Determinar medidas de dispersión de datos como edades, sueldos y calificaciones.
Simular muestra de varios conjuntos de datos
Se identifica media de los datos
Se muestran tablas de frecuencias
Se calculan medidas de dispersión, varianza y desviación estándar.
Se visualiza la dispersión de los datos en relación a la media.
Se calcula el coeficiente de variación y se compara con similares conjuntos de datos.
¿Para que sirven las medidas de dispersión?
El reporte de una medida de centralización como la media, mediana y moda sólo da información parcial sobre un conjunto o distribución de datos. Diferentes muestras o poblaciones pueden tener medidas idénticas de centro y aun así diferir una de otra en otras importantes maneras. [@devore2016].
La imagen siguiente muestra tres conjuntos de datos y los tres tienen media y mediana igual, sin embargo la dispersión es diferentes, es decir cual conjunto de datos se aleja mas de la media.
La primera tiene la cantidad más grande de variabilidad, la tercera tiene la cantidad más pequeña y la segunda es intermedia respecto a las otras dos en este aspecto.
La varianza es una medida de variabilidad que utiliza todos los datos. La varianza está basada en la diferencia entre el valor de cada observación (\(x_i\)) y la media \(\bar{x}\) [@anderson2008].
Se identifican las fórmulas para varianza poblacional y muestral, dependiendo de los datos a analizar, si es todas las observaciones de la población y solo una muestra de la misma.
Para efectos de este ejercicio se utiliza mas específicamente la varianza y desviación muestral.
\[ \sigma^2 = \frac{\sum_{i=1}^N(x_i- \mu)^2}{N} \]
siendo \(\mu\) la media poblacional y \(N\) el total de los datos de la población.
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
siendo \(\bar{x}\) la media muestral y \(n\) el total de los datos de la muestra.
Las unidades al cuadrado de la varianza dificultan la comprensión e interpretación intuitiva de los valores numéricos de la varianza.
La desviación estándar se define como la raíz cuadrada positiva de la varianza.
Continuando con la notación adoptada para la varianza muestral y para la varianza poblacional, se emplea \(\varsigma\) para denotar la desviación estándar muestral y \(\sigma\) para denotar la desviación estándar poblacional.
¿Qué se gana con convertir la varianza en la correspondiente desviación estándar?.
Como la desviación estándar es la raíz cuadrada de la varianza, las unidades de la varianza, son al cuadrado, posiblemente dificulta su interpretación, por tanto, la desviación estándar se interpreta de mejor manera la variabilidad de los datos porque el valor resultante se mide en las mismas unidades que los datos originales. [@anderson2008].
Una interpretación preliminar de la desviación estándar muestral es que es el tamaño de una desviación típica o representativa de la media muestral dentro de la muestra dada.[@devore2016]
\[ \sigma = \sqrt{\sigma^2} \]
\[ S = \sqrt{S^2} \]
En algunas ocasiones se requiere un estadístico descriptivo que indique cuán grande es la desviación estándar en relación con la media. Existe el coeficiente de variación y resuelve ese propósito.
La fórmula del coeficiente de variación indica el grado de dispersión de un conjunto de datos con respecto a la media.
\[ CV = \left(\frac{\sigma}{\bar{x}} \times 100 \right) \text{%} \]
Instalar librerías anticipadamente con install.packages(“fdth”)
library(fdth) # Para tablas de frecuencias
library(ggplot2) # Para gráficos
Se establece valor de semilla para que se generen los mismos datos.
set.seed(2023)
Se generan 200 edades en dos conjuntos de datos diferentes.
edades1 se genera con función de aleatoriedad sample()
edades2 se genera con la función de distribución normal rnorm().
n <- 200
edades1 <- sample(x = 18:60,size = n,replace = TRUE )
Se identifican los datos edades1
edades1
## [1] 33 58 25 43 51 18 46 34 22 25 51 20 32 21 49 22 41 26 51 55 38 58 56 47 56
## [26] 48 47 50 23 21 23 23 35 51 52 57 41 24 49 50 59 53 34 49 54 59 36 49 45 43
## [51] 32 38 29 29 48 45 60 26 60 39 44 33 59 37 49 20 48 37 37 34 27 46 60 26 23
## [76] 27 49 55 34 49 53 53 26 35 26 57 44 20 40 41 19 36 41 44 40 40 29 58 22 34
## [101] 29 34 55 32 26 35 49 41 59 35 21 57 53 24 34 22 29 53 33 48 27 41 23 44 45
## [126] 19 20 54 24 55 22 43 31 52 58 42 33 47 38 19 22 41 32 20 22 45 31 58 27 43
## [151] 20 49 38 50 53 22 28 25 58 48 35 35 44 59 58 28 39 20 38 32 45 46 60 50 52
## [176] 34 49 60 21 58 53 45 36 41 34 54 25 27 54 59 60 30 55 33 53 21 32 19 33 38
Se muestran las tablas de frecuencias del conjunto de datos edades1.
En las tablas de frecuencias se determina matemáticamente el número de clases, La opción matemáticamente más consistente es la conocida como regla de Sturges.
La solución de esta ecuación proporciona una regla práctica para obtener el número de clases.
\[ k=1+3.322*log10(n) \]
Siendo k el número de clases
log es la función logarítmica de base 10, log10()
y n el total de la muestra
El rango de clase de acuerdo a Sturges está dada por \[ h=\frac{max(datos) - min(datos)}{k} \]Siendo h el rango de cada clase y max(datos) - min(datos) el rango del total de los datos, es decir la diferencia entre límite superior menos límite inferior.
Existen otras formas de determinar el número de clases a utilizar, algunas más complejas, otras más simples.
Independientemente de la forma de cálculo seleccionada ya sea Sturges, Scott o Freedman-Diaconis (FD), lo realmente importante es que la información mostrada en la tabla de frecuencia sea fácil de revisar, que no contenga un número excesivo de clases y que la información que en ella se refleja permita comprender cómo se presentan los datos en la población o de una muestra.
El número de clase de acuerdo par \(n=200\) de acuerdo a Sturges es:
k <- round(1+3.322 * log10(n))
k
## [1] 9
La amplitud h1 y h2 para cada conjunto de datos es igual a:
h = diff(range(edades1)) / k
h
## [1] 4.666667
tabla.edades1 <- fdt(x = edades1, breaks="Sturges")
tabla.edades1
## Class limits f rf rf(%) cf cf(%)
## [17.82,22.57) 25 0.12 12.5 25 12.5
## [22.57,27.33) 23 0.12 11.5 48 24.0
## [27.33,32.08) 16 0.08 8.0 64 32.0
## [32.08,36.83) 24 0.12 12.0 88 44.0
## [36.83,41.59) 22 0.11 11.0 110 55.0
## [41.59,46.34) 19 0.10 9.5 129 64.5
## [46.34,51.09) 26 0.13 13.0 155 77.5
## [51.09,55.85) 20 0.10 10.0 175 87.5
## [55.85,60.6) 25 0.12 12.5 200 100.0
Class limits significa el rango de cada clase
f significa la frecuencia, la suma de f debe ser el total de elementos.
rf significa frecuencia relativa la suma de todas las rf debe ser el 1
rf% significa el valor relativo pero en porcentaje, la suma de rf% debe ser el 100%
cf significa frecuencia acumulada
cf% significa frecuencia porcentual acumulada
hist(edades1, breaks = "Sturges" )
datos.edades1 <- data.frame(x = 1:length(edades1), edad= edades1)
ggplot(datos.edades1, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades1), col='red') +
ggtitle(label = "Dispersión de edades1", subtitle = paste("media = ", mean(edades1)))
edades2 <- round(rnorm(n = n, mean = 30, sd = 5))
Se identifican los datos edades2
sort(edades2)
## [1] 17 17 18 19 19 20 21 21 21 22 22 23 23 23 23 23 23 24 24 24 24 24 24 24 24
## [26] 24 24 24 24 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [51] 26 26 26 26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28
## [76] 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
## [101] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31
## [126] 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33
## [151] 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35
## [176] 35 35 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 38 39 39 40 41 41 41
Se muestran las tablas de frecuencias del conjunto de datos edades2.
hist(edades2, breaks = "Sturges" )
datos.edades2 <- data.frame(x = 1:length(edades2), edad= edades2)
ggplot(datos.edades2, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades2), col='red') +
ggtitle(label = "Dispersión de edades2", subtitle = paste("media = ", mean(edades2)))
Las medidas de dispersión varianza y desviación estándar miden el valor de dispersión de un conjunto de datos numéricos.
La dispersión significa que tanto los datos están alejados de la media, el valor de la desviación se compara con la media y se interpreta que tanto los valores distan del valor de la media.
media_edades1 <- mean(edades1)
media_edades2 <- mean(edades2)
media_edades1; media_edades2
## [1] 39.57
## [1] 29.635
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
\[ S = \sqrt{S^{2}} \]
tabla.varianza.edades1 <- data.frame(x = edades1,
x_media = media_edades1,
xi.menos.media = edades1 - media_edades1,
xi.menos.media.cuad = (edades1 - media_edades1)^2)
tabla.varianza.edades1
## x x_media xi.menos.media xi.menos.media.cuad
## 1 33 39.57 -6.57 43.1649
## 2 58 39.57 18.43 339.6649
## 3 25 39.57 -14.57 212.2849
## 4 43 39.57 3.43 11.7649
## 5 51 39.57 11.43 130.6449
## 6 18 39.57 -21.57 465.2649
## 7 46 39.57 6.43 41.3449
## 8 34 39.57 -5.57 31.0249
## 9 22 39.57 -17.57 308.7049
## 10 25 39.57 -14.57 212.2849
## 11 51 39.57 11.43 130.6449
## 12 20 39.57 -19.57 382.9849
## 13 32 39.57 -7.57 57.3049
## 14 21 39.57 -18.57 344.8449
## 15 49 39.57 9.43 88.9249
## 16 22 39.57 -17.57 308.7049
## 17 41 39.57 1.43 2.0449
## 18 26 39.57 -13.57 184.1449
## 19 51 39.57 11.43 130.6449
## 20 55 39.57 15.43 238.0849
## 21 38 39.57 -1.57 2.4649
## 22 58 39.57 18.43 339.6649
## 23 56 39.57 16.43 269.9449
## 24 47 39.57 7.43 55.2049
## 25 56 39.57 16.43 269.9449
## 26 48 39.57 8.43 71.0649
## 27 47 39.57 7.43 55.2049
## 28 50 39.57 10.43 108.7849
## 29 23 39.57 -16.57 274.5649
## 30 21 39.57 -18.57 344.8449
## 31 23 39.57 -16.57 274.5649
## 32 23 39.57 -16.57 274.5649
## 33 35 39.57 -4.57 20.8849
## 34 51 39.57 11.43 130.6449
## 35 52 39.57 12.43 154.5049
## 36 57 39.57 17.43 303.8049
## 37 41 39.57 1.43 2.0449
## 38 24 39.57 -15.57 242.4249
## 39 49 39.57 9.43 88.9249
## 40 50 39.57 10.43 108.7849
## 41 59 39.57 19.43 377.5249
## 42 53 39.57 13.43 180.3649
## 43 34 39.57 -5.57 31.0249
## 44 49 39.57 9.43 88.9249
## 45 54 39.57 14.43 208.2249
## 46 59 39.57 19.43 377.5249
## 47 36 39.57 -3.57 12.7449
## 48 49 39.57 9.43 88.9249
## 49 45 39.57 5.43 29.4849
## 50 43 39.57 3.43 11.7649
## 51 32 39.57 -7.57 57.3049
## 52 38 39.57 -1.57 2.4649
## 53 29 39.57 -10.57 111.7249
## 54 29 39.57 -10.57 111.7249
## 55 48 39.57 8.43 71.0649
## 56 45 39.57 5.43 29.4849
## 57 60 39.57 20.43 417.3849
## 58 26 39.57 -13.57 184.1449
## 59 60 39.57 20.43 417.3849
## 60 39 39.57 -0.57 0.3249
## 61 44 39.57 4.43 19.6249
## 62 33 39.57 -6.57 43.1649
## 63 59 39.57 19.43 377.5249
## 64 37 39.57 -2.57 6.6049
## 65 49 39.57 9.43 88.9249
## 66 20 39.57 -19.57 382.9849
## 67 48 39.57 8.43 71.0649
## 68 37 39.57 -2.57 6.6049
## 69 37 39.57 -2.57 6.6049
## 70 34 39.57 -5.57 31.0249
## 71 27 39.57 -12.57 158.0049
## 72 46 39.57 6.43 41.3449
## 73 60 39.57 20.43 417.3849
## 74 26 39.57 -13.57 184.1449
## 75 23 39.57 -16.57 274.5649
## 76 27 39.57 -12.57 158.0049
## 77 49 39.57 9.43 88.9249
## 78 55 39.57 15.43 238.0849
## 79 34 39.57 -5.57 31.0249
## 80 49 39.57 9.43 88.9249
## 81 53 39.57 13.43 180.3649
## 82 53 39.57 13.43 180.3649
## 83 26 39.57 -13.57 184.1449
## 84 35 39.57 -4.57 20.8849
## 85 26 39.57 -13.57 184.1449
## 86 57 39.57 17.43 303.8049
## 87 44 39.57 4.43 19.6249
## 88 20 39.57 -19.57 382.9849
## 89 40 39.57 0.43 0.1849
## 90 41 39.57 1.43 2.0449
## 91 19 39.57 -20.57 423.1249
## 92 36 39.57 -3.57 12.7449
## 93 41 39.57 1.43 2.0449
## 94 44 39.57 4.43 19.6249
## 95 40 39.57 0.43 0.1849
## 96 40 39.57 0.43 0.1849
## 97 29 39.57 -10.57 111.7249
## 98 58 39.57 18.43 339.6649
## 99 22 39.57 -17.57 308.7049
## 100 34 39.57 -5.57 31.0249
## 101 29 39.57 -10.57 111.7249
## 102 34 39.57 -5.57 31.0249
## 103 55 39.57 15.43 238.0849
## 104 32 39.57 -7.57 57.3049
## 105 26 39.57 -13.57 184.1449
## 106 35 39.57 -4.57 20.8849
## 107 49 39.57 9.43 88.9249
## 108 41 39.57 1.43 2.0449
## 109 59 39.57 19.43 377.5249
## 110 35 39.57 -4.57 20.8849
## 111 21 39.57 -18.57 344.8449
## 112 57 39.57 17.43 303.8049
## 113 53 39.57 13.43 180.3649
## 114 24 39.57 -15.57 242.4249
## 115 34 39.57 -5.57 31.0249
## 116 22 39.57 -17.57 308.7049
## 117 29 39.57 -10.57 111.7249
## 118 53 39.57 13.43 180.3649
## 119 33 39.57 -6.57 43.1649
## 120 48 39.57 8.43 71.0649
## 121 27 39.57 -12.57 158.0049
## 122 41 39.57 1.43 2.0449
## 123 23 39.57 -16.57 274.5649
## 124 44 39.57 4.43 19.6249
## 125 45 39.57 5.43 29.4849
## 126 19 39.57 -20.57 423.1249
## 127 20 39.57 -19.57 382.9849
## 128 54 39.57 14.43 208.2249
## 129 24 39.57 -15.57 242.4249
## 130 55 39.57 15.43 238.0849
## 131 22 39.57 -17.57 308.7049
## 132 43 39.57 3.43 11.7649
## 133 31 39.57 -8.57 73.4449
## 134 52 39.57 12.43 154.5049
## 135 58 39.57 18.43 339.6649
## 136 42 39.57 2.43 5.9049
## 137 33 39.57 -6.57 43.1649
## 138 47 39.57 7.43 55.2049
## 139 38 39.57 -1.57 2.4649
## 140 19 39.57 -20.57 423.1249
## 141 22 39.57 -17.57 308.7049
## 142 41 39.57 1.43 2.0449
## 143 32 39.57 -7.57 57.3049
## 144 20 39.57 -19.57 382.9849
## 145 22 39.57 -17.57 308.7049
## 146 45 39.57 5.43 29.4849
## 147 31 39.57 -8.57 73.4449
## 148 58 39.57 18.43 339.6649
## 149 27 39.57 -12.57 158.0049
## 150 43 39.57 3.43 11.7649
## 151 20 39.57 -19.57 382.9849
## 152 49 39.57 9.43 88.9249
## 153 38 39.57 -1.57 2.4649
## 154 50 39.57 10.43 108.7849
## 155 53 39.57 13.43 180.3649
## 156 22 39.57 -17.57 308.7049
## 157 28 39.57 -11.57 133.8649
## 158 25 39.57 -14.57 212.2849
## 159 58 39.57 18.43 339.6649
## 160 48 39.57 8.43 71.0649
## 161 35 39.57 -4.57 20.8849
## 162 35 39.57 -4.57 20.8849
## 163 44 39.57 4.43 19.6249
## 164 59 39.57 19.43 377.5249
## 165 58 39.57 18.43 339.6649
## 166 28 39.57 -11.57 133.8649
## 167 39 39.57 -0.57 0.3249
## 168 20 39.57 -19.57 382.9849
## 169 38 39.57 -1.57 2.4649
## 170 32 39.57 -7.57 57.3049
## 171 45 39.57 5.43 29.4849
## 172 46 39.57 6.43 41.3449
## 173 60 39.57 20.43 417.3849
## 174 50 39.57 10.43 108.7849
## 175 52 39.57 12.43 154.5049
## 176 34 39.57 -5.57 31.0249
## 177 49 39.57 9.43 88.9249
## 178 60 39.57 20.43 417.3849
## 179 21 39.57 -18.57 344.8449
## 180 58 39.57 18.43 339.6649
## 181 53 39.57 13.43 180.3649
## 182 45 39.57 5.43 29.4849
## 183 36 39.57 -3.57 12.7449
## 184 41 39.57 1.43 2.0449
## 185 34 39.57 -5.57 31.0249
## 186 54 39.57 14.43 208.2249
## 187 25 39.57 -14.57 212.2849
## 188 27 39.57 -12.57 158.0049
## 189 54 39.57 14.43 208.2249
## 190 59 39.57 19.43 377.5249
## 191 60 39.57 20.43 417.3849
## 192 30 39.57 -9.57 91.5849
## 193 55 39.57 15.43 238.0849
## 194 33 39.57 -6.57 43.1649
## 195 53 39.57 13.43 180.3649
## 196 21 39.57 -18.57 344.8449
## 197 32 39.57 -7.57 57.3049
## 198 19 39.57 -20.57 423.1249
## 199 33 39.57 -6.57 43.1649
## 200 38 39.57 -1.57 2.4649
Calculando la suma y determinando varianza
n <- length(edades1)
suma <- sum(tabla.varianza.edades1$xi.menos.media.cuad)
suma
## [1] 31727.02
varianza <- suma / (n -1)
varianza
## [1] 159.4323
Con las funciones de var() y sd() se determinan la varianza y a desviación respectivamente y con mean() la media de la muestra.
varianza_edades1 <- var(edades1)
varianza_edades2 <- var(edades2)
desv.std_edades1 <- sd(edades1)
desv.std_edades2 <- sd(edades2)
Se muestran los valores generados, el punto y coma en R significa en una misma linea se ejecutan dos instrucciones o dos comandos, en este caso solo mostrar los valores.
varianza_edades1; varianza_edades2
## [1] 159.4323
## [1] 22.40379
desv.std_edades1; desv.std_edades2
## [1] 12.62665
## [1] 4.733265
El coeficiente de variación (CV) es un estadístico que permite comparar entre dos o mas conjuntos de datos cuál es estos tiene una dispersión mayor o menor.
Al identificar el CV de un conjunto de datos y compararlo con otro CV de otro conjunto de datos similares, se puede determinar cual de los datos tiene mayor o menor dispersión y se puede concluir en cual es estos está mas dispersos sus datos, es decir cuál de ellos se aleja mas o menos de la media, según sea el caso.
Para determinar el coeficiente de variación se establece la división de la desviación estándar entre la media del conjunto de datos.
\[ CV = \frac{\sigma}{\bar{x}} \]
CV_edades1 <- desv.std_edades1 / media_edades1
CV_edades1
## [1] 0.3190965
CV_edades2 <- desv.std_edades2 / media_edades2
CV_edades2
## [1] 0.1597187
¿Qué representan las tablas de frecuencias para los datos edades?
Las tablas de frecuencia representan las clases y la frecuencias de casos de cada una de las clases, permiten observar los valores relativos y porcentuales de las frecuencias.
Con respecto a edades1 existe un 15.5% de valores que están en un rango o intervalo entre 36.83 y 41.59.
En relación a edades2 existe una cantidad de valores entre 36.83 y 46.34 que representan el 14.5%.
¿Cuáles son los valores media y desviación de los conjuntos de datos edades?
Con respecto a los valores estadísticos del conjunto de datos edades1, el valor la media es de: 39.57, la desviación es de: 12.6266489.
Con respecto a los valores estadísticos del conjunto de datos edades2, el valor la media es de: 29.635, la desviación es de: 4.7332646.
¿Cuáles son los valores de coeficiente de variación para los conjuntos de datos edades y que representan?
El coeficiente de variación de edades1 es de: 0.3190965y el CV de edades2 es de: 0.1597187
Existe mayor dispersión en los valores del conjunto de datos edades1 con respecto a edades2 por tener ligeramente mayor valor en su coeficiente de variación.
Sin bibliografía actualizada