lote <- c(rep("lote1",1),
rep("lote2",1),
rep("lote3",1),
rep("lote4",1),
rep("lote5",1))
gen <- c(rep("genA",5),
rep("genB",5),
rep("genC",5),
rep("genD",5),
rep("genE",5))
prov <- c("A","E","C","B","D",
"C","B","A","D","E",
"B","C","D","E","A",
"D","A","E","C","B",
"E","D","B","A","C")
biom <- c(42,45,41,56,47,
47,54,46,52,49,
55,52,57,49,45,
51,44,47,50,54,
44,50,48,43,46)
data <- data.frame(lote, gen, prov, biom)
head(data)
## lote gen prov biom
## 1 lote1 genA A 42
## 2 lote2 genA E 45
## 3 lote3 genA C 41
## 4 lote4 genA B 56
## 5 lote5 genA D 47
## 6 lote1 genB C 47
Graficos descriptivos
library(lattice)
bwplot(biom ~ gen | prov + lote, data)
Modelo
\[y_{ijk} = \mu + \tau_i + \beta_j + \delta_k + \epsilon_{ijk}\]
\(i=1,\dots,p\) \(j=1,\dots,p\) \(k=1,\dots,p\)
tbl = matrix(data$prov, 5)
colnames(tbl) = unique(data$genotipo)
rownames(tbl) = unique(data$lote)
tbl
## [,1] [,2] [,3] [,4] [,5]
## lote1 "A" "C" "B" "D" "E"
## lote2 "E" "B" "C" "A" "D"
## lote3 "C" "A" "D" "E" "B"
## lote4 "B" "D" "E" "C" "A"
## lote5 "D" "E" "A" "B" "C"
\[H_0: \mu_{B_{g_1}} = \mu_{B_{g_2}} = \mu_{B_{g_3}} = \mu_{B_{g_4}} = \mu_{B_{g_5}}\]
mod <- lm(biom ~ lote + gen + prov, data)
anova(mod)
## Analysis of Variance Table
##
## Response: biom
## Df Sum Sq Mean Sq F value Pr(>F)
## lote 4 17.76 4.440 0.7967 0.549839
## gen 4 109.36 27.340 4.9055 0.014105 *
## prov 4 286.16 71.540 12.8361 0.000271 ***
## Residuals 12 66.88 5.573
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bwplot(biom ~ gen | prov,
data)
library(ggplot2)
ggplot(data)+
aes(x=prov,
y=biom,
fill=gen)+
geom_col(
position = 'dodge')
REvision de supuestos
res_mod = mod$residuals
# 1.Normalidad
shapiro.test(res_mod)
##
## Shapiro-Wilk normality test
##
## data: res_mod
## W = 0.97691, p-value = 0.8178
# Se cumple el supuesto de normalidad
# 2.Igualdad de varianzas
bartlett.test
## function (x, ...)
## UseMethod("bartlett.test")
## <bytecode: 0x000002c713d508b0>
## <environment: namespace:stats>
# Se cumple el supiuesto (Varianzas iguales)
library(TukeyC)
tt = TukeyC(mod, 'gen')
plot(tt, lwd=2, cex=2)