The Taylor Series of f(x), centered at c is, lim n = 0 -> ∞[(f^((n) (c))/n! (x-c)^n]
Setting c = 0 gives the Maclaurin Series of f(x): lim n = 0 -> ∞ [(f^((n) (0))/n! (x)^n]
So, f(x) = f(0) + x f’ (0) + x^2/2! f’’ (0) + x^3/3! f’’’ (0) + x^4/4! f’’’’ (0) + ⋯ + ∞
Now,
f(x) = e^x sinx
so, f(0) = 0
f’(x) = e^x cosx + e^x sinx
so, f’(0) = 1
f’’(x) = e^x(cosx – sinx) + (sinx + cosx) e^x
= 2e^x cosx
so, f’’(0) = 2
f’’’(x) = -2e^x sinx + 2 e^x cosx
so, f’’’(0) = 2
f’’’’(x) = -2e^x cosx - 2e^x sinx - 2e^x sinx + 2e^x cosx
= -4e^x sinx
so, f’’’’(0) = 0
Now, f(x)= e^x sinx = 0 + x + x^2/2 * 2+ x^3/6 * 2+ x^4/24 * 0 + ⋯ + ∞
= 0 + x + x^2 + x^3/3 + … + ∞