                                                                                                                                       Black,White
## 13                                                                                                                                                                        East Asian
## 14                                                                                                                                           East Asian,Hispanic or Latino/a/x,White
## 15                                                                                                                                       East Asian,Middle Eastern and North African
## 16                                                                                                                                                                  East Asian,White
## 17                                                                                                                                                            Hispanic or Latino/a/x
## 18                                                                                                                                                      Hispanic or Latino/a/x,White
## 19                                                                                                                                                  Middle Eastern and North African
## 20                                                                                                                                            Middle Eastern and North African,White
## 21                                                                                                                                                                       South Asian
## 22                                                                                                         South Asian,Hispanic or Latino/a/x,Middle Eastern and North African,White
## 23                                                                                                                                                                   Southeast Asian
## 24                                                                                                                                                             Southeast Asian,White
## 25                                                                                                                                                                             White
##    Freq Percent
## 1    31    3.72
## 2     4    0.48
## 3     1    0.12
## 4     1    0.12
## 5     1    0.12
## 6     1    0.12
## 7     2    0.24
## 8     3    0.36
## 9    61    7.32
## 10    1    0.12
## 11    1    0.12
## 12   11    1.32
## 13   28    3.36
## 14    2    0.24
## 15    1    0.12
## 16    9    1.08
## 17   42    5.04
## 18   21    2.52
## 19    3    0.36
## 20    3    0.36
## 21    8    0.96
## 22    1    0.12
## 23   17    2.04
## 24    2    0.24
## 25  578   69.39
## 
## Table of frequencies for inc_text :
##                  Var1 Freq Percent
## 1                       31    3.72
## 2 $100,000 - $149,999   94   11.28
## 3 $150,000 - $199,999   44    5.28
## 4   $25,000 - $49,999  205   24.61
## 5   $50,000 - $74,999  166   19.93
## 6   $75,000 - $99,999  118   14.17
## 7   less than $25,000  143   17.17
## 8  more than $200,000   32    3.84
## 
## Table of frequencies for edu_text :
##                                                   Var1 Freq Percent
## 1                                                        31    3.72
## 2                                    Bachelor's degree  289   34.69
## 3                  Graduate degree (Masters, PhD, etc)  117   14.05
## 4                           High school diploma or GED  137   16.45
## 5 Some college, Technical degree, or Associates degree  250   30.01
## 6 Some schooling, but no high school diploma or degree    9    1.08
## 
## Table of frequencies for pol_text :
##                    Var1 Freq Percent
## 1                         30    3.60
## 2          Conservative  132   15.85
## 3               Liberal  138   16.57
## 4              Moderate  185   22.21
## 5 Somewhat Conservative  107   12.85
## 6      Somewhat Liberal   98   11.76
## 7     Very Conservative   59    7.08
## 8          Very Liberal   84   10.08
## 
## Table of frequencies for pid_text :
##                  Var1 Freq Percent
## 1                       30    3.60
## 2            Democrat  292   35.05
## 3 Independent / Other  263   31.57
## 4          Republican  248   29.77
## 
## Table of frequencies for area_text :
##       Var1 Freq Percent
## 1            30    3.60
## 2    Rural  184   22.09
## 3 Suburban  438   52.58
## 4    Urban  181   21.73

4 Correlation

DVs <- gjg_long[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "Prior", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

## Correlation for left leaning companies

gjg_left <- gjg_long %>% filter(companyLeaning == "Left")

DVs <- gjg_left[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "Prior", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

4.1 Correlation for right leaning companies

gjg_right <- gjg_long %>% filter(companyLeaning == "Right")

DVs <- gjg_right[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp", "Prior", "post_Real_Check", "age", "pol", "edu", "gen", "inc")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

colnames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

rownames(corr_DVs) <- c("static norm", "dynamic norm", "Post motivates others", "Surprise", "I think cause is important", "How relatively important I think cause is", "I think company is genuine", "Reputation Motive", "Profit Motive", "Noisy Minority Motive", "Pressure from Peer organizations motive", "Pressure from public motive", "risky NOT to signal", "I like company", "I trust company", "I think company is competent", "Others like company", "Others trust company", "Others think company is competent", "seen prior", "belief in manipulation", "age", "political leaning", "education", "gender", "income")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "full", method = "circle", tl.cex = 0.5, insig = "label_sig", diag = FALSE)

5 factor analysis

factorDVs <- gjg_long[c("staticNorm", "dyNorm", "OMotivate", "surprise", "SImport", "SRelImport", "SGen", "Profit", "Rep", "noisyMin", "peerPress", "pubPress", "riskInact", "SLike", "STrust", "SComp", "OLike", "OTrust", "OComp")]

corr_DVs = cor(factorDVs, use="complete.obs")
KMO(corr_DVs) #tests how suited data is for factor analysis
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = corr_DVs)
## Overall MSA =  0.87
## MSA for each item = 
## staticNorm     dyNorm  OMotivate   surprise    SImport SRelImport       SGen 
##       0.91       0.83       0.93       0.67       0.79       0.77       0.94 
##     Profit        Rep   noisyMin  peerPress   pubPress  riskInact      SLike 
##       0.84       0.81       0.92       0.87       0.81       0.80       0.88 
##     STrust      SComp      OLike     OTrust      OComp 
##       0.87       0.92       0.88       0.87       0.87
cortest.bartlett(corr_DVs) #tests correlations between variables
## $chisq
## [1] 1035.743
## 
## $p.value
## [1] 1.085994e-123
## 
## $df
## [1] 171
ev<-eigen(cor(corr_DVs)) #gets eigenvalues (variance explained by each component)
ev$values
##  [1] 1.319743e+01 1.666909e+00 1.166101e+00 9.350191e-01 6.322155e-01
##  [6] 5.166858e-01 2.226571e-01 1.968918e-01 1.780653e-01 1.173475e-01
## [11] 3.536832e-02 3.325619e-02 3.247048e-02 2.559978e-02 2.040933e-02
## [16] 9.827983e-03 8.159520e-03 5.590463e-03 2.017346e-16
scree(corr_DVs) #number of factors until plot levels off

fa.parallel(corr_DVs, n.obs=50, fa="fa") #checks eigenvalues of factors against eigenvalues of identity (no correlation) matrix

## Parallel analysis suggests that the number of factors =  3  and the number of components =  NA
dat_fa <- na.omit(factorDVs)
view(dat_fa)

5.1 4 factors

fit.4 <- factanal(na.omit(dat_fa),factors=4, rotation="promax", scores = "regression")
print(fit.4, digits = 2, cutoff = .4, sort = TRUE)
## 
## Call:
## factanal(x = na.omit(dat_fa), factors = 4, scores = "regression",     rotation = "promax")
## 
## Uniquenesses:
## staticNorm     dyNorm  OMotivate   surprise    SImport SRelImport       SGen 
##       0.68       0.92       0.71       0.96       0.12       0.18       0.38 
##     Profit        Rep   noisyMin  peerPress   pubPress  riskInact      SLike 
##       0.50       0.47       0.50       0.37       0.43       0.77       0.21 
##     STrust      SComp      OLike     OTrust      OComp 
##       0.12       0.25       0.24       0.22       0.17 
## 
## Loadings:
##            Factor1 Factor2 Factor3 Factor4
## SGen        0.68                          
## SLike       0.95                          
## STrust      0.99                          
## SComp       0.72                          
## OLike               0.93                  
## OTrust              0.90                  
## OComp               0.93                  
## Profit                      0.63          
## Rep                         0.70          
## peerPress                   0.74          
## pubPress                    0.81          
## staticNorm                          0.51  
## SImport                             0.98  
## SRelImport                          0.97  
## noisyMin                    0.42   -0.51  
## dyNorm                                    
## OMotivate                                 
## surprise                                  
## riskInact                   0.49          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       3.05    2.66    2.60    2.58
## Proportion Var    0.16    0.14    0.14    0.14
## Cumulative Var    0.16    0.30    0.44    0.57
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00    0.50    0.40    0.66
## Factor2    0.50    1.00    0.26    0.47
## Factor3    0.40    0.26    1.00    0.20
## Factor4    0.66    0.47    0.20    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 1203.02 on 101 degrees of freedom.
## The p-value is 5.56e-188

5.2 3 factors

fit.3 <- factanal(na.omit(dat_fa),factors=3, rotation="promax", scores = "regression")
print(fit.3, digits = 2, cutoff = .4, sort = TRUE)
## 
## Call:
## factanal(x = na.omit(dat_fa), factors = 3, scores = "regression",     rotation = "promax")
## 
## Uniquenesses:
## staticNorm     dyNorm  OMotivate   surprise    SImport SRelImport       SGen 
##       0.68       0.92       0.70       0.96       0.11       0.18       0.42 
##     Profit        Rep   noisyMin  peerPress   pubPress  riskInact      SLike 
##       0.45       0.44       0.55       0.49       0.58       0.84       0.41 
##     STrust      SComp      OLike     OTrust      OComp 
##       0.34       0.32       0.32       0.30       0.25 
## 
## Loadings:
##            Factor1 Factor2 Factor3
## SLike       0.63                  
## STrust      0.64                  
## SComp       0.71                  
## OLike       0.92                  
## OTrust      0.92                  
## OComp       0.95                  
## Profit              0.75          
## Rep                 0.80          
## peerPress           0.66          
## pubPress            0.72          
## staticNorm                  0.51  
## SImport                     0.99  
## SRelImport                  0.98  
## noisyMin                   -0.50  
## dyNorm                            
## OMotivate                         
## surprise                          
## SGen        0.45   -0.43          
## riskInact           0.41          
## 
##                Factor1 Factor2 Factor3
## SS loadings       4.43    3.00    2.61
## Proportion Var    0.23    0.16    0.14
## Cumulative Var    0.23    0.39    0.53
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.53    0.42
## Factor2   -0.53    1.00   -0.35
## Factor3    0.42   -0.35    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 3281.51 on 117 degrees of freedom.
## The p-value is 0

6 Plots + Inferential Stats

6.1 All Plots

plot_list <- list(plot_cooker(gjg_long, condition, staticNorm, "Percent of support for issue"),
                         plot_cooker(gjg_long, condition, dyNorm, "Change in support for issue"),
                         plot_cooker(gjg_long, condition, SImport, "I think cause is important"),
                         plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes"),
                         plot_cooker(gjg_long, condition, OMotivate, "Message motivates others to act"),
                         plot_cooker(gjg_long, condition, surprise, "Surprise"),
                         plot_cooker(gjg_long, condition, SGen, "I think company is genuine"),
                         plot_cooker(signal_gjg_long, condition, Rep, "Reputation motive"),
                         plot_cooker(signal_gjg_long, condition, Profit, "Profit motive"),
                         plot_cooker(signal_gjg_long, condition, noisyMin, "Motive to cater to noisy minority"),
                         plot_cooker(signal_gjg_long, condition, peerPress, "Pressured by peer companies"),
                         plot_cooker(signal_gjg_long, condition, pubPress, "Pressured by public"),
                         plot_cooker(signal_gjg_long, condition, riskInact, "Risky NOT to send signal"),
                         plot_cooker(gjg_long, condition, SLike, "I like company"),
                         plot_cooker(gjg_long, condition, STrust, "I trust company"),
                         plot_cooker(gjg_long, condition, SComp, "I think company is competent"),
                         plot_cooker(gjg_long, condition, OLike, "Others like company"),
                         plot_cooker(gjg_long, condition, OTrust, "Others trust company"),
                         plot_cooker(gjg_long, condition, OComp, "Others think company is competent"),
                         plot_cooker(gjg_long, condition, post_Real_Check, "To what extent did you think the posts were fake?")
                        )

plot_arranged <- ggarrange(plotlist = plot_list, ncol = 5, nrow = 4)

plot_arranged

6.2 Individual Plots + Tests

6.2.1 Static Norm

plot_cooker(gjg_long, condition, staticNorm, "Percent of support for issue")

mod_staticNorm <- lmer(staticNorm ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_staticNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: staticNorm ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 26184.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1256 -0.5841  0.0427  0.5940  3.6422 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 177.9    13.34   
##  social_issue (Intercept) 117.0    10.81   
##  Residual                 198.4    14.09   
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                       55.3544     5.4524    3.0873  10.152   0.0018
## conditionConservative \n Signal    0.8640     0.7184 2301.0007   1.203   0.2292
## conditionLiberal \n Control       -0.5539     0.7184 2301.0003  -0.771   0.4407
## conditionLiberal \n Signal         0.5933     0.7184 2301.0007   0.826   0.4090
##                                   
## (Intercept)                     **
## conditionConservative \n Signal   
## conditionLiberal \n Control       
## conditionLiberal \n Signal        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.066              
## cndtnLbrlCn -0.066  0.500       
## cndtnLbrlSg -0.066  0.500  0.500

6.2.2 Dynamic Norm

plot_cooker(gjg_long, condition, dyNorm, "Change in support for issue")

## SIGNIFICANT ##
mod_dyNorm <- lmer(dyNorm ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9585.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7479 -0.4442  0.0547  0.5575  4.0707 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.8301   0.9111  
##  social_issue (Intercept) 0.0368   0.1918  
##  Residual                 0.8882   0.9424  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                     4.911e+00  1.069e-01 4.356e+00  45.926 5.11e-07
## conditionConservative \n Signal 2.276e-01  4.806e-02 2.301e+03   4.736 2.31e-06
## conditionLiberal \n Control     9.293e-02  4.806e-02 2.301e+03   1.934  0.05329
## conditionLiberal \n Signal      1.482e-01  4.806e-02 2.301e+03   3.084  0.00207
##                                    
## (Intercept)                     ***
## conditionConservative \n Signal ***
## conditionLiberal \n Control     .  
## conditionLiberal \n Signal      ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.225              
## cndtnLbrlCn -0.225  0.500       
## cndtnLbrlSg -0.225  0.500  0.500

6.2.3 Issue is important

plot_cooker(gjg_long, condition, SImport, "I think cause is important")

mod_SImport <- lmer(SImport ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SImport ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11267.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7777 -0.4726  0.0107  0.5082  3.3585 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 2.5555   1.5986  
##  social_issue (Intercept) 0.3243   0.5694  
##  Residual                 1.3141   1.1463  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      4.871e+00  2.934e-01  3.349e+00  16.601
## conditionConservative \n Signal  6.007e-02  5.846e-02  2.301e+03   1.027
## conditionLiberal \n Control     -1.142e-01  5.846e-02  2.301e+03  -1.954
## conditionLiberal \n Signal      -8.882e-04  5.846e-02  2.301e+03  -0.015
##                                 Pr(>|t|)    
## (Intercept)                     0.000247 ***
## conditionConservative \n Signal 0.304345    
## conditionLiberal \n Control     0.050875 .  
## conditionLiberal \n Signal      0.987880    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.100              
## cndtnLbrlCn -0.100  0.500       
## cndtnLbrlSg -0.100  0.500  0.500

6.2.4 Issue is relatively important

plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes")

mod_SRelImport <- lmer(SRelImport ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SRelImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SRelImport ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10589.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4988 -0.5790 -0.0023  0.5326  3.5653 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.9201   1.3857  
##  social_issue (Intercept) 0.4561   0.6753  
##  Residual                 1.0726   1.0357  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      3.930e+00  3.434e-01  3.189e+00  11.445
## conditionConservative \n Signal  8.142e-02  5.282e-02  2.301e+03   1.541
## conditionLiberal \n Control     -5.640e-02  5.282e-02  2.301e+03  -1.068
## conditionLiberal \n Signal      -3.791e-03  5.282e-02  2.301e+03  -0.072
##                                 Pr(>|t|)   
## (Intercept)                      0.00107 **
## conditionConservative \n Signal  0.12336   
## conditionLiberal \n Control      0.28576   
## conditionLiberal \n Signal       0.94280   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.077              
## cndtnLbrlCn -0.077  0.500       
## cndtnLbrlSg -0.077  0.500  0.500

6.2.5 Message motivates others

plot_cooker(gjg_long, condition, OMotivate, "Message motivates others to act")

## SIGNIFICANT ##
mod_OMotivate <- lmer(OMotivate ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OMotivate)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OMotivate ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11384.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00156 -0.66804  0.04285  0.67324  2.64065 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.68950  0.8304  
##  social_issue (Intercept) 0.01739  0.1319  
##  Residual                 1.88086  1.3714  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        3.07562    0.08769    7.21147  35.074
## conditionConservative \n Signal    1.60041    0.06994 2301.05656  22.881
## conditionLiberal \n Control       -0.08913    0.06994 2301.03561  -1.274
## conditionLiberal \n Signal         1.90144    0.06994 2301.05656  27.185
##                                 Pr(>|t|)    
## (Intercept)                     2.52e-09 ***
## conditionConservative \n Signal  < 2e-16 ***
## conditionLiberal \n Control        0.203    
## conditionLiberal \n Signal       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.399              
## cndtnLbrlCn -0.399  0.500       
## cndtnLbrlSg -0.399  0.500  0.500

6.2.6 Surprise

plot_cooker(gjg_long, condition, surprise, "Surprise")

## SIGNIFICANT ##
mod_surprise <- lmer(surprise ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_surprise)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: surprise ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11803.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6841 -0.6883 -0.1527  0.6432  3.2124 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.6774   0.8231  
##  social_issue (Intercept) 0.1227   0.3503  
##  Residual                 2.2076   1.4858  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        2.96443    0.18557    3.60771  15.975
## conditionConservative \n Signal    1.34118    0.07578 2301.01069  17.699
## conditionLiberal \n Control       -0.55460    0.07578 2301.00678  -7.319
## conditionLiberal \n Signal        -0.12415    0.07578 2301.01069  -1.638
##                                 Pr(>|t|)    
## (Intercept)                     0.000177 ***
## conditionConservative \n Signal  < 2e-16 ***
## conditionLiberal \n Control     3.44e-13 ***
## conditionLiberal \n Signal      0.101489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.204              
## cndtnLbrlCn -0.204  0.500       
## cndtnLbrlSg -0.204  0.500  0.500

6.2.7 Company is genuine

plot_cooker(gjg_long, condition, SGen, "I think company is genuine")

## SIGNIFICANT ##
mod_SGen <- lmer(SGen ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SGen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SGen ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11191.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2489 -0.6036  0.0364  0.5927  3.5574 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.14300  1.0691  
##  social_issue (Intercept) 0.01935  0.1391  
##  Residual                 1.57413  1.2546  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                     3.405e+00  9.150e-02 7.341e+00  37.211 1.24e-09
## conditionConservative \n Signal 2.797e-01  6.399e-02 2.301e+03   4.371 1.29e-05
## conditionLiberal \n Control     6.637e-01  6.399e-02 2.301e+03  10.372  < 2e-16
## conditionLiberal \n Signal      9.799e-01  6.399e-02 2.301e+03  15.314  < 2e-16
##                                    
## (Intercept)                     ***
## conditionConservative \n Signal ***
## conditionLiberal \n Control     ***
## conditionLiberal \n Signal      ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.350              
## cndtnLbrlCn -0.350  0.500       
## cndtnLbrlSg -0.350  0.500  0.500

6.2.8 Reputation motive

plot_cooker(signal_gjg_long, condition, Rep, "Reputation motive")

## SIGNIFICANT ##
mod_Rep <- lmer(Rep ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rep ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5401.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2477 -0.4034  0.1514  0.5805  2.1612 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.69493  0.8336  
##  social_issue (Intercept) 0.01872  0.1368  
##  Residual                 1.37375  1.1721  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  5.35082    0.08586   5.20678  62.323  1.1e-08 ***
## conditionLiberal \n Signal  -0.13592    0.05978 765.73216  -2.274   0.0233 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.348

6.2.9 Profit motive

plot_cooker(signal_gjg_long, condition, Profit, "Profit motive")

mod_Profit <- lmer(Profit ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5671.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8345 -0.4347  0.1422  0.6066  2.1534 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.01578  1.0079  
##  social_issue (Intercept) 0.02395  0.1547  
##  Residual                 1.51837  1.2322  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  4.98874    0.09634   4.96489  51.780 5.59e-08 ***
## conditionLiberal \n Signal  -0.11931    0.06284 765.93790  -1.899    0.058 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.326

6.2.10 Noisy minority

plot_cooker(signal_gjg_long, condition, noisyMin, "Motive to cater to noisy minority")

## SIGNIFICANT ##
mod_noisyMin <- lmer(noisyMin ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5975
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.70483 -0.56999 -0.00067  0.58141  2.44471 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.3836   1.1763  
##  social_issue (Intercept) 0.1015   0.3186  
##  Residual                 1.7605   1.3268  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  4.45985    0.17165   3.62257  25.983    3e-05 ***
## conditionLiberal \n Signal  -0.24994    0.06767 765.97114  -3.694 0.000237 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.197

6.2.11 Pressured by peer companies

plot_cooker(signal_gjg_long, condition, peerPress, "Pressured by peer companies")

mod_peerPress <- lmer(peerPress ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5811.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.62328 -0.59190  0.04645  0.61811  2.34407 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.103927 1.05068 
##  social_issue (Intercept) 0.002456 0.04955 
##  Residual                 1.675204 1.29430 
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  4.59534    0.06502  11.82908   70.67  < 2e-16 ***
## conditionLiberal \n Signal  -0.38219    0.06601 766.82034   -5.79 1.03e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.508

6.2.12 Pressured by public

plot_cooker(signal_gjg_long, condition, pubPress, "Pressured by public")

## SIGNIFICANT ##
mod_pubPress <- lmer(pubPress ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5858.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7012 -0.6063  0.0366  0.6230  2.5734 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.23194  1.1099  
##  social_issue (Intercept) 0.05768  0.2402  
##  Residual                 1.66303  1.2896  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  4.32670    0.13485   4.12230  32.085  4.2e-06 ***
## conditionLiberal \n Signal  -0.24377    0.06577 765.88756  -3.706 0.000225 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.244

6.2.13 Risky to NOT send signal

plot_cooker(signal_gjg_long, condition, riskInact, "Risky NOT to send signal")

mod_riskInact <- lmer(riskInact ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5865.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.48764 -0.61921  0.00533  0.60579  2.57312 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.9621   0.9809  
##  social_issue (Intercept) 0.1157   0.3401  
##  Residual                 1.8360   1.3550  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                             Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                  3.79627    0.18046   3.49928  21.037 8.25e-05 ***
## conditionLiberal \n Signal   0.06948    0.06911 765.94050   1.005    0.315    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## cndtnLbrlSg -0.191

6.2.14 I like company

plot_cooker(gjg_long, condition, SLike, "I like company")

mod_SLike <- lmer(SLike ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12044.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9206 -0.6591  0.1073  0.6346  2.8131 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.86456  0.9298  
##  social_issue (Intercept) 0.05492  0.2344  
##  Residual                 2.32460  1.5247  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                     3.882e+00  1.337e-01 4.569e+00  29.037 2.33e-06
## conditionConservative \n Signal 1.359e-03  7.776e-02 2.301e+03   0.017    0.986
## conditionLiberal \n Control     6.269e-01  7.776e-02 2.301e+03   8.063 1.19e-15
## conditionLiberal \n Signal      5.790e-01  7.776e-02 2.301e+03   7.447 1.35e-13
##                                    
## (Intercept)                     ***
## conditionConservative \n Signal    
## conditionLiberal \n Control     ***
## conditionLiberal \n Signal      ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.291              
## cndtnLbrlCn -0.291  0.500       
## cndtnLbrlSg -0.291  0.500  0.500

6.2.15 I trust company

plot_cooker(gjg_long, condition, STrust, "I trust company")

mod_STrust <- lmer(STrust ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11339.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2446 -0.5459  0.0647  0.5547  3.4354 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.17526  1.0841  
##  social_issue (Intercept) 0.01531  0.1237  
##  Residual                 1.65972  1.2883  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                     3.691e+00  8.669e-02 8.871e+00  42.574 1.44e-11
## conditionConservative \n Signal 1.285e-02  6.570e-02 2.301e+03   0.196    0.845
## conditionLiberal \n Control     4.490e-01  6.570e-02 2.301e+03   6.834 1.05e-11
## conditionLiberal \n Signal      4.205e-01  6.570e-02 2.301e+03   6.400 1.88e-10
##                                    
## (Intercept)                     ***
## conditionConservative \n Signal    
## conditionLiberal \n Control     ***
## conditionLiberal \n Signal      ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.379              
## cndtnLbrlCn -0.379  0.500       
## cndtnLbrlSg -0.379  0.500  0.500

6.2.16 I think company is competent

plot_cooker(gjg_long, condition, SComp, "I think company is competent")

mod_SComp <- lmer(SComp ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11300.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2967 -0.4544  0.1212  0.5710  3.2038 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.99311  0.9965  
##  social_issue (Intercept) 0.01881  0.1372  
##  Residual                 1.69547  1.3021  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        4.44732    0.09055    7.30209  49.116
## conditionConservative \n Signal   -0.03095    0.06641 2301.04809  -0.466
## conditionLiberal \n Control        0.37370    0.06641 2301.03024   5.627
## conditionLiberal \n Signal         0.39204    0.06641 2301.04809   5.904
##                                 Pr(>|t|)    
## (Intercept)                     1.80e-10 ***
## conditionConservative \n Signal    0.641    
## conditionLiberal \n Control     2.05e-08 ***
## conditionLiberal \n Signal      4.08e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.367              
## cndtnLbrlCn -0.367  0.500       
## cndtnLbrlSg -0.367  0.500  0.500

6.2.17 Others like company

plot_cooker(gjg_long, condition, OLike, "Others like company")

mod_OLike <- lmer(OLike ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9614.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5829 -0.4291  0.1192  0.5517  2.8147 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.492696 0.7019  
##  social_issue (Intercept) 0.008153 0.0903  
##  Residual                 1.011049 1.0055  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                     5.148e+00  6.320e-02 8.534e+00  81.457 1.22e-13
## conditionConservative \n Signal 2.612e-02  5.128e-02 2.301e+03   0.509    0.611
## conditionLiberal \n Control     3.115e-01  5.128e-02 2.301e+03   6.074 1.46e-09
## conditionLiberal \n Signal      3.428e-01  5.128e-02 2.301e+03   6.685 2.90e-11
##                                    
## (Intercept)                     ***
## conditionConservative \n Signal    
## conditionLiberal \n Control     ***
## conditionLiberal \n Signal      ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.406              
## cndtnLbrlCn -0.406  0.500       
## cndtnLbrlSg -0.406  0.500  0.500

6.2.18 Others trust company

plot_cooker(gjg_long, condition, OTrust, "Others trust company")

mod_OTrust <- lmer(OTrust ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9784.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3821 -0.4219  0.0797  0.5438  3.1316 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.613491 0.78326 
##  social_issue (Intercept) 0.005183 0.07199 
##  Residual                 1.033397 1.01656 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        4.84386    0.05863   13.28597  82.619
## conditionConservative \n Signal   -0.04743    0.05184 2301.09340  -0.915
## conditionLiberal \n Control        0.20857    0.05184 2301.05859   4.023
## conditionLiberal \n Signal         0.23583    0.05184 2301.09340   4.549
##                                 Pr(>|t|)    
## (Intercept)                      < 2e-16 ***
## conditionConservative \n Signal     0.36    
## conditionLiberal \n Control     5.93e-05 ***
## conditionLiberal \n Signal      5.67e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.442              
## cndtnLbrlCn -0.442  0.500       
## cndtnLbrlSg -0.442  0.500  0.500

6.2.19 Others think company is competent

plot_cooker(gjg_long, condition, OComp, "Others think company is competent")

mod_OComp <- lmer(OComp ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9935.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1498 -0.4199  0.1126  0.5594  3.1420 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.61295  0.7829  
##  social_issue (Intercept) 0.01992  0.1411  
##  Residual                 1.09543  1.0466  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      4.917e+00  8.486e-02  5.463e+00  57.941
## conditionConservative \n Signal -9.141e-03  5.338e-02  2.301e+03  -0.171
## conditionLiberal \n Control      2.699e-01  5.338e-02  2.301e+03   5.057
## conditionLiberal \n Signal       3.242e-01  5.338e-02  2.301e+03   6.074
##                                 Pr(>|t|)    
## (Intercept)                     7.85e-09 ***
## conditionConservative \n Signal    0.864    
## conditionLiberal \n Control     4.59e-07 ***
## conditionLiberal \n Signal      1.45e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.315              
## cndtnLbrlCn -0.315  0.500       
## cndtnLbrlSg -0.315  0.500  0.500

6.3 Political Affilliation Line

6.3.1 Static Norm

by_line(gjg_long, pol, staticNorm, "political leaning", "static norm", "Condition", "Percent of support for issue")

6.3.2 Dynamic Norm (Look into)

by_line(gjg_long, pol, dyNorm, "political leaning", "dynamic norm", "Condition", "Change in support for issue")

## SIGNIFICANT ##
mod_dyNorm <- lmer(dyNorm ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9604.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7432 -0.4408  0.0568  0.5620  4.1412 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.83022  0.9112  
##  social_issue (Intercept) 0.03678  0.1918  
##  Residual                 0.88828  0.9425  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          4.905e+00  1.526e-01  1.800e+01  32.151
## conditionConservative \n Signal      2.045e-01  1.207e-01  2.298e+03   1.695
## conditionLiberal \n Control         -3.675e-02  1.207e-01  2.298e+03  -0.304
## conditionLiberal \n Signal          -4.407e-04  1.207e-01  2.298e+03  -0.004
## pol                                  1.512e-03  2.649e-02  1.806e+03   0.057
## conditionConservative \n Signal:pol  5.623e-03  2.694e-02  2.298e+03   0.209
## conditionLiberal \n Control:pol      3.157e-02  2.696e-02  2.298e+03   1.171
## conditionLiberal \n Signal:pol       3.619e-02  2.694e-02  2.298e+03   1.343
##                                     Pr(>|t|)    
## (Intercept)                           <2e-16 ***
## conditionConservative \n Signal       0.0902 .  
## conditionLiberal \n Control           0.7608    
## conditionLiberal \n Signal            0.9971    
## pol                                   0.9545    
## conditionConservative \n Signal:pol   0.8347    
## conditionLiberal \n Control:pol       0.2417    
## conditionLiberal \n Signal:pol        0.1793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.395                                          
## cndtnLbrlCn -0.396  0.500                                   
## cndtnLbrlSg -0.395  0.500  0.500                            
## pol         -0.713  0.466  0.467  0.466                     
## cndtnCSgnl:  0.363 -0.917 -0.459 -0.458 -0.509              
## cndtnLCntr:  0.363 -0.459 -0.917 -0.459 -0.509  0.500       
## cndtnLSgnl:  0.363 -0.458 -0.459 -0.917 -0.509  0.499  0.500

6.3.3 Issue is important

by_line(gjg_long, pol, SImport, "political leaning", "issue importance", "Condition", "I think cause is important")

6.3.4 Issue is relatively important

by_line(gjg_long, pol, SRelImport, "political leaning", "issue relative importance", "Condition", "I think cause is important relative to other causes")

6.3.5 Message motivates others

by_line(gjg_long, pol, OMotivate, "political leaning", "", "Condition", "Message motivates others to act")

6.3.6 Surprise

by_line(gjg_long, pol, surprise, "political leaning", "", "Condition", "Surprise")

6.3.7 Company is genuine (Look into)

by_line(gjg_long, pol, SGen, "political leaning", "", "Condition", "I think company is genuine")

## Significant
mod_SGen <- lmer(SGen ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SGen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SGen ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11145.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4674 -0.5940  0.0322  0.6101  3.3835 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.14946  1.0721  
##  social_issue (Intercept) 0.01881  0.1371  
##  Residual                 1.53306  1.2382  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            3.78065    0.16333   76.85336  23.147
## conditionConservative \n Signal       -0.04228    0.15851 2298.39476  -0.267
## conditionLiberal \n Control           -0.16805    0.15857 2298.73167  -1.060
## conditionLiberal \n Signal            -0.07083    0.15851 2298.39476  -0.447
## pol                                   -0.09150    0.03310 1979.47272  -2.765
## conditionConservative \n Signal:pol    0.07835    0.03539 2298.49620   2.214
## conditionLiberal \n Control:pol        0.20247    0.03541 2298.93897   5.717
## conditionLiberal \n Signal:pol         0.25580    0.03539 2298.49620   7.227
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal      0.78970    
## conditionLiberal \n Control          0.28936    
## conditionLiberal \n Signal           0.65503    
## pol                                  0.00575 ** 
## conditionConservative \n Signal:pol  0.02695 *  
## conditionLiberal \n Control:pol     1.22e-08 ***
## conditionLiberal \n Signal:pol      6.68e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.485                                          
## cndtnLbrlCn -0.485  0.500                                   
## cndtnLbrlSg -0.485  0.500  0.500                            
## pol         -0.832  0.490  0.491  0.490                     
## cndtnCSgnl:  0.445 -0.917 -0.459 -0.458 -0.535              
## cndtnLCntr:  0.445 -0.459 -0.917 -0.459 -0.535  0.500       
## cndtnLSgnl:  0.445 -0.458 -0.459 -0.917 -0.535  0.499  0.500

6.3.8 Reputation motive

by_line(signal_gjg_long, pol, Rep, "political leaning", "", "Condition", "Reputation motive")

mod_Rep <- lmer(Rep ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rep ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5405.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2719 -0.4259  0.1282  0.5907  2.1306 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.69949  0.8364  
##  social_issue (Intercept) 0.01913  0.1383  
##  Residual                 1.36509  1.1684  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       5.27668    0.14732   42.78877  35.817
## conditionLiberal \n Signal        0.19508    0.14974  765.53511   1.303
## pol                               0.01806    0.02905 1376.28289   0.622
## conditionLiberal \n Signal:pol   -0.08059    0.03345  765.77024  -2.410
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## conditionLiberal \n Signal       0.1930    
## pol                              0.5343    
## conditionLiberal \n Signal:pol   0.0162 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.508              
## pol         -0.810  0.528       
## cndtnLSgnl:  0.466 -0.917 -0.576

6.3.9 Profit motive

by_line(signal_gjg_long, pol, Profit, "political leaning", "", "Condition", "Profit motive")

mod_Profit <- lmer(Profit ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5662.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9975 -0.4813  0.1043  0.5803  2.3120 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.02896  1.0144  
##  social_issue (Intercept) 0.02546  0.1596  
##  Residual                 1.48702  1.2194  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       4.85213    0.16427   37.48506  29.537
## conditionLiberal \n Signal        0.47211    0.15629  765.58112   3.021
## pol                               0.03328    0.03206 1314.30616   1.038
## conditionLiberal \n Signal:pol   -0.14401    0.03491  765.77314  -4.125
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## conditionLiberal \n Signal      0.00261 ** 
## pol                             0.29955    
## conditionLiberal \n Signal:pol 4.11e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.476              
## pol         -0.802  0.499       
## cndtnLSgnl:  0.436 -0.917 -0.544

6.3.10 Noisy minority

by_line(signal_gjg_long, pol, noisyMin, "political leaning", "", "Condition", "Motive to cater to noisy minority")

## SIGNIFICANT ##
mod_noisyMin <- lmer(noisyMin ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5796.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.11272 -0.55765  0.03651  0.61922  2.54500 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.9035   0.9505  
##  social_issue (Intercept) 0.1009   0.3176  
##  Residual                 1.7545   1.3246  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       5.91327    0.21680    9.39334  27.275
## conditionLiberal \n Signal        0.04652    0.16979  765.19291   0.274
## pol                              -0.35380    0.03296 1374.83036 -10.734
## conditionLiberal \n Signal:pol   -0.07219    0.03793  765.26392  -1.903
##                                Pr(>|t|)    
## (Intercept)                     2.9e-10 ***
## conditionLiberal \n Signal       0.7842    
## pol                             < 2e-16 ***
## conditionLiberal \n Signal:pol   0.0574 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.392              
## pol         -0.625  0.528       
## cndtnLSgnl:  0.359 -0.917 -0.575

6.3.11 Pressured by peer companies

by_line(signal_gjg_long, pol, peerPress, "political leaning", "", "Condition", "Pressured by peer companies")

mod_peerPress <- lmer(peerPress ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5762.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.70300 -0.56138  0.06176  0.64840  2.23842 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.001122 1.00056 
##  social_issue (Intercept) 0.001201 0.03466 
##  Residual                 1.652413 1.28546 
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       5.12223    0.14844  347.78146  34.508
## conditionLiberal \n Signal        0.13866    0.16456  766.26997   0.843
## pol                              -0.12823    0.03292 1342.68064  -3.896
## conditionLiberal \n Signal:pol   -0.12681    0.03675  765.28554  -3.451
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## conditionLiberal \n Signal     0.399734    
## pol                            0.000103 ***
## conditionLiberal \n Signal:pol 0.000589 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.554              
## pol         -0.911  0.512       
## cndtnLSgnl:  0.508 -0.917 -0.558

6.3.12 Pressured by public

by_line(signal_gjg_long, pol, pubPress, "political leaning", "", "Condition", "Pressured by public")

## SIGNIFICANT ##
mod_pubPress <- lmer(pubPress ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5858.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.66777 -0.62153  0.03204  0.60806  2.52784 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.24292  1.1149  
##  social_issue (Intercept) 0.05539  0.2354  
##  Residual                 1.64413  1.2822  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       4.16714    0.19368   18.81897  21.516
## conditionLiberal \n Signal        0.23130    0.16436  765.25656   1.407
## pol                               0.03886    0.03435 1294.38926   1.131
## conditionLiberal \n Signal:pol   -0.11567    0.03671  765.37278  -3.151
##                                Pr(>|t|)    
## (Intercept)                    1.04e-14 ***
## conditionLiberal \n Signal      0.15974    
## pol                             0.25817    
## conditionLiberal \n Signal:pol  0.00169 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.424              
## pol         -0.729  0.490       
## cndtnLSgnl:  0.389 -0.917 -0.534

6.3.13 Risky to NOT send signal

by_line(signal_gjg_long, pol, riskInact, "political leaning", "", "Condition", "Risky NOT to signal")

mod_riskInact <- lmer(riskInact ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5865.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.55187 -0.63741  0.02176  0.58295  2.51774 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.9392   0.9691  
##  social_issue (Intercept) 0.1159   0.3405  
##  Residual                 1.8383   1.3558  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)                    3.455e+00  2.275e-01 8.791e+00  15.189  1.3e-07
## conditionLiberal \n Signal     3.594e-02  1.738e-01 7.651e+02   0.207   0.8362
## pol                            8.297e-02  3.369e-02 1.376e+03   2.462   0.0139
## conditionLiberal \n Signal:pol 8.167e-03  3.882e-02 7.652e+02   0.210   0.8335
##                                   
## (Intercept)                    ***
## conditionLiberal \n Signal        
## pol                            *  
## conditionLiberal \n Signal:pol    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS pol   
## cndtnLbrlSg -0.382              
## pol         -0.608  0.529       
## cndtnLSgnl:  0.350 -0.917 -0.576

6.3.14 I like company

by_line(gjg_long, pol, SLike, "political leaning", "", "Condition", "I like company")

#SIGNIFICANT#
mod_SLike <- lmer(SLike ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11921
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2888 -0.6601  0.0767  0.6457  2.7586 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.88787  0.9423  
##  social_issue (Intercept) 0.04894  0.2212  
##  Residual                 2.19309  1.4809  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.51794    0.19359   25.01162  23.338
## conditionConservative \n Signal       -0.36069    0.18959 2298.22916  -1.902
## conditionLiberal \n Control           -0.71904    0.18967 2298.43184  -3.791
## conditionLiberal \n Signal            -1.23857    0.18959 2298.22916  -6.533
## pol                                   -0.15468    0.03548 2456.88636  -4.360
## conditionConservative \n Signal:pol    0.08809    0.04233 2298.28954   2.081
## conditionLiberal \n Control:pol        0.32765    0.04236 2298.55995   7.735
## conditionLiberal \n Signal:pol         0.44250    0.04233 2298.28954  10.452
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal     0.057238 .  
## conditionLiberal \n Control         0.000154 ***
## conditionLiberal \n Signal          7.92e-11 ***
## pol                                 1.35e-05 ***
## conditionConservative \n Signal:pol 0.037559 *  
## conditionLiberal \n Control:pol     1.53e-14 ***
## conditionLiberal \n Signal:pol       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.490                                          
## cndtnLbrlCn -0.490  0.500                                   
## cndtnLbrlSg -0.490  0.500  0.500                            
## pol         -0.753  0.547  0.548  0.547                     
## cndtnCSgnl:  0.449 -0.917 -0.459 -0.458 -0.597              
## cndtnLCntr:  0.449 -0.459 -0.917 -0.459 -0.597  0.500       
## cndtnLSgnl:  0.449 -0.458 -0.459 -0.917 -0.597  0.499  0.500

6.3.15 I trust company

by_line(gjg_long, pol, STrust, "political leaning", "", "Condition", "I trust company")

mod_STrust <- lmer(STrust ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11214.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6311 -0.5590  0.0387  0.5554  3.4384 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.18556  1.0888  
##  social_issue (Intercept) 0.01227  0.1108  
##  Residual                 1.56568  1.2513  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.21131    0.16001  144.94334  26.318
## conditionConservative \n Signal       -0.41880    0.16019 2298.57442  -2.614
## conditionLiberal \n Control           -0.78230    0.16025 2299.04836  -4.882
## conditionLiberal \n Signal            -1.13504    0.16019 2298.57442  -7.086
## pol                                   -0.12674    0.03352 1971.51104  -3.781
## conditionConservative \n Signal:pol    0.10504    0.03577 2298.71905   2.937
## conditionLiberal \n Control:pol        0.29975    0.03579 2299.32994   8.376
## conditionLiberal \n Signal:pol         0.37870    0.03577 2298.71905  10.588
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal     0.008996 ** 
## conditionLiberal \n Control         1.12e-06 ***
## conditionLiberal \n Signal          1.83e-12 ***
## pol                                 0.000161 ***
## conditionConservative \n Signal:pol 0.003350 ** 
## conditionLiberal \n Control:pol      < 2e-16 ***
## conditionLiberal \n Signal:pol       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.501                                          
## cndtnLbrlCn -0.501  0.500                                   
## cndtnLbrlSg -0.501  0.500  0.500                            
## pol         -0.861  0.489  0.490  0.489                     
## cndtnCSgnl:  0.459 -0.917 -0.459 -0.458 -0.534              
## cndtnLCntr:  0.459 -0.459 -0.917 -0.459 -0.534  0.500       
## cndtnLSgnl:  0.459 -0.458 -0.459 -0.917 -0.534  0.500  0.500

6.3.16 I think company is competent

by_line(gjg_long, pol, SComp, "political leaning", "", "Condition", "I think company is competent")

mod_SComp <- lmer(SComp ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11179.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6269 -0.4838  0.1039  0.5793  3.2162 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.97325  0.9865  
##  social_issue (Intercept) 0.01573  0.1254  
##  Residual                 1.61285  1.2700  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.73676    0.15849   92.34788  29.887
## conditionConservative \n Signal       -0.48775    0.16258 2298.47917  -3.000
## conditionLiberal \n Control           -0.69323    0.16265 2298.88260  -4.262
## conditionLiberal \n Signal            -1.13416    0.16258 2298.47917  -6.976
## pol                                   -0.07046    0.03250 2154.27068  -2.168
## conditionConservative \n Signal:pol    0.11116    0.03630 2298.60139   3.062
## conditionLiberal \n Control:pol        0.25972    0.03632 2299.12694   7.151
## conditionLiberal \n Signal:pol         0.37155    0.03630 2298.60139  10.235
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal      0.00273 ** 
## conditionLiberal \n Control         2.11e-05 ***
## conditionLiberal \n Signal          3.96e-12 ***
## pol                                  0.03027 *  
## conditionConservative \n Signal:pol  0.00222 ** 
## conditionLiberal \n Control:pol     1.16e-12 ***
## conditionLiberal \n Signal:pol       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.513                                          
## cndtnLbrlCn -0.513  0.500                                   
## cndtnLbrlSg -0.513  0.500  0.500                            
## pol         -0.842  0.512  0.513  0.512                     
## cndtnCSgnl:  0.470 -0.917 -0.459 -0.458 -0.559              
## cndtnLCntr:  0.471 -0.459 -0.917 -0.459 -0.559  0.500       
## cndtnLSgnl:  0.470 -0.458 -0.459 -0.917 -0.559  0.499  0.500

6.3.17 Others like company

by_line(gjg_long, pol, OLike, "political leaning", "", "Condition", "Others like company")

mod_OLike <- lmer(OLike ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9590.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6067 -0.4345  0.1228  0.5567  2.8105 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.465859 0.68254 
##  social_issue (Intercept) 0.008111 0.09006 
##  Residual                 1.005127 1.00256 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          4.865e+00  1.187e-01  1.038e+02  41.001
## conditionConservative \n Signal      3.415e-02  1.283e-01  2.299e+03   0.266
## conditionLiberal \n Control          2.633e-01  1.284e-01  2.299e+03   2.051
## conditionLiberal \n Signal          -5.883e-02  1.283e-01  2.299e+03  -0.458
## pol                                  6.888e-02  2.451e-02  2.359e+03   2.810
## conditionConservative \n Signal:pol -1.967e-03  2.866e-02  2.299e+03  -0.069
## conditionLiberal \n Control:pol      1.171e-02  2.867e-02  2.299e+03   0.408
## conditionLiberal \n Signal:pol       9.777e-02  2.866e-02  2.299e+03   3.411
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal     0.790196    
## conditionLiberal \n Control         0.040400 *  
## conditionLiberal \n Signal          0.646757    
## pol                                 0.004993 ** 
## conditionConservative \n Signal:pol 0.945295    
## conditionLiberal \n Control:pol     0.683010    
## conditionLiberal \n Signal:pol      0.000657 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.541                                          
## cndtnLbrlCn -0.541  0.500                                   
## cndtnLbrlSg -0.541  0.500  0.500                            
## pol         -0.849  0.536  0.537  0.536                     
## cndtnCSgnl:  0.496 -0.917 -0.459 -0.458 -0.585              
## cndtnLCntr:  0.496 -0.459 -0.917 -0.459 -0.585  0.500       
## cndtnLSgnl:  0.496 -0.458 -0.459 -0.917 -0.585  0.500  0.500

6.3.18 Others trust company

by_line(gjg_long, pol, OTrust, "political leaning", "", "Condition", "Others trust company")

mod_OTrust <- lmer(OTrust ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9771.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4892 -0.4306  0.0848  0.5543  3.1346 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.588428 0.76709 
##  social_issue (Intercept) 0.005171 0.07191 
##  Residual                 1.029746 1.01476 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.62071    0.12062  219.72680  38.309
## conditionConservative \n Signal       -0.11070    0.12991 2298.81136  -0.852
## conditionLiberal \n Control            0.01938    0.12995 2299.44350   0.149
## conditionLiberal \n Signal            -0.13294    0.12991 2298.81136  -1.023
## pol                                    0.05432    0.02571 2197.66962   2.113
## conditionConservative \n Signal:pol    0.01540    0.02901 2299.00827   0.531
## conditionLiberal \n Control:pol        0.04605    0.02902 2299.79820   1.587
## conditionLiberal \n Signal:pol         0.08978    0.02901 2299.00827   3.095
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal      0.39420    
## conditionLiberal \n Control          0.88147    
## conditionLiberal \n Signal           0.30624    
## pol                                  0.03470 *  
## conditionConservative \n Signal:pol  0.59561    
## conditionLiberal \n Control:pol      0.11267    
## conditionLiberal \n Signal:pol       0.00199 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.539                                          
## cndtnLbrlCn -0.539  0.500                                   
## cndtnLbrlSg -0.539  0.500  0.500                            
## pol         -0.875  0.517  0.518  0.517                     
## cndtnCSgnl:  0.494 -0.917 -0.459 -0.458 -0.564              
## cndtnLCntr:  0.494 -0.459 -0.917 -0.459 -0.564  0.500       
## cndtnLSgnl:  0.494 -0.458 -0.459 -0.917 -0.564  0.500  0.500

6.3.19 Others think company is competent

by_line(gjg_long, pol, OComp, "political leaning", "", "Condition", "Others think company is competent")

mod_OComp <- lmer(OComp ~ condition*pol + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition * pol + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9924.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1483 -0.4202  0.1013  0.5648  3.0988 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.5952   0.7715  
##  social_issue (Intercept) 0.0199   0.1411  
##  Residual                 1.0896   1.0438  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.74898    0.13703   36.89535  34.655
## conditionConservative \n Signal       -0.05581    0.13364 2298.27603  -0.418
## conditionLiberal \n Control            0.11238    0.13369 2298.51756   0.841
## conditionLiberal \n Signal            -0.11315    0.13364 2298.27603  -0.847
## pol                                    0.04086    0.02623 2233.35620   1.558
## conditionConservative \n Signal:pol    0.01135    0.02984 2298.34818   0.380
## conditionLiberal \n Control:pol        0.03835    0.02986 2298.66914   1.284
## conditionLiberal \n Signal:pol         0.10648    0.02984 2298.34819   3.568
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionConservative \n Signal     0.676255    
## conditionLiberal \n Control         0.400640    
## conditionLiberal \n Signal          0.397252    
## pol                                 0.119468    
## conditionConservative \n Signal:pol 0.703719    
## conditionLiberal \n Control:pol     0.199146    
## conditionLiberal \n Signal:pol      0.000367 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS pol    cndCS: cndLC:
## cndtnCnsrvS -0.488                                          
## cndtnLbrlCn -0.488  0.500                                   
## cndtnLbrlSg -0.488  0.500  0.500                            
## pol         -0.786  0.522  0.522  0.522                     
## cndtnCSgnl:  0.447 -0.917 -0.459 -0.458 -0.569              
## cndtnLCntr:  0.447 -0.459 -0.917 -0.459 -0.569  0.500       
## cndtnLSgnl:  0.447 -0.458 -0.459 -0.917 -0.569  0.499  0.500

6.4 Genuine Line

6.4.1 Static Norm

by_line(gjg_long, SGen, staticNorm, "Genuine", "static norm", "Condition", "Percent of support for issue")

6.4.2 Dynamic Norm

by_line(gjg_long, SGen, dyNorm, "Genuine", "dynamic norm", "Condition", "Change in support for issue")

## SIGNIFICANT ##
mod_dyNorm <- lmer(dyNorm ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9556.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5167 -0.4643  0.0496  0.5558  4.2503 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.79090  0.8893  
##  social_issue (Intercept) 0.03747  0.1936  
##  Residual                 0.88155  0.9389  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                           4.616e+00  1.353e-01  1.079e+01  34.108
## conditionConservative \n Signal       1.795e-01  1.174e-01  2.426e+03   1.529
## conditionLiberal \n Control           2.720e-02  1.316e-01  2.452e+03   0.207
## conditionLiberal \n Signal           -8.605e-02  1.308e-01  2.455e+03  -0.658
## SGen                                  8.664e-02  2.418e-02  2.730e+03   3.583
## conditionConservative \n Signal:SGen  6.486e-03  3.035e-02  2.454e+03   0.214
## conditionLiberal \n Control:SGen      2.027e-03  3.254e-02  2.468e+03   0.062
## conditionLiberal \n Signal:SGen       3.406e-02  3.119e-02  2.473e+03   1.092
##                                      Pr(>|t|)    
## (Intercept)                          2.47e-12 ***
## conditionConservative \n Signal      0.126284    
## conditionLiberal \n Control          0.836230    
## conditionLiberal \n Signal           0.510790    
## SGen                                 0.000345 ***
## conditionConservative \n Signal:SGen 0.830782    
## conditionLiberal \n Control:SGen     0.950336    
## conditionLiberal \n Signal:SGen      0.274917    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.443                                          
## cndtnLbrlCn -0.386  0.456                                   
## cndtnLbrlSg -0.391  0.458  0.428                            
## SGen        -0.608  0.610  0.530  0.536                     
## cndtnCSg:SG  0.426 -0.912 -0.433 -0.436 -0.701              
## cndtnLCn:SG  0.394 -0.454 -0.927 -0.425 -0.648  0.516       
## cndtnLSg:SG  0.417 -0.473 -0.438 -0.921 -0.686  0.538  0.518

6.4.3 Issue is important

by_line(gjg_long, SGen, SImport, "Genuine", "issue importance", "Condition", "I think cause is important")

6.4.4 Issue is relatively important

by_line(gjg_long, SGen, SRelImport, "Genuine", "issue relative importance", "Condition", "I think cause is important relative to other causes")

6.4.5 Message motivates others

by_line(gjg_long, SGen, OMotivate, "Genuine", "", "Condition", "Message motivates others to act")

6.4.6 Surprise

by_line(gjg_long, SGen, surprise, "Genuine", "", "Condition", "Surprise")

6.4.7 Reputation motive

by_line(signal_gjg_long, SGen, Rep, "Genuine", "", "Condition", "Reputation motive")

mod_Rep <- lmer(Rep ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rep ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5197.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7870 -0.4374  0.1240  0.5686  2.5911 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.54408  0.7376  
##  social_issue (Intercept) 0.02552  0.1597  
##  Residual                 1.23563  1.1116  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        6.35429    0.13418   18.59548  47.355
## conditionLiberal \n Signal         0.33922    0.15531 1059.37822   2.184
## SGen                              -0.27230    0.02618 1462.20090 -10.400
## conditionLiberal \n Signal:SGen   -0.06491    0.03550 1099.98284  -1.828
##                                 Pr(>|t|)    
## (Intercept)                       <2e-16 ***
## conditionLiberal \n Signal        0.0292 *  
## SGen                              <2e-16 ***
## conditionLiberal \n Signal:SGen   0.0678 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.456              
## SGen        -0.719  0.527       
## cndtnLSg:SG  0.463 -0.927 -0.644

6.4.8 Profit motive

by_line(signal_gjg_long, SGen, Profit, "Genuine", "", "Condition", "Profit motive")

mod_Profit <- lmer(Profit ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5372.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3216 -0.4953  0.1054  0.5750  2.1886 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.74027  0.8604  
##  social_issue (Intercept) 0.02866  0.1693  
##  Residual                 1.29829  1.1394  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        6.32010    0.14175   18.52529  44.587
## conditionLiberal \n Signal         0.42408    0.16085 1027.95465   2.637
## SGen                              -0.36127    0.02751 1432.46962 -13.134
## conditionLiberal \n Signal:SGen   -0.06627    0.03681 1062.19208  -1.800
##                                 Pr(>|t|)    
## (Intercept)                       <2e-16 ***
## conditionLiberal \n Signal        0.0085 ** 
## SGen                              <2e-16 ***
## conditionLiberal \n Signal:SGen   0.0721 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.444              
## SGen        -0.715  0.517       
## cndtnLSg:SG  0.454 -0.928 -0.634

6.4.9 Noisy minority

by_line(signal_gjg_long, SGen, noisyMin, "Genuine", "", "Condition", "Motive to cater to noisy minority")

## SIGNIFICANT ##
mod_noisyMin <- lmer(noisyMin ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5832.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.13545 -0.56750  0.03813  0.56813  2.50884 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.1913   1.0915  
##  social_issue (Intercept) 0.1008   0.3175  
##  Residual                 1.6318   1.2774  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        5.40155    0.20604    7.60241  26.217
## conditionLiberal \n Signal         0.39891    0.18214  993.66896   2.190
## SGen                              -0.25557    0.03162 1394.44496  -8.083
## conditionLiberal \n Signal:SGen   -0.10716    0.04173 1022.02804  -2.568
##                                 Pr(>|t|)    
## (Intercept)                     9.89e-09 ***
## conditionLiberal \n Signal        0.0287 *  
## SGen                            1.36e-15 ***
## conditionLiberal \n Signal:SGen   0.0104 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.343              
## SGen        -0.566  0.506       
## cndtnLSg:SG  0.353 -0.929 -0.625

6.4.10 Pressured by peer companies

by_line(signal_gjg_long, SGen, peerPress, "Genuine", "", "Condition", "Pressured by peer companies")

mod_peerPress <- lmer(peerPress ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5556.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10399 -0.55635  0.04393  0.58638  2.77146 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.87493  0.9354  
##  social_issue (Intercept) 0.01114  0.1055  
##  Residual                 1.44115  1.2005  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        5.90671    0.13169   43.61206  44.855
## conditionLiberal \n Signal         0.12590    0.16988 1021.63469   0.741
## SGen                              -0.35596    0.02915 1425.32609 -12.210
## conditionLiberal \n Signal:SGen   -0.05900    0.03889 1054.36225  -1.517
##                                 Pr(>|t|)    
## (Intercept)                       <2e-16 ***
## conditionLiberal \n Signal         0.459    
## SGen                              <2e-16 ***
## conditionLiberal \n Signal:SGen    0.130    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.504              
## SGen        -0.816  0.515       
## cndtnLSg:SG  0.516 -0.928 -0.632

6.4.11 Pressured by public

by_line(signal_gjg_long, SGen, pubPress, "Genuine", "", "Condition", "Pressured by public")

## SIGNIFICANT ##
mod_pubPress <- lmer(pubPress ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5735.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.88195 -0.57408  0.04709  0.59508  2.76636 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.1998   1.0953  
##  social_issue (Intercept) 0.0631   0.2512  
##  Residual                 1.4871   1.2195  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        5.30266    0.17860   10.83485  29.690
## conditionLiberal \n Signal         0.09926    0.17458  985.88206   0.569
## SGen                              -0.26485    0.03049 1379.33890  -8.685
## conditionLiberal \n Signal:SGen   -0.03596    0.04002 1011.82312  -0.899
##                                 Pr(>|t|)    
## (Intercept)                     9.97e-12 ***
## conditionLiberal \n Signal         0.570    
## SGen                             < 2e-16 ***
## conditionLiberal \n Signal:SGen    0.369    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.378              
## SGen        -0.629  0.502       
## cndtnLSg:SG  0.391 -0.929 -0.621

6.4.12 Risky to NOT send signal

by_line(signal_gjg_long, SGen, riskInact, "Genuine", "", "Condition", "Risky NOT to signal")

mod_riskInact <- lmer(riskInact ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5874.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.51196 -0.62059  0.00991  0.60620  2.62139 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.9648   0.9822  
##  social_issue (Intercept) 0.1155   0.3399  
##  Residual                 1.8363   1.3551  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        3.89013    0.21640    7.25269  17.976
## conditionLiberal \n Signal        -0.05150    0.19068 1038.49228  -0.270
## SGen                              -0.02547    0.03246 1442.37955  -0.785
## conditionLiberal \n Signal:SGen    0.03165    0.04362 1074.70235   0.725
##                                 Pr(>|t|)    
## (Intercept)                     2.79e-07 ***
## conditionLiberal \n Signal         0.787    
## SGen                               0.433    
## conditionLiberal \n Signal:SGen    0.468    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS SGen  
## cndtnLbrlSg -0.346              
## SGen        -0.553  0.520       
## cndtnLSg:SG  0.352 -0.927 -0.637

6.4.13 I like company

by_line(gjg_long, SGen, SLike, "Genuine", "", "Condition", "I like company")

#SIGNIFICANT#
mod_SLike <- lmer(SLike ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11007.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6909 -0.5911  0.0355  0.6032  3.4124 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.33658  0.5802  
##  social_issue (Intercept) 0.05152  0.2270  
##  Residual                 1.80141  1.3422  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                             1.89612    0.16657   12.71273  11.383
## conditionConservative \n Signal        -0.57253    0.16404 2615.02401  -3.490
## conditionLiberal \n Control             0.60397    0.18312 2663.75371   3.298
## conditionLiberal \n Signal             -0.16272    0.18196 2672.56300  -0.894
## SGen                                    0.58340    0.03230 3002.66512  18.064
## conditionConservative \n Signal:SGen    0.11146    0.04220 2680.27695   2.641
## conditionLiberal \n Control:SGen       -0.08955    0.04514 2708.95216  -1.984
## conditionLiberal \n Signal:SGen         0.03881    0.04323 2721.77777   0.898
##                                      Pr(>|t|)    
## (Intercept)                          4.91e-08 ***
## conditionConservative \n Signal      0.000491 ***
## conditionLiberal \n Control          0.000986 ***
## conditionLiberal \n Signal           0.371251    
## SGen                                  < 2e-16 ***
## conditionConservative \n Signal:SGen 0.008313 ** 
## conditionLiberal \n Control:SGen     0.047388 *  
## conditionLiberal \n Signal:SGen      0.369429    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.502                                          
## cndtnLbrlCn -0.447  0.457                                   
## cndtnLbrlSg -0.450  0.459  0.422                            
## SGen        -0.660  0.631  0.561  0.565                     
## cndtnCSg:SG  0.478 -0.908 -0.433 -0.435 -0.724              
## cndtnLCn:SG  0.446 -0.452 -0.923 -0.416 -0.676  0.516       
## cndtnLSg:SG  0.468 -0.471 -0.431 -0.918 -0.709  0.538  0.513

6.4.14 I trust company

by_line(gjg_long, SGen, STrust, "Genuine", "", "Condition", "I trust company")

mod_STrust <- lmer(STrust ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9923.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8607 -0.5410  0.0119  0.5423  3.9839 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.45336  0.6733  
##  social_issue (Intercept) 0.02061  0.1435  
##  Residual                 1.14869  1.0718  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                           1.541e+00  1.243e-01  2.335e+01  12.398
## conditionConservative \n Signal      -3.585e-01  1.325e-01  2.512e+03  -2.705
## conditionLiberal \n Control           3.358e-01  1.482e-01  2.552e+03   2.266
## conditionLiberal \n Signal           -2.098e-01  1.473e-01  2.558e+03  -1.424
## SGen                                  6.312e-01  2.664e-02  2.900e+03  23.695
## conditionConservative \n Signal:SGen  5.286e-02  3.418e-02  2.559e+03   1.547
## conditionLiberal \n Control:SGen     -7.518e-02  3.660e-02  2.583e+03  -2.054
## conditionLiberal \n Signal:SGen       2.682e-03  3.507e-02  2.592e+03   0.076
##                                      Pr(>|t|)    
## (Intercept)                          9.32e-12 ***
## conditionConservative \n Signal       0.00688 ** 
## conditionLiberal \n Control           0.02356 *  
## conditionLiberal \n Signal            0.15460    
## SGen                                  < 2e-16 ***
## conditionConservative \n Signal:SGen  0.12209    
## conditionLiberal \n Control:SGen      0.04007 *  
## conditionLiberal \n Signal:SGen       0.93906    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.544                                          
## cndtnLbrlCn -0.480  0.457                                   
## cndtnLbrlSg -0.484  0.459  0.425                            
## SGen        -0.729  0.621  0.547  0.552                     
## cndtnCSg:SG  0.520 -0.910 -0.433 -0.435 -0.713              
## cndtnLCn:SG  0.484 -0.453 -0.925 -0.420 -0.663  0.516       
## cndtnLSg:SG  0.510 -0.472 -0.434 -0.920 -0.699  0.538  0.516

6.4.15 I think company is competent

by_line(gjg_long, SGen, SComp, "Genuine", "", "Condition", "I think company is competent")

mod_SComp <- lmer(SComp ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 10229.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1409 -0.5099  0.0426  0.5702  3.7776 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.51985  0.7210  
##  social_issue (Intercept) 0.02359  0.1536  
##  Residual                 1.26022  1.1226  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                             2.62066    0.13142   22.36885  19.942
## conditionConservative \n Signal        -0.50299    0.13890 2514.92923  -3.621
## conditionLiberal \n Control             0.31778    0.15537 2554.24630   2.045
## conditionLiberal \n Signal             -0.24586    0.15445 2559.63664  -1.592
## SGen                                    0.53650    0.02796 2895.38518  19.188
## conditionConservative \n Signal:SGen    0.08739    0.03583 2561.08696   2.439
## conditionLiberal \n Control:SGen       -0.07380    0.03837 2583.66667  -1.923
## conditionLiberal \n Signal:SGen         0.02559    0.03677 2592.60541   0.696
##                                      Pr(>|t|)    
## (Intercept)                          9.73e-16 ***
## conditionConservative \n Signal      0.000299 ***
## conditionLiberal \n Control          0.040932 *  
## conditionLiberal \n Signal           0.111556    
## SGen                                  < 2e-16 ***
## conditionConservative \n Signal:SGen 0.014798 *  
## conditionLiberal \n Control:SGen     0.054542 .  
## conditionLiberal \n Signal:SGen      0.486481    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.539                                          
## cndtnLbrlCn -0.476  0.457                                   
## cndtnLbrlSg -0.480  0.459  0.425                            
## SGen        -0.724  0.621  0.546  0.551                     
## cndtnCSg:SG  0.516 -0.910 -0.433 -0.435 -0.712              
## cndtnLCn:SG  0.480 -0.453 -0.925 -0.421 -0.662  0.516       
## cndtnLSg:SG  0.506 -0.472 -0.435 -0.920 -0.698  0.538  0.516

6.4.16 Others like company

by_line(gjg_long, SGen, OLike, "Genuine", "", "Condition", "Others like company")

mod_OLike <- lmer(OLike ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9357.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6369 -0.4502  0.0991  0.5595  3.2286 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.4073   0.6382  
##  social_issue (Intercept) 0.0124   0.1113  
##  Residual                 0.9419   0.9705  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                             4.41527    0.10794   34.76073  40.905
## conditionConservative \n Signal        -0.28847    0.12017 2510.81246  -2.401
## conditionLiberal \n Control             0.33977    0.13443 2549.61300   2.528
## conditionLiberal \n Signal              0.20827    0.13364 2554.48781   1.558
## SGen                                    0.21516    0.02422 2887.72513   8.883
## conditionConservative \n Signal:SGen    0.06904    0.03100 2555.70978   2.227
## conditionLiberal \n Control:SGen       -0.04209    0.03320 2578.04084  -1.268
## conditionLiberal \n Signal:SGen        -0.01739    0.03182 2586.44314  -0.546
##                                      Pr(>|t|)    
## (Intercept)                            <2e-16 ***
## conditionConservative \n Signal        0.0164 *  
## conditionLiberal \n Control            0.0115 *  
## conditionLiberal \n Signal             0.1193    
## SGen                                   <2e-16 ***
## conditionConservative \n Signal:SGen   0.0260 *  
## conditionLiberal \n Control:SGen       0.2051    
## conditionLiberal \n Signal:SGen        0.5848    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.568                                          
## cndtnLbrlCn -0.501  0.457                                   
## cndtnLbrlSg -0.505  0.459  0.425                            
## SGen        -0.764  0.620  0.545  0.550                     
## cndtnCSg:SG  0.544 -0.910 -0.433 -0.435 -0.712              
## cndtnLCn:SG  0.505 -0.453 -0.925 -0.421 -0.662  0.516       
## cndtnLSg:SG  0.533 -0.472 -0.435 -0.920 -0.697  0.538  0.516

6.4.17 Others trust company

by_line(gjg_long, SGen, OTrust, "Genuine", "", "Condition", "Others trust company")

mod_OTrust <- lmer(OTrust ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9417.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0481 -0.4691  0.0739  0.5492  2.9697 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.469086 0.68490 
##  social_issue (Intercept) 0.009684 0.09841 
##  Residual                 0.938234 0.96862 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                             3.90749    0.10540   49.04918  37.074
## conditionConservative \n Signal        -0.27519    0.12019 2491.12975  -2.290
## conditionLiberal \n Control             0.09752    0.13450 2527.95978   0.725
## conditionLiberal \n Signal              0.14618    0.13373 2532.07220   1.093
## SGen                                    0.27502    0.02433 2859.04169  11.304
## conditionConservative \n Signal:SGen    0.04094    0.03102 2532.51478   1.320
## conditionLiberal \n Control:SGen       -0.01760    0.03323 2553.56049  -0.530
## conditionLiberal \n Signal:SGen        -0.04100    0.03185 2561.11117  -1.287
##                                      Pr(>|t|)    
## (Intercept)                            <2e-16 ***
## conditionConservative \n Signal        0.0221 *  
## conditionLiberal \n Control            0.4685    
## conditionLiberal \n Signal             0.2744    
## SGen                                   <2e-16 ***
## conditionConservative \n Signal:SGen   0.1870    
## conditionLiberal \n Control:SGen       0.5963    
## conditionLiberal \n Signal:SGen        0.1981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.582                                          
## cndtnLbrlCn -0.512  0.457                                   
## cndtnLbrlSg -0.517  0.459  0.426                            
## SGen        -0.786  0.618  0.542  0.548                     
## cndtnCSg:SG  0.557 -0.911 -0.433 -0.435 -0.709              
## cndtnLCn:SG  0.517 -0.453 -0.926 -0.422 -0.659  0.516       
## cndtnLSg:SG  0.546 -0.472 -0.435 -0.920 -0.695  0.538  0.516

6.4.18 Others think company is competent

by_line(gjg_long, SGen, OComp, "Genuine", "", "Condition", "Others think company is competent")

mod_OComp <- lmer(OComp ~ condition*SGen + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition * SGen + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9555.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2155 -0.4548  0.0885  0.5607  2.8709 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.46833  0.6843  
##  social_issue (Intercept) 0.02507  0.1583  
##  Residual                 0.98958  0.9948  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                        Estimate Std. Error         df t value
## (Intercept)                             3.95337    0.12396   16.26101  31.892
## conditionConservative \n Signal        -0.24326    0.12334 2498.51739  -1.972
## conditionLiberal \n Control             0.25817    0.13802 2535.50455   1.871
## conditionLiberal \n Signal              0.09834    0.13721 2540.54080   0.717
## SGen                                    0.28297    0.02493 2869.51973  11.350
## conditionConservative \n Signal:SGen    0.04206    0.03183 2541.11346   1.321
## conditionLiberal \n Control:SGen       -0.04329    0.03410 2562.08397  -1.270
## conditionLiberal \n Signal:SGen        -0.01170    0.03267 2570.50669  -0.358
##                                      Pr(>|t|)    
## (Intercept)                          4.29e-16 ***
## conditionConservative \n Signal        0.0487 *  
## conditionLiberal \n Control            0.0615 .  
## conditionLiberal \n Signal             0.4736    
## SGen                                  < 2e-16 ***
## conditionConservative \n Signal:SGen   0.1865    
## conditionLiberal \n Control:SGen       0.2043    
## conditionLiberal \n Signal:SGen        0.7202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS SGen   cCS:SG cLC:SG
## cndtnCnsrvS -0.508                                          
## cndtnLbrlCn -0.447  0.457                                   
## cndtnLbrlSg -0.451  0.459  0.426                            
## SGen        -0.685  0.619  0.543  0.549                     
## cndtnCSg:SG  0.486 -0.911 -0.433 -0.435 -0.710              
## cndtnLCn:SG  0.452 -0.453 -0.926 -0.421 -0.660  0.516       
## cndtnLSg:SG  0.476 -0.472 -0.435 -0.920 -0.696  0.538  0.516

6.5 Surprise Line

6.5.1 Static Norm

by_line(gjg_long, surprise, staticNorm, "surprise", "static norm", "Condition", "Percent of support for issue")

6.5.2 Dynamic Norm (Look into)

by_line(gjg_long, surprise, dyNorm, "surprise", "dynamic norm", "Condition", "Change in support for issue")

## SIGNIFICANT ##
mod_dyNorm <- lmer(dyNorm ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9607.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7561 -0.4485  0.0599  0.5538  4.0879 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.83020  0.9112  
##  social_issue (Intercept) 0.03644  0.1909  
##  Residual                 0.88914  0.9429  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                               4.955e+00  1.263e-01  8.620e+00
## conditionConservative \n Signal           1.560e-01  1.149e-01  2.495e+03
## conditionLiberal \n Control               9.418e-02  9.924e-02  2.438e+03
## conditionLiberal \n Signal                1.426e-01  1.017e-01  2.465e+03
## surprise                                 -1.479e-02  2.289e-02  2.652e+03
## conditionConservative \n Signal:surprise  2.123e-02  2.903e-02  2.539e+03
## conditionLiberal \n Control:surprise     -3.943e-03  3.252e-02  2.480e+03
## conditionLiberal \n Signal:surprise       1.312e-03  3.084e-02  2.512e+03
##                                          t value Pr(>|t|)    
## (Intercept)                               39.230  5.1e-11 ***
## conditionConservative \n Signal            1.357    0.175    
## conditionLiberal \n Control                0.949    0.343    
## conditionLiberal \n Signal                 1.403    0.161    
## surprise                                  -0.646    0.518    
## conditionConservative \n Signal:surprise   0.731    0.465    
## conditionLiberal \n Control:surprise      -0.121    0.904    
## conditionLiberal \n Signal:surprise        0.043    0.966    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.369                                          
## cndtnLbrlCn -0.425  0.459                                   
## cndtnLbrlSg -0.423  0.456  0.527                            
## surprise    -0.537  0.539  0.619  0.620                     
## cndtnCSgnl:  0.398 -0.890 -0.481 -0.480 -0.741              
## cndtnLCntr:  0.334 -0.365 -0.869 -0.422 -0.622  0.488       
## cndtnLSgnl:  0.369 -0.396 -0.459 -0.881 -0.687  0.533  0.470

6.5.3 Issue is important

by_line(gjg_long, surprise, SImport, "surprise", "issue importance", "Condition", "I think cause is important")

6.5.4 Issue is relatively important

by_line(gjg_long, surprise, SRelImport, "surprise", "issue relative importance", "Condition", "I think cause is important relative to other causes")

6.5.5 Message motivates others

by_line(gjg_long, surprise, OMotivate, "surprise", "", "Condition", "Message motivates others to act")

6.5.6 Genuine

by_line(gjg_long, surprise, SGen, "surprise", "", "Condition", "I think the company is genuine")

6.5.7 Reputation motive

by_line(signal_gjg_long, surprise, Rep, "surprise", "", "Condition", "Reputation motive")

mod_Rep <- lmer(Rep ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rep ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5400.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4365 -0.3992  0.1159  0.6072  2.3004 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.68850  0.8298  
##  social_issue (Intercept) 0.02808  0.1676  
##  Residual                 1.36473  1.1682  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            5.01330    0.14686   21.38348  34.136
## conditionLiberal \n Signal             0.04984    0.14458 1181.70117   0.345
## surprise                               0.07839    0.02531 1407.77568   3.098
## conditionLiberal \n Signal:surprise   -0.02501    0.03701 1260.96416  -0.676
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionLiberal \n Signal           0.73038    
## surprise                             0.00199 ** 
## conditionLiberal \n Signal:surprise  0.49935    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.615              
## surprise    -0.742  0.716       
## cndtnLSgnl:  0.469 -0.889 -0.632

6.5.8 Profit motive

by_line(signal_gjg_long, surprise, Profit, "surprise", "", "Condition", "Profit motive")

mod_Profit <- lmer(Profit ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5664.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8738 -0.4728  0.1008  0.5871  2.2050 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.00013  1.0001  
##  social_issue (Intercept) 0.03622  0.1903  
##  Residual                 1.50561  1.2270  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            4.63125    0.16158   18.85272  28.662
## conditionLiberal \n Signal            -0.03023    0.15432 1138.19978  -0.196
## surprise                               0.08305    0.02727 1361.43771   3.045
## conditionLiberal \n Signal:surprise    0.01143    0.03961 1206.45332   0.289
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionLiberal \n Signal           0.84473    
## surprise                             0.00237 ** 
## conditionLiberal \n Signal:surprise  0.77301    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.599              
## surprise    -0.727  0.717       
## cndtnLSgnl:  0.456 -0.892 -0.628

6.5.9 Noisy minority

by_line(signal_gjg_long, surprise, noisyMin, "surprise", "", "Condition", "Motive to cater to noisy minority")

## SIGNIFICANT ##
mod_noisyMin <- lmer(noisyMin ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5954
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.93785 -0.54689  0.02711  0.58527  2.67693 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.39086  1.1793  
##  social_issue (Intercept) 0.07583  0.2754  
##  Residual                 1.71000  1.3077  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            3.97383    0.19826   10.98187  20.043
## conditionLiberal \n Signal            -0.18978    0.16650 1103.50842  -1.140
## surprise                               0.11290    0.02966 1327.51667   3.806
## conditionLiberal \n Signal:surprise    0.03702    0.04282 1163.03410   0.865
##                                     Pr(>|t|)    
## (Intercept)                         5.35e-10 ***
## conditionLiberal \n Signal          0.254602    
## surprise                            0.000148 ***
## conditionLiberal \n Signal:surprise 0.387482    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.529              
## surprise    -0.644  0.717       
## cndtnLSgnl:  0.402 -0.893 -0.624

6.5.10 Pressured by peer companies

by_line(signal_gjg_long, surprise, peerPress, "surprise", "", "Condition", "Pressured by peer companies")

mod_peerPress <- lmer(peerPress ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5784
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.95814 -0.56950  0.05072  0.62115  2.62773 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.083760 1.04104 
##  social_issue (Intercept) 0.007382 0.08592 
##  Residual                 1.631192 1.27718 
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          4.006e+00  1.417e-01  8.981e+01  28.270
## conditionLiberal \n Signal          -1.788e-01  1.601e-01  1.118e+03  -1.116
## surprise                             1.367e-01  2.815e-02  1.108e+03   4.855
## conditionLiberal \n Signal:surprise -9.948e-04  4.115e-02  1.199e+03  -0.024
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## conditionLiberal \n Signal             0.264    
## surprise                            1.38e-06 ***
## conditionLiberal \n Signal:surprise    0.981    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.705              
## surprise    -0.856  0.715       
## cndtnLSgnl:  0.536 -0.891 -0.626

6.5.11 Pressured by public

by_line(signal_gjg_long, surprise, pubPress, "surprise", "", "Condition", "Pressured by public")

## SIGNIFICANT ##
mod_pubPress <- lmer(pubPress ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5835.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.98878 -0.62048  0.03853  0.60896  2.84585 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.19390  1.0927  
##  social_issue (Intercept) 0.07368  0.2714  
##  Residual                 1.63573  1.2790  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            3.81622    0.19338   10.91481  19.734
## conditionLiberal \n Signal            -0.14280    0.16182 1121.82175  -0.882
## surprise                               0.11856    0.02872 1351.74829   4.129
## conditionLiberal \n Signal:surprise    0.02558    0.04157 1185.77503   0.615
##                                     Pr(>|t|)    
## (Intercept)                         6.92e-10 ***
## conditionLiberal \n Signal             0.378    
## surprise                            3.87e-05 ***
## conditionLiberal \n Signal:surprise    0.538    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.527              
## surprise    -0.640  0.717       
## cndtnLSgnl:  0.401 -0.892 -0.626

6.5.12 Risky to NOT send signal

by_line(signal_gjg_long, surprise, riskInact, "surprise", "", "Condition", "Risky NOT to signal")

mod_riskInact <- lmer(riskInact ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 5872.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.41796 -0.62013  0.02981  0.61062  2.51460 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.9742   0.9870  
##  social_issue (Intercept) 0.1117   0.3342  
##  Residual                 1.8274   1.3518  
## Number of obs: 1538, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                            3.88836    0.21839    7.98408  17.805
## conditionLiberal \n Signal             0.11626    0.16796 1171.44739   0.692
## surprise                              -0.02139    0.02949 1412.91957  -0.725
## conditionLiberal \n Signal:surprise   -0.02750    0.04301 1248.12121  -0.639
##                                     Pr(>|t|)    
## (Intercept)                         1.04e-07 ***
## conditionLiberal \n Signal             0.489    
## surprise                               0.468    
## conditionLiberal \n Signal:surprise    0.523    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS surprs
## cndtnLbrlSg -0.482              
## surprise    -0.582  0.717       
## cndtnLSgnl:  0.367 -0.890 -0.632

6.5.13 I like company

by_line(gjg_long, surprise, SLike, "surprise", "", "Condition", "I like company")

#SIGNIFICANT#
mod_SLike <- lmer(SLike ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12034.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0445 -0.6414  0.1051  0.6362  2.7599 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.90013  0.9488  
##  social_issue (Intercept) 0.03961  0.1990  
##  Residual                 2.28637  1.5121  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                                 4.01221    0.15863   16.58228
## conditionConservative \n Signal             0.52353    0.18104 2630.43473
## conditionLiberal \n Control                 0.63345    0.15715 2535.41547
## conditionLiberal \n Signal                  0.65136    0.16057 2581.40846
## surprise                                   -0.04378    0.03556 2846.75346
## conditionConservative \n Signal:surprise   -0.10757    0.04555 2702.89392
## conditionLiberal \n Control:surprise       -0.01269    0.05130 2610.75026
## conditionLiberal \n Signal:surprise        -0.02733    0.04850 2663.40145
##                                          t value Pr(>|t|)    
## (Intercept)                               25.293 1.11e-14 ***
## conditionConservative \n Signal            2.892  0.00386 ** 
## conditionLiberal \n Control                4.031 5.72e-05 ***
## conditionLiberal \n Signal                 4.057 5.13e-05 ***
## surprise                                  -1.231  0.21838    
## conditionConservative \n Signal:surprise  -2.362  0.01826 *  
## conditionLiberal \n Control:surprise      -0.247  0.80467    
## conditionLiberal \n Signal:surprise       -0.563  0.57321    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.465                                          
## cndtnLbrlCn -0.534  0.462                                   
## cndtnLbrlSg -0.531  0.458  0.527                            
## surprise    -0.665  0.544  0.624  0.623                     
## cndtnCSgnl:  0.495 -0.887 -0.482 -0.479 -0.745              
## cndtnLCntr:  0.422 -0.367 -0.866 -0.421 -0.634  0.493       
## cndtnLSgnl:  0.461 -0.396 -0.457 -0.877 -0.694  0.535  0.471

6.5.14 I trust company

by_line(gjg_long, surprise, STrust, "surprise", "", "Condition", "I trust company")

mod_STrust <- lmer(STrust ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11323.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3944 -0.5558  0.0500  0.5522  3.5233 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.213971 1.10180 
##  social_issue (Intercept) 0.007729 0.08792 
##  Residual                 1.627655 1.27580 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                               3.812e+00  1.179e-01  8.967e+01
## conditionConservative \n Signal           5.376e-01  1.548e-01  2.524e+03
## conditionLiberal \n Control               4.983e-01  1.339e-01  2.456e+03
## conditionLiberal \n Signal                4.023e-01  1.370e-01  2.489e+03
## surprise                                 -4.092e-02  3.070e-02  2.679e+03
## conditionConservative \n Signal:surprise -1.091e-01  3.908e-02  2.575e+03
## conditionLiberal \n Control:surprise     -2.978e-02  4.384e-02  2.506e+03
## conditionLiberal \n Signal:surprise       4.682e-03  4.153e-02  2.545e+03
##                                          t value Pr(>|t|)    
## (Intercept)                               32.319  < 2e-16 ***
## conditionConservative \n Signal            3.473 0.000524 ***
## conditionLiberal \n Control                3.722 0.000202 ***
## conditionLiberal \n Signal                 2.936 0.003354 ** 
## surprise                                  -1.333 0.182669    
## conditionConservative \n Signal:surprise  -2.791 0.005291 ** 
## conditionLiberal \n Control:surprise      -0.679 0.497010    
## conditionLiberal \n Signal:surprise        0.113 0.910245    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.534                                          
## cndtnLbrlCn -0.613  0.460                                   
## cndtnLbrlSg -0.610  0.457  0.527                            
## surprise    -0.772  0.542  0.621  0.621                     
## cndtnCSgnl:  0.574 -0.890 -0.481 -0.480 -0.743              
## cndtnLCntr:  0.483 -0.366 -0.868 -0.422 -0.626  0.489       
## cndtnLSgnl:  0.531 -0.397 -0.459 -0.880 -0.689  0.534  0.470

6.5.15 I think company is competent

by_line(gjg_long, surprise, SComp, "surprise", "", "Condition", "I think company is competent")

mod_SComp <- lmer(SComp ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 11279.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4450 -0.4539  0.1098  0.5743  3.1404 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 1.014316 1.00713 
##  social_issue (Intercept) 0.009734 0.09866 
##  Residual                 1.664304 1.29008 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                                 4.68707    0.11946   65.86684
## conditionConservative \n Signal             0.34905    0.15592 2561.29721
## conditionLiberal \n Control                 0.38981    0.13499 2484.79573
## conditionLiberal \n Signal                  0.17102    0.13810 2522.02980
## surprise                                   -0.08089    0.03083 2738.96070
## conditionConservative \n Signal:surprise   -0.06303    0.03932 2618.60683
## conditionLiberal \n Control:surprise       -0.02527    0.04416 2542.33376
## conditionLiberal \n Signal:surprise         0.07435    0.04181 2585.50021
##                                          t value Pr(>|t|)    
## (Intercept)                               39.235  < 2e-16 ***
## conditionConservative \n Signal            2.239  0.02527 *  
## conditionLiberal \n Control                2.888  0.00392 ** 
## conditionLiberal \n Signal                 1.238  0.21568    
## surprise                                  -2.624  0.00874 ** 
## conditionConservative \n Signal:surprise  -1.603  0.10906    
## conditionLiberal \n Control:surprise      -0.572  0.56732    
## conditionLiberal \n Signal:surprise        1.778  0.07550 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.532                                          
## cndtnLbrlCn -0.610  0.460                                   
## cndtnLbrlSg -0.607  0.457  0.527                            
## surprise    -0.765  0.543  0.622  0.621                     
## cndtnCSgnl:  0.569 -0.889 -0.481 -0.480 -0.744              
## cndtnLCntr:  0.481 -0.366 -0.868 -0.422 -0.628  0.490       
## cndtnLSgnl:  0.528 -0.397 -0.458 -0.879 -0.690  0.534  0.470

6.5.16 Others like company

by_line(gjg_long, surprise, OLike, "surprise", "", "Condition", "Others like company")

mod_OLike <- lmer(OLike ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9595.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7236 -0.4240  0.1257  0.5595  2.7352 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.480650 0.69329 
##  social_issue (Intercept) 0.004616 0.06794 
##  Residual                 1.001597 1.00080 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                                 5.37030    0.08954   83.63520
## conditionConservative \n Signal             0.02019    0.12033 2602.86342
## conditionLiberal \n Control                 0.44238    0.10434 2515.85983
## conditionLiberal \n Signal                  0.18501    0.10666 2558.29884
## surprise                                   -0.07502    0.02369 2789.86823
## conditionConservative \n Signal:surprise    0.02470    0.03031 2667.56271
## conditionLiberal \n Control:surprise       -0.07167    0.03410 2582.49289
## conditionLiberal \n Signal:surprise         0.05225    0.03225 2631.51683
##                                          t value Pr(>|t|)    
## (Intercept)                               59.979  < 2e-16 ***
## conditionConservative \n Signal            0.168  0.86677    
## conditionLiberal \n Control                4.240 2.32e-05 ***
## conditionLiberal \n Signal                 1.735  0.08294 .  
## surprise                                  -3.166  0.00156 ** 
## conditionConservative \n Signal:surprise   0.815  0.41518    
## conditionLiberal \n Control:surprise      -2.102  0.03566 *  
## conditionLiberal \n Signal:surprise        1.620  0.10538    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.548                                          
## cndtnLbrlCn -0.629  0.461                                   
## cndtnLbrlSg -0.625  0.458  0.527                            
## surprise    -0.785  0.545  0.624  0.622                     
## cndtnCSgnl:  0.585 -0.888 -0.481 -0.480 -0.745              
## cndtnLCntr:  0.496 -0.367 -0.867 -0.422 -0.632  0.492       
## cndtnLSgnl:  0.543 -0.397 -0.458 -0.878 -0.692  0.535  0.471

6.5.17 Others trust company

by_line(gjg_long, surprise, OTrust, "surprise", "", "Condition", "Others trust company")

mod_OTrust <- lmer(OTrust ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9793.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4521 -0.4320  0.0920  0.5421  3.1943 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.61194  0.78227 
##  social_issue (Intercept) 0.00349  0.05908 
##  Residual                 1.03049  1.01513 
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                                 4.97469    0.09035  126.41982
## conditionConservative \n Signal            -0.03233    0.12261 2567.58965
## conditionLiberal \n Control                 0.27087    0.10618 2489.74023
## conditionLiberal \n Signal                  0.08975    0.10860 2527.78500
## surprise                                   -0.04412    0.02422 2725.19285
## conditionConservative \n Signal:surprise    0.01023    0.03092 2625.37924
## conditionLiberal \n Control:surprise       -0.03603    0.03473 2548.04415
## conditionLiberal \n Signal:surprise         0.04950    0.03288 2592.15845
##                                          t value Pr(>|t|)    
## (Intercept)                               55.060   <2e-16 ***
## conditionConservative \n Signal           -0.264   0.7920    
## conditionLiberal \n Control                2.551   0.0108 *  
## conditionLiberal \n Signal                 0.826   0.4086    
## surprise                                  -1.822   0.0685 .  
## conditionConservative \n Signal:surprise   0.331   0.7409    
## conditionLiberal \n Control:surprise      -1.037   0.2996    
## conditionLiberal \n Signal:surprise        1.506   0.1323    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.553                                          
## cndtnLbrlCn -0.634  0.461                                   
## cndtnLbrlSg -0.630  0.458  0.527                            
## surprise    -0.795  0.544  0.623  0.621                     
## cndtnCSgnl:  0.592 -0.889 -0.481 -0.480 -0.745              
## cndtnLCntr:  0.500 -0.366 -0.867 -0.422 -0.629  0.491       
## cndtnLSgnl:  0.549 -0.397 -0.458 -0.879 -0.691  0.534  0.471

6.5.18 Others think company is competent

by_line(gjg_long, surprise, OComp, "surprise", "", "Condition", "Others think company is competent")

mod_OComp <- lmer(OComp ~ condition*surprise + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition * surprise + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 9932.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1360 -0.4255  0.0986  0.5651  3.2590 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.61156  0.7820  
##  social_issue (Intercept) 0.01491  0.1221  
##  Residual                 1.08720  1.0427  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                                 5.03950    0.10663   23.00778
## conditionConservative \n Signal             0.12926    0.12583 2575.15937
## conditionLiberal \n Control                 0.42029    0.10898 2495.86919
## conditionLiberal \n Signal                  0.19461    0.11147 2534.32916
## surprise                                   -0.04139    0.02486 2769.70132
## conditionConservative \n Signal:surprise   -0.01925    0.03172 2635.22855
## conditionLiberal \n Control:surprise       -0.07195    0.03564 2556.36908
## conditionLiberal \n Signal:surprise         0.04385    0.03374 2600.80897
##                                          t value Pr(>|t|)    
## (Intercept)                               47.263  < 2e-16 ***
## conditionConservative \n Signal            1.027 0.304418    
## conditionLiberal \n Control                3.857 0.000118 ***
## conditionLiberal \n Signal                 1.746 0.080964 .  
## surprise                                  -1.665 0.096075 .  
## conditionConservative \n Signal:surprise  -0.607 0.543961    
## conditionLiberal \n Control:surprise      -2.019 0.043610 *  
## conditionLiberal \n Signal:surprise        1.300 0.193793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtCS cndtLC cndtLS surprs cndCS: cndLC:
## cndtnCnsrvS -0.480                                          
## cndtnLbrlCn -0.552  0.460                                   
## cndtnLbrlSg -0.549  0.457  0.527                            
## surprise    -0.691  0.542  0.622  0.622                     
## cndtnCSgnl:  0.514 -0.889 -0.481 -0.480 -0.744              
## cndtnLCntr:  0.435 -0.366 -0.867 -0.422 -0.629  0.491       
## cndtnLSgnl:  0.478 -0.397 -0.458 -0.879 -0.691  0.534  0.470

6.6 Social Issue Facet

6.6.1 Static Norm

wrapped_plot_cooker(gjg_long, condition, staticNorm, "Percent of support for issue", social_issue)

mod_staticNorm <- lmer(staticNorm ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_staticNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: staticNorm ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 26118.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1981 -0.5842  0.0371  0.5931  3.6392 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 177.2    13.31   
##  Residual             198.3    14.08   
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                           Estimate
## (Intercept)                                                                65.5508
## conditionConservative \n Signal                                             4.5214
## conditionLiberal \n Control                                                 3.4699
## conditionLiberal \n Signal                                                  0.9979
## social_issueClimate Change                                                 -6.6534
## social_issueLGBTQ Representation                                          -10.8137
## social_issueTransgendered Representation                                  -23.3902
## conditionConservative \n Signal:social_issueClimate Change                 -6.5899
## conditionLiberal \n Control:social_issueClimate Change                     -4.6406
## conditionLiberal \n Signal:social_issueClimate Change                       1.4052
## conditionConservative \n Signal:social_issueLGBTQ Representation           -4.1289
## conditionLiberal \n Control:social_issueLGBTQ Representation               -5.0173
## conditionLiberal \n Signal:social_issueLGBTQ Representation                -2.8687
## conditionConservative \n Signal:social_issueTransgendered Representation   -3.9281
## conditionLiberal \n Control:social_issueTransgendered Representation       -6.4220
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.1173
##                                                                          Std. Error
## (Intercept)                                                                  1.4171
## conditionConservative \n Signal                                              1.9860
## conditionLiberal \n Control                                                  1.9885
## conditionLiberal \n Signal                                                   1.9835
## social_issueClimate Change                                                   1.9835
## social_issueLGBTQ Representation                                             1.9860
## social_issueTransgendered Representation                                     1.9885
## conditionConservative \n Signal:social_issueClimate Change                   3.1263
## conditionLiberal \n Control:social_issueClimate Change                       2.7957
## conditionLiberal \n Signal:social_issueClimate Change                        3.1022
## conditionConservative \n Signal:social_issueLGBTQ Representation             3.1069
## conditionLiberal \n Control:social_issueLGBTQ Representation                 2.7957
## conditionLiberal \n Signal:social_issueLGBTQ Representation                  3.1263
## conditionConservative \n Signal:social_issueTransgendered Representation     2.7957
## conditionLiberal \n Control:social_issueTransgendered Representation         3.4118
## conditionLiberal \n Signal:social_issueTransgendered Representation          2.7957
##                                                                                 df
## (Intercept)                                                              1834.4178
## conditionConservative \n Signal                                          1834.4178
## conditionLiberal \n Control                                              1834.4178
## conditionLiberal \n Signal                                               1834.4178
## social_issueClimate Change                                               1834.4178
## social_issueLGBTQ Representation                                         1834.4178
## social_issueTransgendered Representation                                 1834.4178
## conditionConservative \n Signal:social_issueClimate Change               1357.2646
## conditionLiberal \n Control:social_issueClimate Change                   1834.4178
## conditionLiberal \n Signal:social_issueClimate Change                    1367.9507
## conditionConservative \n Signal:social_issueLGBTQ Representation         1367.1043
## conditionLiberal \n Control:social_issueLGBTQ Representation             1834.4178
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1357.2646
## conditionConservative \n Signal:social_issueTransgendered Representation 1834.4178
## conditionLiberal \n Control:social_issueTransgendered Representation     1118.2077
## conditionLiberal \n Signal:social_issueTransgendered Representation      1834.4178
##                                                                          t value
## (Intercept)                                                               46.256
## conditionConservative \n Signal                                            2.277
## conditionLiberal \n Control                                                1.745
## conditionLiberal \n Signal                                                 0.503
## social_issueClimate Change                                                -3.354
## social_issueLGBTQ Representation                                          -5.445
## social_issueTransgendered Representation                                 -11.763
## conditionConservative \n Signal:social_issueClimate Change                -2.108
## conditionLiberal \n Control:social_issueClimate Change                    -1.660
## conditionLiberal \n Signal:social_issueClimate Change                      0.453
## conditionConservative \n Signal:social_issueLGBTQ Representation          -1.329
## conditionLiberal \n Control:social_issueLGBTQ Representation              -1.795
## conditionLiberal \n Signal:social_issueLGBTQ Representation               -0.918
## conditionConservative \n Signal:social_issueTransgendered Representation  -1.405
## conditionLiberal \n Control:social_issueTransgendered Representation      -1.882
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.042
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                          0.022922
## conditionLiberal \n Control                                              0.081154
## conditionLiberal \n Signal                                               0.614945
## social_issueClimate Change                                               0.000812
## social_issueLGBTQ Representation                                         5.88e-08
## social_issueTransgendered Representation                                  < 2e-16
## conditionConservative \n Signal:social_issueClimate Change               0.035223
## conditionLiberal \n Control:social_issueClimate Change                   0.097106
## conditionLiberal \n Signal:social_issueClimate Change                    0.650651
## conditionConservative \n Signal:social_issueLGBTQ Representation         0.184085
## conditionLiberal \n Control:social_issueLGBTQ Representation             0.072874
## conditionLiberal \n Signal:social_issueLGBTQ Representation              0.358988
## conditionConservative \n Signal:social_issueTransgendered Representation 0.160170
## conditionLiberal \n Control:social_issueTransgendered Representation     0.060056
## conditionLiberal \n Signal:social_issueTransgendered Representation      0.966537
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                          *  
## conditionLiberal \n Control                                              .  
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                               ***
## social_issueLGBTQ Representation                                         ***
## social_issueTransgendered Representation                                 ***
## conditionConservative \n Signal:social_issueClimate Change               *  
## conditionLiberal \n Control:social_issueClimate Change                   .  
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation             .  
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation     .  
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.2 Dynamic Norm

wrapped_plot_cooker(gjg_long, condition, dyNorm, "Change in support for issue", social_issue)

## SIGNIFICANT ##
mod_dyNorm <- lmer(dyNorm ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_dyNorm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dyNorm ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 9595.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8368 -0.4288  0.0628  0.5576  4.0981 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.827    0.9094  
##  Residual             0.889    0.9429  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                               5.080e+00
## conditionConservative \n Signal                                           1.002e-01
## conditionLiberal \n Control                                               1.789e-01
## conditionLiberal \n Signal                                                7.363e-02
## social_issueClimate Change                                               -1.930e-01
## social_issueLGBTQ Representation                                         -1.472e-01
## social_issueTransgendered Representation                                 -3.341e-01
## conditionConservative \n Signal:social_issueClimate Change                2.372e-01
## conditionLiberal \n Control:social_issueClimate Change                   -1.691e-01
## conditionLiberal \n Signal:social_issueClimate Change                     3.242e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.777e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.662e-02
## conditionLiberal \n Signal:social_issueLGBTQ Representation               1.324e-01
## conditionConservative \n Signal:social_issueTransgendered Representation -5.287e-03
## conditionLiberal \n Control:social_issueTransgendered Representation     -2.030e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation      -1.600e-01
##                                                                          Std. Error
## (Intercept)                                                               9.580e-02
## conditionConservative \n Signal                                           1.342e-01
## conditionLiberal \n Control                                               1.344e-01
## conditionLiberal \n Signal                                                1.341e-01
## social_issueClimate Change                                                1.341e-01
## social_issueLGBTQ Representation                                          1.342e-01
## social_issueTransgendered Representation                                  1.344e-01
## conditionConservative \n Signal:social_issueClimate Change                2.118e-01
## conditionLiberal \n Control:social_issueClimate Change                    1.890e-01
## conditionLiberal \n Signal:social_issueClimate Change                     2.101e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.104e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              1.890e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               2.118e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  1.890e-01
## conditionLiberal \n Control:social_issueTransgendered Representation      2.314e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       1.890e-01
##                                                                                  df
## (Intercept)                                                               1.803e+03
## conditionConservative \n Signal                                           1.803e+03
## conditionLiberal \n Control                                               1.803e+03
## conditionLiberal \n Signal                                                1.803e+03
## social_issueClimate Change                                                1.803e+03
## social_issueLGBTQ Representation                                          1.803e+03
## social_issueTransgendered Representation                                  1.803e+03
## conditionConservative \n Signal:social_issueClimate Change                1.338e+03
## conditionLiberal \n Control:social_issueClimate Change                    1.803e+03
## conditionLiberal \n Signal:social_issueClimate Change                     1.349e+03
## conditionConservative \n Signal:social_issueLGBTQ Representation          1.348e+03
## conditionLiberal \n Control:social_issueLGBTQ Representation              1.803e+03
## conditionLiberal \n Signal:social_issueLGBTQ Representation               1.338e+03
## conditionConservative \n Signal:social_issueTransgendered Representation  1.803e+03
## conditionLiberal \n Control:social_issueTransgendered Representation      1.107e+03
## conditionLiberal \n Signal:social_issueTransgendered Representation       1.803e+03
##                                                                          t value
## (Intercept)                                                               53.032
## conditionConservative \n Signal                                            0.746
## conditionLiberal \n Control                                                1.331
## conditionLiberal \n Signal                                                 0.549
## social_issueClimate Change                                                -1.440
## social_issueLGBTQ Representation                                          -1.097
## social_issueTransgendered Representation                                  -2.486
## conditionConservative \n Signal:social_issueClimate Change                 1.120
## conditionLiberal \n Control:social_issueClimate Change                    -0.895
## conditionLiberal \n Signal:social_issueClimate Change                      1.543
## conditionConservative \n Signal:social_issueLGBTQ Representation           1.320
## conditionLiberal \n Control:social_issueLGBTQ Representation               0.141
## conditionLiberal \n Signal:social_issueLGBTQ Representation                0.625
## conditionConservative \n Signal:social_issueTransgendered Representation  -0.028
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.877
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.846
##                                                                          Pr(>|t|)
## (Intercept)                                                                <2e-16
## conditionConservative \n Signal                                             0.456
## conditionLiberal \n Control                                                 0.183
## conditionLiberal \n Signal                                                  0.583
## social_issueClimate Change                                                  0.150
## social_issueLGBTQ Representation                                            0.273
## social_issueTransgendered Representation                                    0.013
## conditionConservative \n Signal:social_issueClimate Change                  0.263
## conditionLiberal \n Control:social_issueClimate Change                      0.371
## conditionLiberal \n Signal:social_issueClimate Change                       0.123
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.187
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.888
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.532
## conditionConservative \n Signal:social_issueTransgendered Representation    0.978
## conditionLiberal \n Control:social_issueTransgendered Representation        0.380
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.397
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                            
## social_issueTransgendered Representation                                 *  
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.3 Issue is important

wrapped_plot_cooker(gjg_long, condition, SImport, "I think cause is important", social_issue)

mod_SImport <- lmer(SImport ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_SImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SImport ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11267
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7224 -0.4817  0.0224  0.5388  3.3287 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 2.559    1.600   
##  Residual             1.314    1.146   
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 5.28877
## conditionConservative \n Signal                                             0.28339
## conditionLiberal \n Control                                                 0.15164
## conditionLiberal \n Signal                                                  0.06508
## social_issueClimate Change                                                 -0.09390
## social_issueLGBTQ Representation                                           -0.57228
## social_issueTransgendered Representation                                   -1.00898
## conditionConservative \n Signal:social_issueClimate Change                 -0.19484
## conditionLiberal \n Control:social_issueClimate Change                     -0.25889
## conditionLiberal \n Signal:social_issueClimate Change                       0.08202
## conditionConservative \n Signal:social_issueLGBTQ Representation           -0.19678
## conditionLiberal \n Control:social_issueLGBTQ Representation               -0.40660
## conditionLiberal \n Signal:social_issueLGBTQ Representation                -0.29494
## conditionConservative \n Signal:social_issueTransgendered Representation   -0.49652
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.39400
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.05105
##                                                                          Std. Error
## (Intercept)                                                                 0.14392
## conditionConservative \n Signal                                             0.20169
## conditionLiberal \n Control                                                 0.20195
## conditionLiberal \n Signal                                                  0.20144
## social_issueClimate Change                                                  0.20144
## social_issueLGBTQ Representation                                            0.20169
## social_issueTransgendered Representation                                    0.20195
## conditionConservative \n Signal:social_issueClimate Change                  0.32959
## conditionLiberal \n Control:social_issueClimate Change                      0.28392
## conditionLiberal \n Signal:social_issueClimate Change                       0.32674
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.32726
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.28392
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.32959
## conditionConservative \n Signal:social_issueTransgendered Representation    0.28392
## conditionLiberal \n Control:social_issueTransgendered Representation        0.36804
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.28392
##                                                                                  df
## (Intercept)                                                              1324.94381
## conditionConservative \n Signal                                          1324.94380
## conditionLiberal \n Control                                              1324.94380
## conditionLiberal \n Signal                                               1324.94380
## social_issueClimate Change                                               1324.94380
## social_issueLGBTQ Representation                                         1324.94380
## social_issueTransgendered Representation                                 1324.94380
## conditionConservative \n Signal:social_issueClimate Change               1066.54745
## conditionLiberal \n Control:social_issueClimate Change                   1324.94381
## conditionLiberal \n Signal:social_issueClimate Change                    1072.05302
## conditionConservative \n Signal:social_issueLGBTQ Representation         1071.61664
## conditionLiberal \n Control:social_issueLGBTQ Representation             1324.94381
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1066.54745
## conditionConservative \n Signal:social_issueTransgendered Representation 1324.94381
## conditionLiberal \n Control:social_issueTransgendered Representation      944.91528
## conditionLiberal \n Signal:social_issueTransgendered Representation      1324.94381
##                                                                          t value
## (Intercept)                                                               36.748
## conditionConservative \n Signal                                            1.405
## conditionLiberal \n Control                                                0.751
## conditionLiberal \n Signal                                                 0.323
## social_issueClimate Change                                                -0.466
## social_issueLGBTQ Representation                                          -2.837
## social_issueTransgendered Representation                                  -4.996
## conditionConservative \n Signal:social_issueClimate Change                -0.591
## conditionLiberal \n Control:social_issueClimate Change                    -0.912
## conditionLiberal \n Signal:social_issueClimate Change                      0.251
## conditionConservative \n Signal:social_issueLGBTQ Representation          -0.601
## conditionLiberal \n Control:social_issueLGBTQ Representation              -1.432
## conditionLiberal \n Signal:social_issueLGBTQ Representation               -0.895
## conditionConservative \n Signal:social_issueTransgendered Representation  -1.749
## conditionLiberal \n Control:social_issueTransgendered Representation      -1.071
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.180
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                           0.16023
## conditionLiberal \n Control                                               0.45284
## conditionLiberal \n Signal                                                0.74670
## social_issueClimate Change                                                0.64119
## social_issueLGBTQ Representation                                          0.00462
## social_issueTransgendered Representation                                 6.63e-07
## conditionConservative \n Signal:social_issueClimate Change                0.55453
## conditionLiberal \n Control:social_issueClimate Change                    0.36203
## conditionLiberal \n Signal:social_issueClimate Change                     0.80184
## conditionConservative \n Signal:social_issueLGBTQ Representation          0.54777
## conditionLiberal \n Control:social_issueLGBTQ Representation              0.15236
## conditionLiberal \n Signal:social_issueLGBTQ Representation               0.37105
## conditionConservative \n Signal:social_issueTransgendered Representation  0.08056
## conditionLiberal \n Control:social_issueTransgendered Representation      0.28465
## conditionLiberal \n Signal:social_issueTransgendered Representation       0.85732
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                         ** 
## social_issueTransgendered Representation                                 ***
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation .  
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.4 Issue is relatively important

wrapped_plot_cooker(gjg_long, condition, SRelImport, "I think cause is important relative to other causes", social_issue)

mod_SRelImport <- lmer(SRelImport ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_SRelImport)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SRelImport ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 10591.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5071 -0.6008  0.0123  0.5409  3.5538 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.923    1.387   
##  Residual             1.074    1.036   
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 4.44385
## conditionConservative \n Signal                                             0.17471
## conditionLiberal \n Control                                                 0.01211
## conditionLiberal \n Signal                                                 -0.19257
## social_issueClimate Change                                                  0.03820
## social_issueLGBTQ Representation                                           -0.91292
## social_issueTransgendered Representation                                   -1.17960
## conditionConservative \n Signal:social_issueClimate Change                 -0.07387
## conditionLiberal \n Control:social_issueClimate Change                      0.02646
## conditionLiberal \n Signal:social_issueClimate Change                       0.42036
## conditionConservative \n Signal:social_issueLGBTQ Representation           -0.03206
## conditionLiberal \n Control:social_issueLGBTQ Representation               -0.13791
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.14292
## conditionConservative \n Signal:social_issueTransgendered Representation   -0.26972
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.16406
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.19121
##                                                                          Std. Error
## (Intercept)                                                                 0.12658
## conditionConservative \n Signal                                             0.17739
## conditionLiberal \n Control                                                 0.17761
## conditionLiberal \n Signal                                                  0.17717
## social_issueClimate Change                                                  0.17717
## social_issueLGBTQ Representation                                            0.17739
## social_issueTransgendered Representation                                    0.17761
## conditionConservative \n Signal:social_issueClimate Change                  0.28882
## conditionLiberal \n Control:social_issueClimate Change                      0.24971
## conditionLiberal \n Signal:social_issueClimate Change                       0.28635
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.28680
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.24971
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.28882
## conditionConservative \n Signal:social_issueTransgendered Representation    0.24971
## conditionLiberal \n Control:social_issueTransgendered Representation        0.32184
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.24971
##                                                                                  df
## (Intercept)                                                              1368.99910
## conditionConservative \n Signal                                          1368.99909
## conditionLiberal \n Control                                              1368.99910
## conditionLiberal \n Signal                                               1368.99910
## social_issueClimate Change                                               1368.99910
## social_issueLGBTQ Representation                                         1368.99909
## social_issueTransgendered Representation                                 1368.99910
## conditionConservative \n Signal:social_issueClimate Change               1090.53000
## conditionLiberal \n Control:social_issueClimate Change                   1368.99910
## conditionLiberal \n Signal:social_issueClimate Change                    1096.47663
## conditionConservative \n Signal:social_issueLGBTQ Representation         1096.00530
## conditionLiberal \n Control:social_issueLGBTQ Representation             1368.99910
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1090.53000
## conditionConservative \n Signal:social_issueTransgendered Representation 1368.99910
## conditionLiberal \n Control:social_issueTransgendered Representation      959.11860
## conditionLiberal \n Signal:social_issueTransgendered Representation      1368.99910
##                                                                          t value
## (Intercept)                                                               35.107
## conditionConservative \n Signal                                            0.985
## conditionLiberal \n Control                                                0.068
## conditionLiberal \n Signal                                                -1.087
## social_issueClimate Change                                                 0.216
## social_issueLGBTQ Representation                                          -5.146
## social_issueTransgendered Representation                                  -6.641
## conditionConservative \n Signal:social_issueClimate Change                -0.256
## conditionLiberal \n Control:social_issueClimate Change                     0.106
## conditionLiberal \n Signal:social_issueClimate Change                      1.468
## conditionConservative \n Signal:social_issueLGBTQ Representation          -0.112
## conditionLiberal \n Control:social_issueLGBTQ Representation              -0.552
## conditionLiberal \n Signal:social_issueLGBTQ Representation                0.495
## conditionConservative \n Signal:social_issueTransgendered Representation  -1.080
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.510
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.766
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                             0.325
## conditionLiberal \n Control                                                 0.946
## conditionLiberal \n Signal                                                  0.277
## social_issueClimate Change                                                  0.829
## social_issueLGBTQ Representation                                         3.04e-07
## social_issueTransgendered Representation                                 4.47e-11
## conditionConservative \n Signal:social_issueClimate Change                  0.798
## conditionLiberal \n Control:social_issueClimate Change                      0.916
## conditionLiberal \n Signal:social_issueClimate Change                       0.142
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.911
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.581
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.621
## conditionConservative \n Signal:social_issueTransgendered Representation    0.280
## conditionLiberal \n Control:social_issueTransgendered Representation        0.610
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.444
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                         ***
## social_issueTransgendered Representation                                 ***
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.5 Message motivates others

wrapped_plot_cooker(gjg_long, condition, OMotivate, "Message motivates others to act", social_issue)

## SIGNIFICANT ##
mod_OMotivate <- lmer(OMotivate ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_OMotivate)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OMotivate ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11378.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.04936 -0.64811  0.02954  0.66487  2.72765 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.6707   0.8189  
##  Residual             1.8804   1.3713  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 3.48663
## conditionConservative \n Signal                                             1.22471
## conditionLiberal \n Control                                                -0.32083
## conditionLiberal \n Signal                                                  1.49286
## social_issueClimate Change                                                 -0.76868
## social_issueLGBTQ Representation                                           -0.72374
## social_issueTransgendered Representation                                   -0.13948
## conditionConservative \n Signal:social_issueClimate Change                  0.81135
## conditionLiberal \n Control:social_issueClimate Change                      0.31937
## conditionLiberal \n Signal:social_issueClimate Change                       0.66484
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.73261
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.45025
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.85656
## conditionConservative \n Signal:social_issueTransgendered Representation   -0.04365
## conditionLiberal \n Control:social_issueTransgendered Representation        0.15015
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.10845
##                                                                          Std. Error
## (Intercept)                                                                 0.11680
## conditionConservative \n Signal                                             0.16368
## conditionLiberal \n Control                                                 0.16389
## conditionLiberal \n Signal                                                  0.16347
## social_issueClimate Change                                                  0.16347
## social_issueLGBTQ Representation                                            0.16368
## social_issueTransgendered Representation                                    0.16389
## conditionConservative \n Signal:social_issueClimate Change                  0.24635
## conditionLiberal \n Control:social_issueClimate Change                      0.23042
## conditionLiberal \n Signal:social_issueClimate Change                       0.24475
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.24510
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.23042
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.24635
## conditionConservative \n Signal:social_issueTransgendered Representation    0.23042
## conditionLiberal \n Control:social_issueTransgendered Representation        0.26046
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.23042
##                                                                                  df
## (Intercept)                                                              2534.47407
## conditionConservative \n Signal                                          2534.47406
## conditionLiberal \n Control                                              2534.47406
## conditionLiberal \n Signal                                               2534.47406
## social_issueClimate Change                                               2534.47406
## social_issueLGBTQ Representation                                         2534.47406
## social_issueTransgendered Representation                                 2534.47406
## conditionConservative \n Signal:social_issueClimate Change               1870.27238
## conditionLiberal \n Control:social_issueClimate Change                   2534.47407
## conditionLiberal \n Signal:social_issueClimate Change                    1888.08245
## conditionConservative \n Signal:social_issueLGBTQ Representation         1886.67620
## conditionLiberal \n Control:social_issueLGBTQ Representation             2534.47407
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1870.27238
## conditionConservative \n Signal:social_issueTransgendered Representation 2534.47407
## conditionLiberal \n Control:social_issueTransgendered Representation     1443.67968
## conditionLiberal \n Signal:social_issueTransgendered Representation      2534.47407
##                                                                          t value
## (Intercept)                                                               29.852
## conditionConservative \n Signal                                            7.482
## conditionLiberal \n Control                                               -1.958
## conditionLiberal \n Signal                                                 9.132
## social_issueClimate Change                                                -4.702
## social_issueLGBTQ Representation                                          -4.422
## social_issueTransgendered Representation                                  -0.851
## conditionConservative \n Signal:social_issueClimate Change                 3.293
## conditionLiberal \n Control:social_issueClimate Change                     1.386
## conditionLiberal \n Signal:social_issueClimate Change                      2.716
## conditionConservative \n Signal:social_issueLGBTQ Representation           2.989
## conditionLiberal \n Control:social_issueLGBTQ Representation               1.954
## conditionLiberal \n Signal:social_issueLGBTQ Representation                3.477
## conditionConservative \n Signal:social_issueTransgendered Representation  -0.189
## conditionLiberal \n Control:social_issueTransgendered Representation       0.576
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.471
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                          1.00e-13
## conditionLiberal \n Control                                              0.050387
## conditionLiberal \n Signal                                                < 2e-16
## social_issueClimate Change                                               2.71e-06
## social_issueLGBTQ Representation                                         1.02e-05
## social_issueTransgendered Representation                                 0.394811
## conditionConservative \n Signal:social_issueClimate Change               0.001008
## conditionLiberal \n Control:social_issueClimate Change                   0.165845
## conditionLiberal \n Signal:social_issueClimate Change                    0.006659
## conditionConservative \n Signal:social_issueLGBTQ Representation         0.002835
## conditionLiberal \n Control:social_issueLGBTQ Representation             0.050802
## conditionLiberal \n Signal:social_issueLGBTQ Representation              0.000519
## conditionConservative \n Signal:social_issueTransgendered Representation 0.849748
## conditionLiberal \n Control:social_issueTransgendered Representation     0.564392
## conditionLiberal \n Signal:social_issueTransgendered Representation      0.637924
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                          ***
## conditionLiberal \n Control                                              .  
## conditionLiberal \n Signal                                               ***
## social_issueClimate Change                                               ***
## social_issueLGBTQ Representation                                         ***
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change               ** 
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                    ** 
## conditionConservative \n Signal:social_issueLGBTQ Representation         ** 
## conditionLiberal \n Control:social_issueLGBTQ Representation             .  
## conditionLiberal \n Signal:social_issueLGBTQ Representation              ***
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.6 Surprise

wrapped_plot_cooker(gjg_long, condition, surprise, "Surprise", social_issue)

## SIGNIFICANT ##
mod_surprise <- lmer(surprise ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_surprise)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: surprise ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11770.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8450 -0.6755 -0.1436  0.6220  3.1587 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.6795   0.8243  
##  Residual             2.1788   1.4761  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 2.85561
## conditionConservative \n Signal                                             0.98459
## conditionLiberal \n Control                                                -0.52401
## conditionLiberal \n Signal                                                 -0.01459
## social_issueClimate Change                                                 -0.36844
## social_issueLGBTQ Representation                                            0.31449
## social_issueTransgendered Representation                                    0.49154
## conditionConservative \n Signal:social_issueClimate Change                  0.18598
## conditionLiberal \n Control:social_issueClimate Change                      0.13992
## conditionLiberal \n Signal:social_issueClimate Change                       0.13881
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.52924
## conditionLiberal \n Control:social_issueLGBTQ Representation               -0.22045
## conditionLiberal \n Signal:social_issueLGBTQ Representation                -0.08065
## conditionConservative \n Signal:social_issueTransgendered Representation    0.69903
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.04239
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.49751
##                                                                          Std. Error
## (Intercept)                                                                 0.12363
## conditionConservative \n Signal                                             0.17326
## conditionLiberal \n Control                                                 0.17348
## conditionLiberal \n Signal                                                  0.17304
## social_issueClimate Change                                                  0.17304
## social_issueLGBTQ Representation                                            0.17326
## social_issueTransgendered Representation                                    0.17348
## conditionConservative \n Signal:social_issueClimate Change                  0.25929
## conditionLiberal \n Control:social_issueClimate Change                      0.24390
## conditionLiberal \n Signal:social_issueClimate Change                       0.25765
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.25801
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.24390
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.25929
## conditionConservative \n Signal:social_issueTransgendered Representation    0.24390
## conditionLiberal \n Control:social_issueTransgendered Representation        0.27295
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.24390
##                                                                                  df
## (Intercept)                                                              2616.37147
## conditionConservative \n Signal                                          2616.37147
## conditionLiberal \n Control                                              2616.37147
## conditionLiberal \n Signal                                               2616.37147
## social_issueClimate Change                                               2616.37147
## social_issueLGBTQ Representation                                         2616.37147
## social_issueTransgendered Representation                                 2616.37147
## conditionConservative \n Signal:social_issueClimate Change               1949.73194
## conditionLiberal \n Control:social_issueClimate Change                   2616.37147
## conditionLiberal \n Signal:social_issueClimate Change                    1968.27406
## conditionConservative \n Signal:social_issueLGBTQ Representation         1966.81106
## conditionLiberal \n Control:social_issueLGBTQ Representation             2616.37147
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1949.73194
## conditionConservative \n Signal:social_issueTransgendered Representation 2616.37147
## conditionLiberal \n Control:social_issueTransgendered Representation     1498.31490
## conditionLiberal \n Signal:social_issueTransgendered Representation      2616.37147
##                                                                          t value
## (Intercept)                                                               23.097
## conditionConservative \n Signal                                            5.683
## conditionLiberal \n Control                                               -3.021
## conditionLiberal \n Signal                                                -0.084
## social_issueClimate Change                                                -2.129
## social_issueLGBTQ Representation                                           1.815
## social_issueTransgendered Representation                                   2.833
## conditionConservative \n Signal:social_issueClimate Change                 0.717
## conditionLiberal \n Control:social_issueClimate Change                     0.574
## conditionLiberal \n Signal:social_issueClimate Change                      0.539
## conditionConservative \n Signal:social_issueLGBTQ Representation           2.051
## conditionLiberal \n Control:social_issueLGBTQ Representation              -0.904
## conditionLiberal \n Signal:social_issueLGBTQ Representation               -0.311
## conditionConservative \n Signal:social_issueTransgendered Representation   2.866
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.155
## conditionLiberal \n Signal:social_issueTransgendered Representation       -2.040
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                          1.47e-08
## conditionLiberal \n Control                                               0.00255
## conditionLiberal \n Signal                                                0.93282
## social_issueClimate Change                                                0.03333
## social_issueLGBTQ Representation                                          0.06962
## social_issueTransgendered Representation                                  0.00464
## conditionConservative \n Signal:social_issueClimate Change                0.47329
## conditionLiberal \n Control:social_issueClimate Change                    0.56623
## conditionLiberal \n Signal:social_issueClimate Change                     0.59012
## conditionConservative \n Signal:social_issueLGBTQ Representation          0.04037
## conditionLiberal \n Control:social_issueLGBTQ Representation              0.36615
## conditionLiberal \n Signal:social_issueLGBTQ Representation               0.75581
## conditionConservative \n Signal:social_issueTransgendered Representation  0.00419
## conditionLiberal \n Control:social_issueTransgendered Representation      0.87659
## conditionLiberal \n Signal:social_issueTransgendered Representation       0.04147
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                          ***
## conditionLiberal \n Control                                              ** 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                               *  
## social_issueLGBTQ Representation                                         .  
## social_issueTransgendered Representation                                 ** 
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation         *  
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation ** 
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation      *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.7 Company is genuine

wrapped_plot_cooker(gjg_long, condition, SGen, "I think company is genuine", social_issue)

## SIGNIFICANT ##
mod_SGen <- lmer(SGen ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_SGen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SGen ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11190.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2639 -0.5837  0.0410  0.6145  3.4948 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.136    1.066   
##  Residual             1.571    1.254   
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 3.69519
## conditionConservative \n Signal                                             0.03677
## conditionLiberal \n Control                                                 0.55870
## conditionLiberal \n Signal                                                  0.88943
## social_issueClimate Change                                                 -0.21314
## social_issueLGBTQ Representation                                           -0.69519
## social_issueTransgendered Representation                                   -0.24959
## conditionConservative \n Signal:social_issueClimate Change                  0.20310
## conditionLiberal \n Control:social_issueClimate Change                     -0.32426
## conditionLiberal \n Signal:social_issueClimate Change                      -0.06060
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.44509
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.63104
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.37260
## conditionConservative \n Signal:social_issueTransgendered Representation    0.32276
## conditionLiberal \n Control:social_issueTransgendered Representation        0.10800
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.04642
##                                                                          Std. Error
## (Intercept)                                                                 0.12033
## conditionConservative \n Signal                                             0.16863
## conditionLiberal \n Control                                                 0.16885
## conditionLiberal \n Signal                                                  0.16842
## social_issueClimate Change                                                  0.16842
## social_issueLGBTQ Representation                                            0.16863
## social_issueTransgendered Representation                                    0.16885
## conditionConservative \n Signal:social_issueClimate Change                  0.26260
## conditionLiberal \n Control:social_issueClimate Change                      0.23739
## conditionLiberal \n Signal:social_issueClimate Change                       0.26065
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.26104
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.23739
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.26260
## conditionConservative \n Signal:social_issueTransgendered Representation    0.23739
## conditionLiberal \n Control:social_issueTransgendered Representation        0.28452
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.23739
##                                                                                  df
## (Intercept)                                                              2002.06756
## conditionConservative \n Signal                                          2002.06756
## conditionLiberal \n Control                                              2002.06756
## conditionLiberal \n Signal                                               2002.06756
## social_issueClimate Change                                               2002.06756
## social_issueLGBTQ Representation                                         2002.06756
## social_issueTransgendered Representation                                 2002.06756
## conditionConservative \n Signal:social_issueClimate Change               1463.00228
## conditionLiberal \n Control:social_issueClimate Change                   2002.06756
## conditionLiberal \n Signal:social_issueClimate Change                    1475.42547
## conditionConservative \n Signal:social_issueLGBTQ Representation         1474.44190
## conditionLiberal \n Control:social_issueLGBTQ Representation             2002.06756
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1463.00228
## conditionConservative \n Signal:social_issueTransgendered Representation 2002.06756
## conditionLiberal \n Control:social_issueTransgendered Representation     1182.49638
## conditionLiberal \n Signal:social_issueTransgendered Representation      2002.06756
##                                                                          t value
## (Intercept)                                                               30.708
## conditionConservative \n Signal                                            0.218
## conditionLiberal \n Control                                                3.309
## conditionLiberal \n Signal                                                 5.281
## social_issueClimate Change                                                -1.265
## social_issueLGBTQ Representation                                          -4.122
## social_issueTransgendered Representation                                  -1.478
## conditionConservative \n Signal:social_issueClimate Change                 0.773
## conditionLiberal \n Control:social_issueClimate Change                    -1.366
## conditionLiberal \n Signal:social_issueClimate Change                     -0.232
## conditionConservative \n Signal:social_issueLGBTQ Representation           1.705
## conditionLiberal \n Control:social_issueLGBTQ Representation               2.658
## conditionLiberal \n Signal:social_issueLGBTQ Representation                1.419
## conditionConservative \n Signal:social_issueTransgendered Representation   1.360
## conditionLiberal \n Control:social_issueTransgendered Representation       0.380
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.196
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                          0.827407
## conditionLiberal \n Control                                              0.000953
## conditionLiberal \n Signal                                               1.42e-07
## social_issueClimate Change                                               0.205840
## social_issueLGBTQ Representation                                         3.90e-05
## social_issueTransgendered Representation                                 0.139509
## conditionConservative \n Signal:social_issueClimate Change               0.439386
## conditionLiberal \n Control:social_issueClimate Change                   0.172112
## conditionLiberal \n Signal:social_issueClimate Change                    0.816186
## conditionConservative \n Signal:social_issueLGBTQ Representation         0.088385
## conditionLiberal \n Control:social_issueLGBTQ Representation             0.007916
## conditionLiberal \n Signal:social_issueLGBTQ Representation              0.156134
## conditionConservative \n Signal:social_issueTransgendered Representation 0.174096
## conditionLiberal \n Control:social_issueTransgendered Representation     0.704303
## conditionLiberal \n Signal:social_issueTransgendered Representation      0.844988
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                              ***
## conditionLiberal \n Signal                                               ***
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                         ***
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation         .  
## conditionLiberal \n Control:social_issueLGBTQ Representation             ** 
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.8 Reputation motive

wrapped_plot_cooker(signal_gjg_long, condition, Rep, "Reputation motive", social_issue)

## SIGNIFICANT ##
mod_Rep <- lmer(Rep ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_Rep)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Rep ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5403.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2103 -0.4360  0.1067  0.6207  2.1402 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.7019   0.8378  
##  Residual             1.3679   1.1696  
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                          5.397e+00
## conditionLiberal \n Signal                                           8.221e-03
## social_issueClimate Change                                           1.432e-01
## social_issueLGBTQ Representation                                    -1.068e-01
## social_issueTransgendered Representation                            -2.174e-01
## conditionLiberal \n Signal:social_issueClimate Change               -2.530e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation         -2.823e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation -4.853e-02
##                                                                     Std. Error
## (Intercept)                                                          1.033e-01
## conditionLiberal \n Signal                                           1.459e-01
## social_issueClimate Change                                           1.474e-01
## social_issueLGBTQ Representation                                     1.463e-01
## social_issueTransgendered Representation                             1.459e-01
## conditionLiberal \n Signal:social_issueClimate Change                2.075e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation          2.075e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation  2.387e-01
##                                                                             df
## (Intercept)                                                          1.372e+03
## conditionLiberal \n Signal                                           1.372e+03
## social_issueClimate Change                                           1.372e+03
## social_issueLGBTQ Representation                                     1.372e+03
## social_issueTransgendered Representation                             1.372e+03
## conditionLiberal \n Signal:social_issueClimate Change                1.372e+03
## conditionLiberal \n Signal:social_issueLGBTQ Representation          1.372e+03
## conditionLiberal \n Signal:social_issueTransgendered Representation  7.650e+02
##                                                                     t value
## (Intercept)                                                          52.250
## conditionLiberal \n Signal                                            0.056
## social_issueClimate Change                                            0.971
## social_issueLGBTQ Representation                                     -0.730
## social_issueTransgendered Representation                             -1.490
## conditionLiberal \n Signal:social_issueClimate Change                -1.219
## conditionLiberal \n Signal:social_issueLGBTQ Representation          -1.360
## conditionLiberal \n Signal:social_issueTransgendered Representation  -0.203
##                                                                     Pr(>|t|)
## (Intercept)                                                           <2e-16
## conditionLiberal \n Signal                                             0.955
## social_issueClimate Change                                             0.332
## social_issueLGBTQ Representation                                       0.466
## social_issueTransgendered Representation                               0.136
## conditionLiberal \n Signal:social_issueClimate Change                  0.223
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.174
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.839
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                             
## social_issueClimate Change                                             
## social_issueLGBTQ Representation                                       
## social_issueTransgendered Representation                               
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.670  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.232 -0.471               
## cLS:_LGBTQR  0.498 -0.703 -0.226 -0.705 -0.471  0.323        
## cndtnLS:_TR  0.579 -0.818 -0.406 -0.409 -0.818  0.575  0.575

6.6.9 Profit motive

wrapped_plot_cooker(signal_gjg_long, condition, Profit, "Profit motive", social_issue)

mod_Profit <- lmer(Profit ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_Profit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Profit ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5671.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8208 -0.4687  0.1107  0.5674  2.2131 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.023    1.012   
##  Residual             1.512    1.230   
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                            4.92268
## conditionLiberal \n Signal                                             0.05168
## social_issueClimate Change                                             0.37678
## social_issueLGBTQ Representation                                       0.03069
## social_issueTransgendered Representation                              -0.13807
## conditionLiberal \n Signal:social_issueClimate Change                 -0.33560
## conditionLiberal \n Signal:social_issueLGBTQ Representation           -0.26708
## conditionLiberal \n Signal:social_issueTransgendered Representation   -0.08887
##                                                                     Std. Error
## (Intercept)                                                            0.11432
## conditionLiberal \n Signal                                             0.16147
## social_issueClimate Change                                             0.16318
## social_issueLGBTQ Representation                                       0.16188
## social_issueTransgendered Representation                               0.16147
## conditionLiberal \n Signal:social_issueClimate Change                  0.22971
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.22971
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.27054
##                                                                             df
## (Intercept)                                                         1315.62647
## conditionLiberal \n Signal                                          1315.62647
## social_issueClimate Change                                          1315.62647
## social_issueLGBTQ Representation                                    1315.62647
## social_issueTransgendered Representation                            1315.62647
## conditionLiberal \n Signal:social_issueClimate Change               1315.62647
## conditionLiberal \n Signal:social_issueLGBTQ Representation         1315.62647
## conditionLiberal \n Signal:social_issueTransgendered Representation  765.00000
##                                                                     t value
## (Intercept)                                                          43.060
## conditionLiberal \n Signal                                            0.320
## social_issueClimate Change                                            2.309
## social_issueLGBTQ Representation                                      0.190
## social_issueTransgendered Representation                             -0.855
## conditionLiberal \n Signal:social_issueClimate Change                -1.461
## conditionLiberal \n Signal:social_issueLGBTQ Representation          -1.163
## conditionLiberal \n Signal:social_issueTransgendered Representation  -0.328
##                                                                     Pr(>|t|)
## (Intercept)                                                           <2e-16
## conditionLiberal \n Signal                                            0.7490
## social_issueClimate Change                                            0.0211
## social_issueLGBTQ Representation                                      0.8497
## social_issueTransgendered Representation                              0.3927
## conditionLiberal \n Signal:social_issueClimate Change                 0.1443
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.2452
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.7426
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                             
## social_issueClimate Change                                          *  
## social_issueLGBTQ Representation                                       
## social_issueTransgendered Representation                               
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.703  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.209 -0.494               
## cLS:_LGBTQR  0.498 -0.703 -0.203 -0.705 -0.494  0.290        
## cndtnLS:_TR  0.593 -0.838 -0.416 -0.419 -0.838  0.589  0.589

6.6.10 Noisy minority

wrapped_plot_cooker(signal_gjg_long, condition, noisyMin, "Motive to cater to noisy minority", social_issue)

## SIGNIFICANT ##
mod_noisyMin <- lmer(noisyMin ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_noisyMin)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: noisyMin ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5972.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.72393 -0.55573  0.03047  0.61668  2.40377 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.383    1.176   
##  Residual             1.761    1.327   
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                      Estimate
## (Intercept)                                                            4.1598
## conditionLiberal \n Signal                                            -0.0162
## social_issueClimate Change                                             0.0755
## social_issueLGBTQ Representation                                       0.3376
## social_issueTransgendered Representation                               0.7889
## conditionLiberal \n Signal:social_issueClimate Change                 -0.4108
## conditionLiberal \n Signal:social_issueLGBTQ Representation           -0.1657
## conditionLiberal \n Signal:social_issueTransgendered Representation   -0.3604
##                                                                     Std. Error
## (Intercept)                                                             0.1273
## conditionLiberal \n Signal                                              0.1798
## social_issueClimate Change                                              0.1817
## social_issueLGBTQ Representation                                        0.1803
## social_issueTransgendered Representation                                0.1798
## conditionLiberal \n Signal:social_issueClimate Change                   0.2558
## conditionLiberal \n Signal:social_issueLGBTQ Representation             0.2558
## conditionLiberal \n Signal:social_issueTransgendered Representation     0.3051
##                                                                            df
## (Intercept)                                                         1281.9312
## conditionLiberal \n Signal                                          1281.9312
## social_issueClimate Change                                          1281.9312
## social_issueLGBTQ Representation                                    1281.9312
## social_issueTransgendered Representation                            1281.9312
## conditionLiberal \n Signal:social_issueClimate Change               1281.9312
## conditionLiberal \n Signal:social_issueLGBTQ Representation         1281.9312
## conditionLiberal \n Signal:social_issueTransgendered Representation  765.0000
##                                                                     t value
## (Intercept)                                                          32.673
## conditionLiberal \n Signal                                           -0.090
## social_issueClimate Change                                            0.415
## social_issueLGBTQ Representation                                      1.873
## social_issueTransgendered Representation                              4.387
## conditionLiberal \n Signal:social_issueClimate Change                -1.606
## conditionLiberal \n Signal:social_issueLGBTQ Representation          -0.648
## conditionLiberal \n Signal:social_issueTransgendered Representation  -1.181
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## conditionLiberal \n Signal                                            0.9282
## social_issueClimate Change                                            0.6779
## social_issueLGBTQ Representation                                      0.0613
## social_issueTransgendered Representation                            1.24e-05
## conditionLiberal \n Signal:social_issueClimate Change                 0.1086
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.5173
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.2380
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                             
## social_issueClimate Change                                             
## social_issueLGBTQ Representation                                    .  
## social_issueTransgendered Representation                            ***
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.721  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.196 -0.507               
## cLS:_LGBTQR  0.498 -0.703 -0.190 -0.705 -0.507  0.272        
## cndtnLS:_TR  0.601 -0.848 -0.421 -0.424 -0.848  0.596  0.596

6.6.11 Pressured by peer companies

wrapped_plot_cooker(signal_gjg_long, condition, peerPress, "Pressured by peer companies", social_issue)

mod_peerPress <- lmer(peerPress ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_peerPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: peerPress ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5818.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.67635 -0.57944  0.07703  0.63095  2.35345 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.105    1.051   
##  Residual             1.678    1.295   
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                            4.74227
## conditionLiberal \n Signal                                            -0.39868
## social_issueClimate Change                                            -0.20751
## social_issueLGBTQ Representation                                      -0.23968
## social_issueTransgendered Representation                              -0.14227
## conditionLiberal \n Signal:social_issueClimate Change                 -0.07909
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.12069
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.02548
##                                                                     Std. Error
## (Intercept)                                                            0.11977
## conditionLiberal \n Signal                                             0.16916
## social_issueClimate Change                                             0.17095
## social_issueLGBTQ Representation                                       0.16960
## social_issueTransgendered Representation                               0.16916
## conditionLiberal \n Signal:social_issueClimate Change                  0.24065
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.24065
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.28275
##                                                                             df
## (Intercept)                                                         1321.68425
## conditionLiberal \n Signal                                          1321.68425
## social_issueClimate Change                                          1321.68425
## social_issueLGBTQ Representation                                    1321.68425
## social_issueTransgendered Representation                            1321.68425
## conditionLiberal \n Signal:social_issueClimate Change               1321.68425
## conditionLiberal \n Signal:social_issueLGBTQ Representation         1321.68425
## conditionLiberal \n Signal:social_issueTransgendered Representation  765.00000
##                                                                     t value
## (Intercept)                                                          39.596
## conditionLiberal \n Signal                                           -2.357
## social_issueClimate Change                                           -1.214
## social_issueLGBTQ Representation                                     -1.413
## social_issueTransgendered Representation                             -0.841
## conditionLiberal \n Signal:social_issueClimate Change                -0.329
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.501
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.090
##                                                                     Pr(>|t|)
## (Intercept)                                                           <2e-16
## conditionLiberal \n Signal                                            0.0186
## social_issueClimate Change                                            0.2250
## social_issueLGBTQ Representation                                      0.1578
## social_issueTransgendered Representation                              0.4005
## conditionLiberal \n Signal:social_issueClimate Change                 0.7425
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.6161
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.9282
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                          *  
## social_issueClimate Change                                             
## social_issueLGBTQ Representation                                       
## social_issueTransgendered Representation                               
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.699  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.211 -0.492               
## cLS:_LGBTQR  0.498 -0.703 -0.205 -0.705 -0.492  0.293        
## cndtnLS:_TR  0.592 -0.836 -0.415 -0.418 -0.836  0.587  0.587

6.6.12 Pressured by public

wrapped_plot_cooker(signal_gjg_long, condition, pubPress, "Pressured by public", social_issue)

## SIGNIFICANT ##
mod_pubPress <- lmer(pubPress ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_pubPress)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: pubPress ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5859
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.72948 -0.61396  0.05065  0.60176  2.56361 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.233    1.11    
##  Residual             1.665    1.29    
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                            4.68041
## conditionLiberal \n Signal                                            -0.35221
## social_issueClimate Change                                            -0.42373
## social_issueLGBTQ Representation                                      -0.27109
## social_issueTransgendered Representation                              -0.72144
## conditionLiberal \n Signal:social_issueClimate Change                  0.23024
## conditionLiberal \n Signal:social_issueLGBTQ Representation           -0.04108
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.24375
##                                                                     Std. Error
## (Intercept)                                                            0.12221
## conditionLiberal \n Signal                                             0.17261
## social_issueClimate Change                                             0.17445
## social_issueLGBTQ Representation                                       0.17306
## social_issueTransgendered Representation                               0.17261
## conditionLiberal \n Signal:social_issueClimate Change                  0.24557
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.24557
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.29145
##                                                                             df
## (Intercept)                                                         1295.55879
## conditionLiberal \n Signal                                          1295.55879
## social_issueClimate Change                                          1295.55879
## social_issueLGBTQ Representation                                    1295.55879
## social_issueTransgendered Representation                            1295.55879
## conditionLiberal \n Signal:social_issueClimate Change               1295.55879
## conditionLiberal \n Signal:social_issueLGBTQ Representation         1295.55879
## conditionLiberal \n Signal:social_issueTransgendered Representation  764.99999
##                                                                     t value
## (Intercept)                                                          38.297
## conditionLiberal \n Signal                                           -2.040
## social_issueClimate Change                                           -2.429
## social_issueLGBTQ Representation                                     -1.566
## social_issueTransgendered Representation                             -4.179
## conditionLiberal \n Signal:social_issueClimate Change                 0.938
## conditionLiberal \n Signal:social_issueLGBTQ Representation          -0.167
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.836
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## conditionLiberal \n Signal                                            0.0415
## social_issueClimate Change                                            0.0153
## social_issueLGBTQ Representation                                      0.1175
## social_issueTransgendered Representation                            3.12e-05
## conditionLiberal \n Signal:social_issueClimate Change                 0.3486
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.8672
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.4032
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                          *  
## social_issueClimate Change                                          *  
## social_issueLGBTQ Representation                                       
## social_issueTransgendered Representation                            ***
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.713  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.201 -0.501               
## cLS:_LGBTQR  0.498 -0.703 -0.195 -0.705 -0.501  0.279        
## cndtnLS:_TR  0.598 -0.844 -0.419 -0.422 -0.844  0.593  0.593

6.6.13 Risky to NOT send signal

wrapped_plot_cooker(signal_gjg_long, condition, riskInact, "Risky NOT to send signal", social_issue)

mod_riskInact <- lmer(riskInact ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_riskInact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: riskInact ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 5849.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.49371 -0.61966  0.00243  0.54667  2.72629 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.9492   0.9742  
##  Residual             1.8247   1.3508  
## Number of obs: 1538, groups:  PID, 769
## 
## Fixed effects:
##                                                                      Estimate
## (Intercept)                                                            4.3866
## conditionLiberal \n Signal                                            -0.1815
## social_issueClimate Change                                            -0.4294
## social_issueLGBTQ Representation                                      -0.6923
## social_issueTransgendered Representation                              -1.2328
## conditionLiberal \n Signal:social_issueClimate Change                 -0.0400
## conditionLiberal \n Signal:social_issueLGBTQ Representation            0.2091
## conditionLiberal \n Signal:social_issueTransgendered Representation    0.8266
##                                                                     Std. Error
## (Intercept)                                                             0.1196
## conditionLiberal \n Signal                                              0.1689
## social_issueClimate Change                                              0.1707
## social_issueLGBTQ Representation                                        0.1693
## social_issueTransgendered Representation                                0.1689
## conditionLiberal \n Signal:social_issueClimate Change                   0.2403
## conditionLiberal \n Signal:social_issueLGBTQ Representation             0.2403
## conditionLiberal \n Signal:social_issueTransgendered Representation     0.2767
##                                                                            df
## (Intercept)                                                         1369.6346
## conditionLiberal \n Signal                                          1369.6346
## social_issueClimate Change                                          1369.6346
## social_issueLGBTQ Representation                                    1369.6346
## social_issueTransgendered Representation                            1369.6346
## conditionLiberal \n Signal:social_issueClimate Change               1369.6346
## conditionLiberal \n Signal:social_issueLGBTQ Representation         1369.6346
## conditionLiberal \n Signal:social_issueTransgendered Representation  765.0000
##                                                                     t value
## (Intercept)                                                          36.685
## conditionLiberal \n Signal                                           -1.074
## social_issueClimate Change                                           -2.516
## social_issueLGBTQ Representation                                     -4.089
## social_issueTransgendered Representation                             -7.299
## conditionLiberal \n Signal:social_issueClimate Change                -0.166
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.870
## conditionLiberal \n Signal:social_issueTransgendered Representation   2.987
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## conditionLiberal \n Signal                                            0.2828
## social_issueClimate Change                                            0.0120
## social_issueLGBTQ Representation                                    4.59e-05
## social_issueTransgendered Representation                            4.89e-13
## conditionLiberal \n Signal:social_issueClimate Change                 0.8678
## conditionLiberal \n Signal:social_issueLGBTQ Representation           0.3843
## conditionLiberal \n Signal:social_issueTransgendered Representation   0.0029
##                                                                        
## (Intercept)                                                         ***
## conditionLiberal \n Signal                                             
## social_issueClimate Change                                          *  
## social_issueLGBTQ Representation                                    ***
## social_issueTransgendered Representation                            ***
## conditionLiberal \n Signal:social_issueClimate Change                  
## conditionLiberal \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Signal:social_issueTransgendered Representation ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) cndtLS scl_CC s_LGBR scl_TR cLS:_C cLS:_LR
## cndtnLbrlSg -0.708                                           
## scl_ssClmtC -0.701  0.496                                    
## scl_sLGBTQR -0.706  0.500  0.495                             
## scl_ssTrnsR -0.708  0.672  0.496  0.500                      
## cndtnLS:_CC  0.498 -0.703 -0.710 -0.231 -0.472               
## cLS:_LGBTQR  0.498 -0.703 -0.225 -0.705 -0.472  0.321        
## cndtnLS:_TR  0.580 -0.819 -0.406 -0.410 -0.819  0.576  0.576

6.6.14 I like company

wrapped_plot_cooker(gjg_long, condition, SLike, "I like company", social_issue)

mod_SLike <- lmer(SLike ~ condition*social_issue + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition * social_issue + (1 | PID) + (1 | social_issue)
##    Data: gjg_long
## 
## REML criterion at convergence: 12018.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.00370 -0.63866  0.08993  0.63901  2.88649 
## 
## Random effects:
##  Groups       Name        Variance Std.Dev.
##  PID          (Intercept) 0.872122 0.9339  
##  social_issue (Intercept) 0.008704 0.0933  
##  Residual                 2.296195 1.5153  
## Number of obs: 3076, groups:  PID, 769; social_issue, 4
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                               4.332e+00
## conditionConservative \n Signal                                          -3.831e-01
## conditionLiberal \n Control                                               2.954e-01
## conditionLiberal \n Signal                                                1.710e-01
## social_issueClimate Change                                               -3.213e-01
## social_issueLGBTQ Representation                                         -9.553e-01
## social_issueTransgendered Representation                                 -5.077e-01
## conditionConservative \n Signal:social_issueClimate Change                4.210e-01
## conditionLiberal \n Control:social_issueClimate Change                    5.294e-01
## conditionLiberal \n Signal:social_issueClimate Change                     6.426e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          6.804e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              8.822e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               8.912e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  4.208e-01
## conditionLiberal \n Control:social_issueTransgendered Representation     -1.085e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       9.278e-02
##                                                                          Std. Error
## (Intercept)                                                               1.601e-01
## conditionConservative \n Signal                                           1.824e-01
## conditionLiberal \n Control                                               1.826e-01
## conditionLiberal \n Signal                                                1.822e-01
## social_issueClimate Change                                                2.249e-01
## social_issueLGBTQ Representation                                          2.251e-01
## social_issueTransgendered Representation                                  2.253e-01
## conditionConservative \n Signal:social_issueClimate Change                2.753e-01
## conditionLiberal \n Control:social_issueClimate Change                    2.568e-01
## conditionLiberal \n Signal:social_issueClimate Change                     2.735e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.739e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.568e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               2.753e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  2.568e-01
## conditionLiberal \n Control:social_issueTransgendered Representation      2.917e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       2.568e-01
##                                                                                  df
## (Intercept)                                                               1.006e-07
## conditionConservative \n Signal                                           2.493e+03
## conditionLiberal \n Control                                               2.493e+03
## conditionLiberal \n Signal                                                2.493e+03
## social_issueClimate Change                                                9.792e-08
## social_issueLGBTQ Representation                                          9.825e-08
## social_issueTransgendered Representation                                  9.858e-08
## conditionConservative \n Signal:social_issueClimate Change                1.833e+03
## conditionLiberal \n Control:social_issueClimate Change                    2.493e+03
## conditionLiberal \n Signal:social_issueClimate Change                     1.850e+03
## conditionConservative \n Signal:social_issueLGBTQ Representation          1.849e+03
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.493e+03
## conditionLiberal \n Signal:social_issueLGBTQ Representation               1.833e+03
## conditionConservative \n Signal:social_issueTransgendered Representation  2.493e+03
## conditionLiberal \n Control:social_issueTransgendered Representation      1.418e+03
## conditionLiberal \n Signal:social_issueTransgendered Representation       2.493e+03
##                                                                          t value
## (Intercept)                                                               27.047
## conditionConservative \n Signal                                           -2.100
## conditionLiberal \n Control                                                1.617
## conditionLiberal \n Signal                                                 0.939
## social_issueClimate Change                                                -1.428
## social_issueLGBTQ Representation                                          -4.243
## social_issueTransgendered Representation                                  -2.253
## conditionConservative \n Signal:social_issueClimate Change                 1.529
## conditionLiberal \n Control:social_issueClimate Change                     2.062
## conditionLiberal \n Signal:social_issueClimate Change                      2.349
## conditionConservative \n Signal:social_issueLGBTQ Representation           2.484
## conditionLiberal \n Control:social_issueLGBTQ Representation               3.435
## conditionLiberal \n Signal:social_issueLGBTQ Representation                3.237
## conditionConservative \n Signal:social_issueTransgendered Representation   1.639
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.372
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.361
##                                                                          Pr(>|t|)
## (Intercept)                                                              0.999999
## conditionConservative \n Signal                                          0.035814
## conditionLiberal \n Control                                              0.105939
## conditionLiberal \n Signal                                               0.347981
## social_issueClimate Change                                               0.999999
## social_issueLGBTQ Representation                                         0.999999
## social_issueTransgendered Representation                                 0.999999
## conditionConservative \n Signal:social_issueClimate Change               0.126411
## conditionLiberal \n Control:social_issueClimate Change                   0.039343
## conditionLiberal \n Signal:social_issueClimate Change                    0.018905
## conditionConservative \n Signal:social_issueLGBTQ Representation         0.013072
## conditionLiberal \n Control:social_issueLGBTQ Representation             0.000601
## conditionLiberal \n Signal:social_issueLGBTQ Representation              0.001229
## conditionConservative \n Signal:social_issueTransgendered Representation 0.101395
## conditionLiberal \n Control:social_issueTransgendered Representation     0.709891
## conditionLiberal \n Signal:social_issueTransgendered Representation      0.717891
##                                                                             
## (Intercept)                                                                 
## conditionConservative \n Signal                                          *  
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                            
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                   *  
## conditionLiberal \n Signal:social_issueClimate Change                    *  
## conditionConservative \n Signal:social_issueLGBTQ Representation         *  
## conditionLiberal \n Control:social_issueLGBTQ Representation             ***
## conditionLiberal \n Signal:social_issueLGBTQ Representation              ** 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

6.6.15 I trust company

wrapped_plot_cooker(gjg_long, condition, STrust, "I trust company", social_issue)

mod_STrust <- lmer(STrust ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11347.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2453 -0.5390  0.0468  0.5574  3.4604 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 1.173    1.083   
##  Residual             1.661    1.289   
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 3.85561
## conditionConservative \n Signal                                            -0.26283
## conditionLiberal \n Control                                                 0.38273
## conditionLiberal \n Signal                                                  0.33926
## social_issueClimate Change                                                 -0.01972
## social_issueLGBTQ Representation                                           -0.45355
## social_issueTransgendered Representation                                   -0.18204
## conditionConservative \n Signal:social_issueClimate Change                  0.34672
## conditionLiberal \n Control:social_issueClimate Change                     -0.03821
## conditionLiberal \n Signal:social_issueClimate Change                       0.17200
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.48771
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.39470
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.30146
## conditionConservative \n Signal:social_issueTransgendered Representation    0.26618
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.09908
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.15201
##                                                                          Std. Error
## (Intercept)                                                                 0.12311
## conditionConservative \n Signal                                             0.17253
## conditionLiberal \n Control                                                 0.17275
## conditionLiberal \n Signal                                                  0.17231
## social_issueClimate Change                                                  0.17231
## social_issueLGBTQ Representation                                            0.17253
## social_issueTransgendered Representation                                    0.17275
## conditionConservative \n Signal:social_issueClimate Change                  0.26833
## conditionLiberal \n Control:social_issueClimate Change                      0.24287
## conditionLiberal \n Signal:social_issueClimate Change                       0.26635
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.26675
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.24287
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.26833
## conditionConservative \n Signal:social_issueTransgendered Representation    0.24287
## conditionLiberal \n Control:social_issueTransgendered Representation        0.29049
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.24287
##                                                                                  df
## (Intercept)                                                              2021.11493
## conditionConservative \n Signal                                          2021.11493
## conditionLiberal \n Control                                              2021.11493
## conditionLiberal \n Signal                                               2021.11493
## social_issueClimate Change                                               2021.11493
## social_issueLGBTQ Representation                                         2021.11493
## social_issueTransgendered Representation                                 2021.11493
## conditionConservative \n Signal:social_issueClimate Change               1475.48694
## conditionLiberal \n Control:social_issueClimate Change                   2021.11493
## conditionLiberal \n Signal:social_issueClimate Change                    1488.10795
## conditionConservative \n Signal:social_issueLGBTQ Representation         1487.10878
## conditionLiberal \n Control:social_issueLGBTQ Representation             2021.11493
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1475.48694
## conditionConservative \n Signal:social_issueTransgendered Representation 2021.11493
## conditionLiberal \n Control:social_issueTransgendered Representation     1190.15648
## conditionLiberal \n Signal:social_issueTransgendered Representation      2021.11493
##                                                                          t value
## (Intercept)                                                               31.318
## conditionConservative \n Signal                                           -1.523
## conditionLiberal \n Control                                                2.216
## conditionLiberal \n Signal                                                 1.969
## social_issueClimate Change                                                -0.114
## social_issueLGBTQ Representation                                          -2.629
## social_issueTransgendered Representation                                  -1.054
## conditionConservative \n Signal:social_issueClimate Change                 1.292
## conditionLiberal \n Control:social_issueClimate Change                    -0.157
## conditionLiberal \n Signal:social_issueClimate Change                      0.646
## conditionConservative \n Signal:social_issueLGBTQ Representation           1.828
## conditionLiberal \n Control:social_issueLGBTQ Representation               1.625
## conditionLiberal \n Signal:social_issueLGBTQ Representation                1.123
## conditionConservative \n Signal:social_issueTransgendered Representation   1.096
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.341
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.626
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                           0.12781
## conditionLiberal \n Control                                               0.02683
## conditionLiberal \n Signal                                                0.04910
## social_issueClimate Change                                                0.90891
## social_issueLGBTQ Representation                                          0.00863
## social_issueTransgendered Representation                                  0.29210
## conditionConservative \n Signal:social_issueClimate Change                0.19652
## conditionLiberal \n Control:social_issueClimate Change                    0.87500
## conditionLiberal \n Signal:social_issueClimate Change                     0.51854
## conditionConservative \n Signal:social_issueLGBTQ Representation          0.06769
## conditionLiberal \n Control:social_issueLGBTQ Representation              0.10429
## conditionLiberal \n Signal:social_issueLGBTQ Representation               0.26143
## conditionConservative \n Signal:social_issueTransgendered Representation  0.27322
## conditionLiberal \n Control:social_issueTransgendered Representation      0.73310
## conditionLiberal \n Signal:social_issueTransgendered Representation       0.53146
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                              *  
## conditionLiberal \n Signal                                               *  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                         ** 
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation         .  
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.16 I think company is competent

wrapped_plot_cooker(gjg_long, condition, SComp, "I think company is competent", social_issue)

mod_SComp <- lmer(SComp ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 11298.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2459 -0.4710  0.1231  0.5753  3.3036 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.9931   0.9965  
##  Residual             1.6902   1.3001  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                               4.647e+00
## conditionConservative \n Signal                                          -2.502e-01
## conditionLiberal \n Control                                               9.387e-02
## conditionLiberal \n Signal                                                2.658e-01
## social_issueClimate Change                                               -2.142e-02
## social_issueLGBTQ Representation                                         -4.873e-01
## social_issueTransgendered Representation                                 -2.844e-01
## conditionConservative \n Signal:social_issueClimate Change                3.090e-01
## conditionLiberal \n Control:social_issueClimate Change                    2.341e-01
## conditionLiberal \n Signal:social_issueClimate Change                     1.190e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.458e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              7.309e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               3.766e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  3.182e-01
## conditionLiberal \n Control:social_issueTransgendered Representation      1.424e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       5.565e-03
##                                                                          Std. Error
## (Intercept)                                                               1.198e-01
## conditionConservative \n Signal                                           1.679e-01
## conditionLiberal \n Control                                               1.681e-01
## conditionLiberal \n Signal                                                1.677e-01
## social_issueClimate Change                                                1.677e-01
## social_issueLGBTQ Representation                                          1.679e-01
## social_issueTransgendered Representation                                  1.681e-01
## conditionConservative \n Signal:social_issueClimate Change                2.587e-01
## conditionLiberal \n Control:social_issueClimate Change                    2.363e-01
## conditionLiberal \n Signal:social_issueClimate Change                     2.568e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.572e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.363e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               2.587e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  2.363e-01
## conditionLiberal \n Control:social_issueTransgendered Representation      2.782e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       2.363e-01
##                                                                                  df
## (Intercept)                                                               2.169e+03
## conditionConservative \n Signal                                           2.169e+03
## conditionLiberal \n Control                                               2.169e+03
## conditionLiberal \n Signal                                                2.169e+03
## social_issueClimate Change                                                2.169e+03
## social_issueLGBTQ Representation                                          2.169e+03
## social_issueTransgendered Representation                                  2.169e+03
## conditionConservative \n Signal:social_issueClimate Change                1.576e+03
## conditionLiberal \n Control:social_issueClimate Change                    2.169e+03
## conditionLiberal \n Signal:social_issueClimate Change                     1.590e+03
## conditionConservative \n Signal:social_issueLGBTQ Representation          1.589e+03
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.169e+03
## conditionLiberal \n Signal:social_issueLGBTQ Representation               1.576e+03
## conditionConservative \n Signal:social_issueTransgendered Representation  2.169e+03
## conditionLiberal \n Control:social_issueTransgendered Representation      1.253e+03
## conditionLiberal \n Signal:social_issueTransgendered Representation       2.169e+03
##                                                                          t value
## (Intercept)                                                               38.794
## conditionConservative \n Signal                                           -1.490
## conditionLiberal \n Control                                                0.558
## conditionLiberal \n Signal                                                 1.585
## social_issueClimate Change                                                -0.128
## social_issueLGBTQ Representation                                          -2.903
## social_issueTransgendered Representation                                  -1.692
## conditionConservative \n Signal:social_issueClimate Change                 1.195
## conditionLiberal \n Control:social_issueClimate Change                     0.991
## conditionLiberal \n Signal:social_issueClimate Change                      0.463
## conditionConservative \n Signal:social_issueLGBTQ Representation           0.956
## conditionLiberal \n Control:social_issueLGBTQ Representation               3.093
## conditionLiberal \n Signal:social_issueLGBTQ Representation                1.456
## conditionConservative \n Signal:social_issueTransgendered Representation   1.347
## conditionLiberal \n Control:social_issueTransgendered Representation       0.512
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.024
##                                                                          Pr(>|t|)
## (Intercept)                                                               < 2e-16
## conditionConservative \n Signal                                           0.13633
## conditionLiberal \n Control                                               0.57656
## conditionLiberal \n Signal                                                0.11308
## social_issueClimate Change                                                0.89836
## social_issueLGBTQ Representation                                          0.00374
## social_issueTransgendered Representation                                  0.09082
## conditionConservative \n Signal:social_issueClimate Change                0.23243
## conditionLiberal \n Control:social_issueClimate Change                    0.32198
## conditionLiberal \n Signal:social_issueClimate Change                     0.64328
## conditionConservative \n Signal:social_issueLGBTQ Representation          0.33938
## conditionLiberal \n Control:social_issueLGBTQ Representation              0.00201
## conditionLiberal \n Signal:social_issueLGBTQ Representation               0.14563
## conditionConservative \n Signal:social_issueTransgendered Representation  0.17824
## conditionLiberal \n Control:social_issueTransgendered Representation      0.60898
## conditionLiberal \n Signal:social_issueTransgendered Representation       0.98122
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                         ** 
## social_issueTransgendered Representation                                 .  
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation             ** 
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.17 Others like company

wrapped_plot_cooker(gjg_long, condition, OLike, "Others like company", social_issue)

mod_OLike <- lmer(OLike ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 9591.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7068 -0.4202  0.1393  0.5570  2.7492 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.4977   0.7055  
##  Residual             0.9942   0.9971  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 5.19251
## conditionConservative \n Signal                                             0.09099
## conditionLiberal \n Control                                                 0.19091
## conditionLiberal \n Signal                                                  0.15620
## social_issueClimate Change                                                 -0.06944
## social_issueLGBTQ Representation                                           -0.13066
## social_issueTransgendered Representation                                    0.02510
## conditionConservative \n Signal:social_issueClimate Change                 -0.12316
## conditionLiberal \n Control:social_issueClimate Change                      0.44375
## conditionLiberal \n Signal:social_issueClimate Change                       0.44611
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.02332
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.30108
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.39691
## conditionConservative \n Signal:social_issueTransgendered Representation   -0.17015
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.27483
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.09547
##                                                                          Std. Error
## (Intercept)                                                                 0.08932
## conditionConservative \n Signal                                             0.12518
## conditionLiberal \n Control                                                 0.12534
## conditionLiberal \n Signal                                                  0.12502
## social_issueClimate Change                                                  0.12502
## social_issueLGBTQ Representation                                            0.12518
## social_issueTransgendered Representation                                    0.12534
## conditionConservative \n Signal:social_issueClimate Change                  0.19137
## conditionLiberal \n Control:social_issueClimate Change                      0.17621
## conditionLiberal \n Signal:social_issueClimate Change                       0.19004
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.19032
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.17621
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.19137
## conditionConservative \n Signal:social_issueTransgendered Representation    0.17621
## conditionLiberal \n Control:social_issueTransgendered Representation        0.20469
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.17621
##                                                                                  df
## (Intercept)                                                              2294.06536
## conditionConservative \n Signal                                          2294.06536
## conditionLiberal \n Control                                              2294.06536
## conditionLiberal \n Signal                                               2294.06536
## social_issueClimate Change                                               2294.06536
## social_issueLGBTQ Representation                                         2294.06536
## social_issueTransgendered Representation                                 2294.06536
## conditionConservative \n Signal:social_issueClimate Change               1668.48081
## conditionLiberal \n Control:social_issueClimate Change                   2294.06536
## conditionLiberal \n Signal:social_issueClimate Change                    1683.92354
## conditionConservative \n Signal:social_issueLGBTQ Representation         1682.70234
## conditionLiberal \n Control:social_issueLGBTQ Representation             2294.06536
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1668.48081
## conditionConservative \n Signal:social_issueTransgendered Representation 2294.06536
## conditionLiberal \n Control:social_issueTransgendered Representation     1310.97097
## conditionLiberal \n Signal:social_issueTransgendered Representation      2294.06536
##                                                                          t value
## (Intercept)                                                               58.132
## conditionConservative \n Signal                                            0.727
## conditionLiberal \n Control                                                1.523
## conditionLiberal \n Signal                                                 1.249
## social_issueClimate Change                                                -0.555
## social_issueLGBTQ Representation                                          -1.044
## social_issueTransgendered Representation                                   0.200
## conditionConservative \n Signal:social_issueClimate Change                -0.644
## conditionLiberal \n Control:social_issueClimate Change                     2.518
## conditionLiberal \n Signal:social_issueClimate Change                      2.347
## conditionConservative \n Signal:social_issueLGBTQ Representation           0.123
## conditionLiberal \n Control:social_issueLGBTQ Representation               1.709
## conditionLiberal \n Signal:social_issueLGBTQ Representation                2.074
## conditionConservative \n Signal:social_issueTransgendered Representation  -0.966
## conditionLiberal \n Control:social_issueTransgendered Representation      -1.343
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.542
##                                                                          Pr(>|t|)
## (Intercept)                                                                <2e-16
## conditionConservative \n Signal                                            0.4674
## conditionLiberal \n Control                                                0.1279
## conditionLiberal \n Signal                                                 0.2116
## social_issueClimate Change                                                 0.5787
## social_issueLGBTQ Representation                                           0.2967
## social_issueTransgendered Representation                                   0.8413
## conditionConservative \n Signal:social_issueClimate Change                 0.5199
## conditionLiberal \n Control:social_issueClimate Change                     0.0119
## conditionLiberal \n Signal:social_issueClimate Change                      0.0190
## conditionConservative \n Signal:social_issueLGBTQ Representation           0.9025
## conditionLiberal \n Control:social_issueLGBTQ Representation               0.0877
## conditionLiberal \n Signal:social_issueLGBTQ Representation                0.0382
## conditionConservative \n Signal:social_issueTransgendered Representation   0.3344
## conditionLiberal \n Control:social_issueTransgendered Representation       0.1796
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.5880
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                            
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                   *  
## conditionLiberal \n Signal:social_issueClimate Change                    *  
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation             .  
## conditionLiberal \n Signal:social_issueLGBTQ Representation              *  
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.18 Others trust company

wrapped_plot_cooker(gjg_long, condition, OTrust, "Others trust company", social_issue)

mod_OTrust <- lmer(OTrust ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 9794.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3288 -0.4431  0.0864  0.5385  3.1500 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.6141   0.7836  
##  Residual             1.0313   1.0155  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                               4.850e+00
## conditionConservative \n Signal                                           1.571e-02
## conditionLiberal \n Control                                               2.119e-01
## conditionLiberal \n Signal                                                1.959e-01
## social_issueClimate Change                                               -5.027e-02
## social_issueLGBTQ Representation                                          2.602e-02
## social_issueTransgendered Representation                                 -5.264e-04
## conditionConservative \n Signal:social_issueClimate Change               -9.913e-02
## conditionLiberal \n Control:social_issueClimate Change                    1.633e-01
## conditionLiberal \n Signal:social_issueClimate Change                     3.202e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation         -1.635e-02
## conditionLiberal \n Control:social_issueLGBTQ Representation              5.026e-02
## conditionLiberal \n Signal:social_issueLGBTQ Representation              -1.335e-02
## conditionConservative \n Signal:social_issueTransgendered Representation -1.424e-01
## conditionLiberal \n Control:social_issueTransgendered Representation     -2.328e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation      -1.487e-01
##                                                                          Std. Error
## (Intercept)                                                               9.380e-02
## conditionConservative \n Signal                                           1.315e-01
## conditionLiberal \n Control                                               1.316e-01
## conditionLiberal \n Signal                                                1.313e-01
## social_issueClimate Change                                                1.313e-01
## social_issueLGBTQ Representation                                          1.315e-01
## social_issueTransgendered Representation                                  1.316e-01
## conditionConservative \n Signal:social_issueClimate Change                2.027e-01
## conditionLiberal \n Control:social_issueClimate Change                    1.851e-01
## conditionLiberal \n Signal:social_issueClimate Change                     2.012e-01
## conditionConservative \n Signal:social_issueLGBTQ Representation          2.015e-01
## conditionLiberal \n Control:social_issueLGBTQ Representation              1.851e-01
## conditionLiberal \n Signal:social_issueLGBTQ Representation               2.027e-01
## conditionConservative \n Signal:social_issueTransgendered Representation  1.851e-01
## conditionLiberal \n Control:social_issueTransgendered Representation      2.181e-01
## conditionLiberal \n Signal:social_issueTransgendered Representation       1.851e-01
##                                                                                  df
## (Intercept)                                                               2.158e+03
## conditionConservative \n Signal                                           2.158e+03
## conditionLiberal \n Control                                               2.158e+03
## conditionLiberal \n Signal                                                2.158e+03
## social_issueClimate Change                                                2.158e+03
## social_issueLGBTQ Representation                                          2.158e+03
## social_issueTransgendered Representation                                  2.158e+03
## conditionConservative \n Signal:social_issueClimate Change                1.569e+03
## conditionLiberal \n Control:social_issueClimate Change                    2.158e+03
## conditionLiberal \n Signal:social_issueClimate Change                     1.583e+03
## conditionConservative \n Signal:social_issueLGBTQ Representation          1.582e+03
## conditionLiberal \n Control:social_issueLGBTQ Representation              2.158e+03
## conditionLiberal \n Signal:social_issueLGBTQ Representation               1.569e+03
## conditionConservative \n Signal:social_issueTransgendered Representation  2.158e+03
## conditionLiberal \n Control:social_issueTransgendered Representation      1.248e+03
## conditionLiberal \n Signal:social_issueTransgendered Representation       2.158e+03
##                                                                          t value
## (Intercept)                                                               51.707
## conditionConservative \n Signal                                            0.120
## conditionLiberal \n Control                                                1.610
## conditionLiberal \n Signal                                                 1.492
## social_issueClimate Change                                                -0.383
## social_issueLGBTQ Representation                                           0.198
## social_issueTransgendered Representation                                  -0.004
## conditionConservative \n Signal:social_issueClimate Change                -0.489
## conditionLiberal \n Control:social_issueClimate Change                     0.883
## conditionLiberal \n Signal:social_issueClimate Change                      1.591
## conditionConservative \n Signal:social_issueLGBTQ Representation          -0.081
## conditionLiberal \n Control:social_issueLGBTQ Representation               0.272
## conditionLiberal \n Signal:social_issueLGBTQ Representation               -0.066
## conditionConservative \n Signal:social_issueTransgendered Representation  -0.769
## conditionLiberal \n Control:social_issueTransgendered Representation      -1.067
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.804
##                                                                          Pr(>|t|)
## (Intercept)                                                                <2e-16
## conditionConservative \n Signal                                             0.905
## conditionLiberal \n Control                                                 0.108
## conditionLiberal \n Signal                                                  0.136
## social_issueClimate Change                                                  0.702
## social_issueLGBTQ Representation                                            0.843
## social_issueTransgendered Representation                                    0.997
## conditionConservative \n Signal:social_issueClimate Change                  0.625
## conditionLiberal \n Control:social_issueClimate Change                      0.377
## conditionLiberal \n Signal:social_issueClimate Change                       0.112
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.935
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.786
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.947
## conditionConservative \n Signal:social_issueTransgendered Representation    0.442
## conditionLiberal \n Control:social_issueTransgendered Representation        0.286
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.422
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                                  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                            
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.6.19 Others think company is competent

wrapped_plot_cooker(gjg_long, condition, OComp, "Others think company is competent", social_issue)

mod_OComp <- lmer(OComp ~ condition*social_issue + (1 | PID), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition * social_issue + (1 | PID)
##    Data: gjg_long
## 
## REML criterion at convergence: 9931.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0536 -0.4070  0.1068  0.5739  3.0841 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  PID      (Intercept) 0.617    0.7855  
##  Residual             1.088    1.0430  
## Number of obs: 3076, groups:  PID, 769
## 
## Fixed effects:
##                                                                            Estimate
## (Intercept)                                                                 5.00535
## conditionConservative \n Signal                                             0.02043
## conditionLiberal \n Control                                                 0.17600
## conditionLiberal \n Signal                                                  0.24081
## social_issueClimate Change                                                 -0.04125
## social_issueLGBTQ Representation                                           -0.15483
## social_issueTransgendered Representation                                   -0.15561
## conditionConservative \n Signal:social_issueClimate Change                 -0.12357
## conditionLiberal \n Control:social_issueClimate Change                      0.27742
## conditionLiberal \n Signal:social_issueClimate Change                       0.26141
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.08243
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.27605
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.24558
## conditionConservative \n Signal:social_issueTransgendered Representation   -0.08555
## conditionLiberal \n Control:social_issueTransgendered Representation       -0.18617
## conditionLiberal \n Signal:social_issueTransgendered Representation        -0.17302
##                                                                          Std. Error
## (Intercept)                                                                 0.09548
## conditionConservative \n Signal                                             0.13381
## conditionLiberal \n Control                                                 0.13398
## conditionLiberal \n Signal                                                  0.13364
## social_issueClimate Change                                                  0.13364
## social_issueLGBTQ Representation                                            0.13381
## social_issueTransgendered Representation                                    0.13398
## conditionConservative \n Signal:social_issueClimate Change                  0.20582
## conditionLiberal \n Control:social_issueClimate Change                      0.18836
## conditionLiberal \n Signal:social_issueClimate Change                       0.20436
## conditionConservative \n Signal:social_issueLGBTQ Representation            0.20466
## conditionLiberal \n Control:social_issueLGBTQ Representation                0.18836
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 0.20582
## conditionConservative \n Signal:social_issueTransgendered Representation    0.18836
## conditionLiberal \n Control:social_issueTransgendered Representation        0.22111
## conditionLiberal \n Signal:social_issueTransgendered Representation         0.18836
##                                                                                  df
## (Intercept)                                                              2196.81222
## conditionConservative \n Signal                                          2196.81222
## conditionLiberal \n Control                                              2196.81222
## conditionLiberal \n Signal                                               2196.81222
## social_issueClimate Change                                               2196.81222
## social_issueLGBTQ Representation                                         2196.81222
## social_issueTransgendered Representation                                 2196.81222
## conditionConservative \n Signal:social_issueClimate Change               1596.30589
## conditionLiberal \n Control:social_issueClimate Change                   2196.81222
## conditionLiberal \n Signal:social_issueClimate Change                    1610.74919
## conditionConservative \n Signal:social_issueLGBTQ Representation         1609.60650
## conditionLiberal \n Control:social_issueLGBTQ Representation             2196.81222
## conditionLiberal \n Signal:social_issueLGBTQ Representation              1596.30589
## conditionConservative \n Signal:social_issueTransgendered Representation 2196.81222
## conditionLiberal \n Control:social_issueTransgendered Representation     1265.20893
## conditionLiberal \n Signal:social_issueTransgendered Representation      2196.81222
##                                                                          t value
## (Intercept)                                                               52.423
## conditionConservative \n Signal                                            0.153
## conditionLiberal \n Control                                                1.314
## conditionLiberal \n Signal                                                 1.802
## social_issueClimate Change                                                -0.309
## social_issueLGBTQ Representation                                          -1.157
## social_issueTransgendered Representation                                  -1.161
## conditionConservative \n Signal:social_issueClimate Change                -0.600
## conditionLiberal \n Control:social_issueClimate Change                     1.473
## conditionLiberal \n Signal:social_issueClimate Change                      1.279
## conditionConservative \n Signal:social_issueLGBTQ Representation           0.403
## conditionLiberal \n Control:social_issueLGBTQ Representation               1.466
## conditionLiberal \n Signal:social_issueLGBTQ Representation                1.193
## conditionConservative \n Signal:social_issueTransgendered Representation  -0.454
## conditionLiberal \n Control:social_issueTransgendered Representation      -0.842
## conditionLiberal \n Signal:social_issueTransgendered Representation       -0.919
##                                                                          Pr(>|t|)
## (Intercept)                                                                <2e-16
## conditionConservative \n Signal                                            0.8787
## conditionLiberal \n Control                                                0.1891
## conditionLiberal \n Signal                                                 0.0717
## social_issueClimate Change                                                 0.7576
## social_issueLGBTQ Representation                                           0.2473
## social_issueTransgendered Representation                                   0.2456
## conditionConservative \n Signal:social_issueClimate Change                 0.5484
## conditionLiberal \n Control:social_issueClimate Change                     0.1409
## conditionLiberal \n Signal:social_issueClimate Change                      0.2010
## conditionConservative \n Signal:social_issueLGBTQ Representation           0.6872
## conditionLiberal \n Control:social_issueLGBTQ Representation               0.1429
## conditionLiberal \n Signal:social_issueLGBTQ Representation                0.2330
## conditionConservative \n Signal:social_issueTransgendered Representation   0.6497
## conditionLiberal \n Control:social_issueTransgendered Representation       0.4000
## conditionLiberal \n Signal:social_issueTransgendered Representation        0.3584
##                                                                             
## (Intercept)                                                              ***
## conditionConservative \n Signal                                             
## conditionLiberal \n Control                                                 
## conditionLiberal \n Signal                                               .  
## social_issueClimate Change                                                  
## social_issueLGBTQ Representation                                            
## social_issueTransgendered Representation                                    
## conditionConservative \n Signal:social_issueClimate Change                  
## conditionLiberal \n Control:social_issueClimate Change                      
## conditionLiberal \n Signal:social_issueClimate Change                       
## conditionConservative \n Signal:social_issueLGBTQ Representation            
## conditionLiberal \n Control:social_issueLGBTQ Representation                
## conditionLiberal \n Signal:social_issueLGBTQ Representation                 
## conditionConservative \n Signal:social_issueTransgendered Representation    
## conditionLiberal \n Control:social_issueTransgendered Representation        
## conditionLiberal \n Signal:social_issueTransgendered Representation         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1