Predictive Modeling Workshop
All slides can be found in :
The aim of this project is to use machine learning techniques such as logistic regression and decision trees for building a predictive model based on bank client’s features.
This model should help on understanding which client can be considered as a risky one.
We will use dataset South German Credithttps://data.ub.uni-muenchen.de/23/2/kredit.asc
This dataset is a polished version of German Credit Dataset https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data from UCI Machine Learning Repository portal, donated by the German professor Hans Hofmann via the European Statlog project.
German credit dataset from the UCI Machine Learning Repository, donated by the German professor Hans Hofmann via the European Statlog project, comes with an incorrect code table.
Many variables are wrongly represented, which implies that the data cannot be adequately used for experimenting with methods for interpretable machine learning.
The South German Credit data are meaningful, credit scoring data from southern Germany In dataset, each entry represents a person who takes a credit by a bank.[@gromping2019]
Each person is classified as good or bad credit risks according to the set of attributes.
# South German Credit Dataset: Code for creating
# SouthGermanCredit.asc as described in @gromping2019
temp <- read_table("https://data.ub.uni-muenchen.de/23/2/kredit.asc")
### recode pers and gastarb to the stated P2 coding
temp$pers <- 3 - temp$pers
temp$gastarb <- 3 - temp$gastarb
### put credit_risk is last
temp <- cbind(temp[, -1], kredit = temp$kredit)
write.table(temp, file = "./data/SouthGermanCredit.asc", row.names = FALSE,
quote = FALSE)
## save dataset in our data folder
data_credit <- read.table("./data/SouthGermanCredit.asc")
# remove temp file
remove(temp)'data.frame': 1000 obs. of 21 variables:
$ laufkont: int 1 1 2 1 1 1 1 1 4 2 ...
$ laufzeit: int 18 9 12 12 12 10 8 6 18 24 ...
$ moral : int 4 4 2 4 4 4 4 4 4 2 ...
$ verw : int 2 0 9 0 0 0 0 0 3 3 ...
$ hoehe : int 1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
$ sparkont: int 1 1 2 1 1 1 1 1 1 3 ...
$ beszeit : int 2 3 4 3 3 2 4 2 1 1 ...
$ rate : int 4 2 2 3 4 1 1 2 4 1 ...
$ famges : int 2 3 2 3 3 3 3 3 2 2 ...
$ buerge : int 1 1 1 1 1 1 1 1 1 1 ...
$ wohnzeit: int 4 2 4 2 4 3 4 4 4 4 ...
$ verm : int 2 1 1 1 2 1 1 1 3 4 ...
$ alter : int 21 36 23 39 38 48 39 40 65 23 ...
$ weitkred: int 3 3 3 3 1 3 3 3 3 3 ...
$ wohn : int 1 1 1 1 2 1 2 2 2 1 ...
$ bishkred: int 1 2 1 2 2 2 2 1 2 1 ...
$ beruf : int 3 3 2 2 2 2 2 2 1 1 ...
$ pers : int 2 1 2 1 2 1 2 1 2 2 ...
$ telef : int 1 1 1 1 1 1 1 1 1 1 ...
$ gastarb : int 2 2 2 1 1 1 1 1 2 2 ...
$ kredit : int 1 1 1 1 1 1 1 1 1 1 ...
Since variables are missing names, it is hard initially to understand information represented in dataframe.
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in [gromping2019] http://www1.beuth-hochschule.de/FB_II/reports/Report-2019-004.pdf we have all variables as numeric variables. Let’s check this fact in the downloaded dataframe.
$integer
[1] "laufkont" "laufzeit" "moral" "verw" "hoehe" "sparkont"
[7] "beszeit" "rate" "famges" "buerge" "wohnzeit" "verm"
[13] "alter" "weitkred" "wohn" "bishkred" "beruf" "pers"
[19] "telef" "gastarb" "kredit"
Everything seems OK.
In the results we see numeric variable credit.
This column contains bank evaluation for customer (1 = Good, 0 = Bad).
We will rename first 21 columns with more understandable english names so we can work them easily in the future analysis.
# Rename columns
data_credit <- setNames(data_credit, c("account_status", "duration_month",
"credit_history", "credit_purpose", "credit_amount", "savings_account",
"employment_present", "installment_rate_pct", "status_sex",
"other_debtors_guar", "residence_duration", "property", "age_years",
"other_install_plans", "housing", "exist_credits_nr", "job",
"dependents_nr", "telephone_nr", "foreign_worker", "customer_good_bad"))Let’s print again the structure of dataset:
'data.frame': 1000 obs. of 21 variables:
$ account_status : int 1 1 2 1 1 1 1 1 4 2 ...
$ duration_month : int 18 9 12 12 12 10 8 6 18 24 ...
$ credit_history : int 4 4 2 4 4 4 4 4 4 2 ...
$ credit_purpose : int 2 0 9 0 0 0 0 0 3 3 ...
$ credit_amount : int 1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
$ savings_account : int 1 1 2 1 1 1 1 1 1 3 ...
$ employment_present : int 2 3 4 3 3 2 4 2 1 1 ...
$ installment_rate_pct: int 4 2 2 3 4 1 1 2 4 1 ...
$ status_sex : int 2 3 2 3 3 3 3 3 2 2 ...
$ other_debtors_guar : int 1 1 1 1 1 1 1 1 1 1 ...
$ residence_duration : int 4 2 4 2 4 3 4 4 4 4 ...
$ property : int 2 1 1 1 2 1 1 1 3 4 ...
$ age_years : int 21 36 23 39 38 48 39 40 65 23 ...
$ other_install_plans : int 3 3 3 3 1 3 3 3 3 3 ...
$ housing : int 1 1 1 1 2 1 2 2 2 1 ...
$ exist_credits_nr : int 1 2 1 2 2 2 2 1 2 1 ...
$ job : int 3 3 2 2 2 2 2 2 1 1 ...
$ dependents_nr : int 2 1 2 1 2 1 2 1 2 2 ...
$ telephone_nr : int 1 1 1 1 1 1 1 1 1 1 ...
$ foreign_worker : int 2 2 2 1 1 1 1 1 2 2 ...
$ customer_good_bad : int 1 1 1 1 1 1 1 1 1 1 ...
account_status duration_month credit_history
0 0 0
credit_purpose credit_amount savings_account
0 0 0
employment_present installment_rate_pct status_sex
0 0 0
other_debtors_guar residence_duration property
0 0 0
age_years other_install_plans housing
0 0 0
exist_credits_nr job dependents_nr
0 0 0
telephone_nr foreign_worker customer_good_bad
0 0 0
Our dataset has no missing values.
From attribute information provided in According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 we see that our variables duration_month, credit_amount, age_years are numeric and others are qualitative (categorical).
# convert variables to class factor
variables <- c("account_status", "credit_history", "credit_purpose",
"savings_account", "employment_present", "installment_rate_pct",
"status_sex", "other_debtors_guar", "residence_duration",
"property", "other_install_plans", "housing", "exist_credits_nr",
"job", "dependents_nr", "telephone_nr", "foreign_worker",
"customer_good_bad")
data_credit[, variables] <- lapply(data_credit[, variables],
factor)Result of transformations shown below:
# Factors vs numeric variables
split(names(data_credit), sapply(data_credit, function(x) paste(class(x),
collapse = " ")))$factor
[1] "account_status" "credit_history" "credit_purpose"
[4] "savings_account" "employment_present" "installment_rate_pct"
[7] "status_sex" "other_debtors_guar" "residence_duration"
[10] "property" "other_install_plans" "housing"
[13] "exist_credits_nr" "job" "dependents_nr"
[16] "telephone_nr" "foreign_worker" "customer_good_bad"
$integer
[1] "duration_month" "credit_amount" "age_years"
Let’s view our dataset on which we will work further
'data.frame': 1000 obs. of 21 variables:
$ account_status : Factor w/ 4 levels "1","2","3","4": 1 1 2 1 1 1 1 1 4 2 ...
$ duration_month : int 18 9 12 12 12 10 8 6 18 24 ...
$ credit_history : Factor w/ 5 levels "0","1","2","3",..: 5 5 3 5 5 5 5 5 5 3 ...
$ credit_purpose : Factor w/ 10 levels "0","1","2","3",..: 3 1 9 1 1 1 1 1 4 4 ...
$ credit_amount : int 1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
$ savings_account : Factor w/ 5 levels "1","2","3","4",..: 1 1 2 1 1 1 1 1 1 3 ...
$ employment_present : Factor w/ 5 levels "1","2","3","4",..: 2 3 4 3 3 2 4 2 1 1 ...
$ installment_rate_pct: Factor w/ 4 levels "1","2","3","4": 4 2 2 3 4 1 1 2 4 1 ...
$ status_sex : Factor w/ 4 levels "1","2","3","4": 2 3 2 3 3 3 3 3 2 2 ...
$ other_debtors_guar : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ residence_duration : Factor w/ 4 levels "1","2","3","4": 4 2 4 2 4 3 4 4 4 4 ...
$ property : Factor w/ 4 levels "1","2","3","4": 2 1 1 1 2 1 1 1 3 4 ...
$ age_years : int 21 36 23 39 38 48 39 40 65 23 ...
$ other_install_plans : Factor w/ 3 levels "1","2","3": 3 3 3 3 1 3 3 3 3 3 ...
$ housing : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 1 2 2 2 1 ...
$ exist_credits_nr : Factor w/ 4 levels "1","2","3","4": 1 2 1 2 2 2 2 1 2 1 ...
$ job : Factor w/ 4 levels "1","2","3","4": 3 3 2 2 2 2 2 2 1 1 ...
$ dependents_nr : Factor w/ 2 levels "1","2": 2 1 2 1 2 1 2 1 2 2 ...
$ telephone_nr : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ foreign_worker : Factor w/ 2 levels "1","2": 2 2 2 1 1 1 1 1 2 2 ...
$ customer_good_bad : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
Our main goal is to build a model which should help on understanding which client can be considered as a risky one.
As prof. Rafael Irizarry mentions[@irizarry2019] : In Machine Learning, data comes in the form of:
the outcome we want to predict and
the features that we will use to predict the outcome
For us outcome we want to predict is variable customer_good_bad.
This outcome depends on the features that we will use to predict so we need to take a look in all the features and identify the ones of interest for the model.
Let’s first have a thorough look at summary statistics for our outcome customer_good_bad.
We will use function tab1 from epiDisplay library [@R-epiDisplay].
data_credit$customer_good_bad :
Frequency Percent
1 700 70
0 300 30
Total 1000 100
We see that our outcome variable contains values of 0s and 1s.
As mentioned in attribute information value 1 corrensponds to customer status Good (reliable) and value 2 corrensponds to status Bad(non reliable).
Now we go on by taking some insights on other features and see which of them can be potential candidates on affecting our output.
First, we start with account_status
data_credit$account_status :
Frequency Percent
4 394 39.4
1 274 27.4
2 269 26.9
3 63 6.3
Total 1000 100.0
The results of recoding:
data_credit$account_status :
Frequency Percent
positive_acc 457 45.7
no_account 274 27.4
no_money_acc 269 26.9
Total 1000 100.0
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.0 12.0 18.0 20.9 24.0 72.0
We notice that credits have a minimum duration of 4 months and a maximum duration of 72 months.
The average duration of credits is 20.9 months.
data_credit$credit_history :
Frequency Percent
2 530 53.0
4 293 29.3
3 88 8.8
1 49 4.9
0 40 4.0
Total 1000 100.0
We see that credit_history variable has 5 levels.
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , We see that most clients have no credits taken/all credits paid back duly (53 % of customers). Levels 0, 1, 3 (4% , 4.9%, 8.8%) has very few observations comparing to other levels so maybe it is a good idea to recode this variable in only 3 levels : pay_problems, all_paid, no_prob_currbank
The results of recoding:
data_credit$credit_history :
Frequency Percent
all_paid 530 53.0
no_prob_currbank 381 38.1
pay_problems 89 8.9
Total 1000 100.0
Next we move to feature credit_purpose.
data_credit$credit_purpose :
Frequency Percent
3 280 28.0
0 234 23.4
2 181 18.1
1 103 10.3
9 97 9.7
6 50 5.0
5 22 2.2
4 12 1.2
10 12 1.2
8 9 0.9
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 ,, this categorical variable should have 11 levels, but in our plot we see only 10.
Level 7(education) has no observations. Levels 8, 10, 4, 5, 6 have very few observations comparing to other levels so maybe it is a good idea to recode this variable in 4 levels: new_car, used_car, domestic, services.
# recode credit_purpose
credit_purpose_temp <- recode(data_credit$credit_purpose, `0` = "services",
`1` = "new_car", `2` = "used_car", `3` = "domestic", `4` = "domestic",
`5` = "domestic", `6` = "services", `7` = "services", `8` = "services",
`9` = "services", `10` = "services")
data_credit$credit_purpose <- credit_purpose_tempThe results of recoding:
data_credit$credit_purpose :
Frequency Percent
services 402 40.2
domestic 314 31.4
used_car 181 18.1
new_car 103 10.3
Total 1000 100.0
Now let’s continue with our numeric variable credit_amount .
Min. 1st Qu. Median Mean 3rd Qu. Max.
250 1366 2320 3271 3972 18424
We notice that credits required by bank clients have an average of 3271 DM.
Next we move to feature savings_account.
data_credit$savings_account :
Frequency Percent
1 603 60.3
5 183 18.3
2 103 10.3
3 63 6.3
4 48 4.8
Total 1000 100.0
The results of recoding:
data_credit$savings_account :
Frequency Percent
no_sav 603 60.3
over1000 183 18.3
100to1000 111 11.1
less100 103 10.3
Total 1000 100.0
Now let’s see feature employment_present.
data_credit$employment_present :
Frequency Percent
3 339 33.9
5 253 25.3
4 174 17.4
2 172 17.2
1 62 6.2
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 ,, this categorical variable has 5 levels. Levels 1 has very few observations comparing to other levels so maybe it is a good idea to recode this variable in 4 levels: unemp_less1year, 1to4, 4to7, 7plus
The results of recoding:
data_credit$employment_present :
Frequency Percent
1to4 339 33.9
7plus 253 25.3
unemp_less1year 234 23.4
4to7 174 17.4
Total 1000 100.0
Now let’s see feature installment_rate_pct.
data_credit$installment_rate_pct :
Frequency Percent
4 476 47.6
2 231 23.1
3 157 15.7
1 136 13.6
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
This levels are shown also in plot and frequency table. We will not transform this variable.
Now let’s see feature status_sex.
data_credit$status_sex :
Frequency Percent
3 548 54.8
2 310 31.0
4 92 9.2
1 50 5.0
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
We see that largest part of bank customers fall in group 3 (Male married or widowed). Levels 1 and 4 have very few observations comparing to other levels so maybe it is a good idea to recode this variable in 3 levels m_single_divorced, m_married_wid, female
The results of recoding:
data_credit$status_sex :
Frequency Percent
m_married_wid 548 54.8
m_single_divorced 360 36.0
female 92 9.2
Total 1000 100.0
Now let’s see feature other_debtors_guar.
data_credit$other_debtors_guar :
Frequency Percent
1 907 90.7
3 52 5.2
2 41 4.1
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 3 levels.
This variable has data about known debtors / guarantors so we can recode this variable to 2 levels yes, no because levels 2 and 3 have very few observations comparing to other levels.
The results of recoding:
data_credit$other_debtors_guar :
Frequency Percent
no 907 90.7
yes 93 9.3
Total 1000 100.0
Now let’s see feature residence_duration.
data_credit$residence_duration :
Frequency Percent
4 413 41.3
2 308 30.8
3 149 14.9
1 130 13.0
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
This variable will stay as it is.
Now let’s see feature property.
data_credit$property :
Frequency Percent
3 332 33.2
1 282 28.2
2 232 23.2
4 154 15.4
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
We will not change this variable.
We will continue with numeric feature age_years.
Min. 1st Qu. Median Mean 3rd Qu. Max.
19.0 27.0 33.0 35.5 42.0 75.0
We notice that youngest customer is of age 19 and in the average bank customers are between 35-36 years old.
Now let’s see feature other_install_plans.
data_credit$other_install_plans :
Frequency Percent
3 814 81.4
1 139 13.9
2 47 4.7
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 3 levels and has data about other credits that customer has in other banks or stores .
We will recode this variable to 2 levels yes, no because level 2 has very few observations comparing to other levels.
The results of recoding:
data_credit$other_install_plans :
Frequency Percent
no 814 81.4
yes 186 18.6
Total 1000 100.0
Next feature is housing.
data_credit$housing :
Frequency Percent
2 714 71.4
1 179 17.9
3 107 10.7
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 3 levels.
This variable will not be subject of transformation.
Now let’s see feature exist_credits_nr.
data_credit$exist_credits_nr :
Frequency Percent
1 633 63.3
2 333 33.3
3 28 2.8
4 6 0.6
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
This variable has data about other known credits inside bank where customer is applying for a new credit. We will recode this variable to 2 levels one_credit, morethan1
The results of recoding:
data_credit$exist_credits_nr :
Frequency Percent
one 633 63.3
morethan1 367 36.7
Total 1000 100.0
Now let’s see feature job.
data_credit$job :
Frequency Percent
3 630 63.0
2 200 20.0
4 148 14.8
1 22 2.2
Total 1000 100.0
According to Table 1: Distribution of categorical predictor variables for the South German Credit data, separately for good and bad credit risks in gromping2019 , this categorical variable has 4 levels.
This variable has data about job skills level of bank customer who is applying for a new credit.
We will not recode this variable.
Next feature is dependents_nr.
data_credit$dependents_nr :
Frequency Percent
2 845 84.5
1 155 15.5
Total 1000 100.0
This categorical variable is binary and we will not transform it.
Now let’s see feature telephone_nr.
data_credit$telephone_nr :
Frequency Percent
1 596 59.6
2 404 40.4
Total 1000 100.0
This categorical variable is binary and we will not transform it.
Last feature is foreign_worker.
data_credit$foreign_worker :
Frequency Percent
2 963 96.3
1 37 3.7
Total 1000 100.0
This categorical variable is binary and we will not transform it.
Now we will study relationships between our outcome customer_good_bad and other features.
For this we will build crosstables, also perform chi-square test for each pair (outcome,feature).
We will use function CrossTable from gmodels library [@R-gmodels]
# Crosstables of outcome vs account_status
CrossTable(data_credit$customer_good_bad, data_credit$account_status,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "account_status"))
# Crosstables of outcome vs credit_history
CrossTable(data_credit$customer_good_bad, data_credit$credit_history,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "credit_history"))
# Crosstables of outcome vs credit_purpose
CrossTable(data_credit$customer_good_bad, data_credit$credit_purpose,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "credit_purpose"))
# Crosstables of outcome vs savings_account
CrossTable(data_credit$customer_good_bad, data_credit$savings_account,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "savings_account"))
# Crosstables of outcome vs employment_present
CrossTable(data_credit$customer_good_bad, data_credit$employment_present,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "employment_present"))
# Crosstables of outcome vs installment_rate_pct
CrossTable(data_credit$customer_good_bad, data_credit$installment_rate_pct,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "installment_rate_pct"))
# Crosstables of outcome vs status_sex
CrossTable(data_credit$customer_good_bad, data_credit$status_sex,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "status_sex"))
# Crosstables of outcome vs other_debtors_guar
CrossTable(data_credit$customer_good_bad, data_credit$other_debtors_guar,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "other_debtors_guar"))
# Crosstables of outcome vs residence_duration
CrossTable(data_credit$customer_good_bad, data_credit$residence_duration,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "residence_duration"))
# Crosstables of outcome vs property
CrossTable(data_credit$customer_good_bad, data_credit$property,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "property"))
# Crosstables of outcome vs other_install_plans
CrossTable(data_credit$customer_good_bad, data_credit$other_install_plans,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "other_install_plans"))
# Crosstables of outcome vs housing
CrossTable(data_credit$customer_good_bad, data_credit$housing,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "housing"))
# Crosstables of outcome vs exist_credits_nr
CrossTable(data_credit$customer_good_bad, data_credit$exist_credits_nr,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "exist_credits_nr"))
# Crosstables of outcome vs job
CrossTable(data_credit$customer_good_bad, data_credit$job, digits = 1,
prop.r = F, prop.t = F, prop.chisq = F, chisq = T, dnn = c("customer_good_bad",
"job"))
# Crosstables of outcome vs dependents_nr
CrossTable(data_credit$customer_good_bad, data_credit$dependents_nr,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "dependents_nr"))
# Crosstables of outcome vs telephone_nr
CrossTable(data_credit$customer_good_bad, data_credit$telephone_nr,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "telephone_nr"))
# Crosstables of outcome vs foreign_worker
CrossTable(data_credit$customer_good_bad, data_credit$foreign_worker,
digits = 1, prop.r = F, prop.t = F, prop.chisq = F, chisq = T,
dnn = c("customer_good_bad", "foreign_worker"))The results of code are shown in Appendix A.
The null hypothesis for statistical test is that there is no relationship between outcome and chosen feature.
From the table we notice that 75 % of bad creditors (225 out of 300) have taken credit for domestic or other purposes.
In the case of customer_good_bad and installment_rate_pct test shows a p-value bigger than 0.05 so we keep null hypothesis there is no relationship between outcome and chosen feature.
We have in our data_credit 3 numerical variables duration_month, credit_amount, age_years.
Before starting modeling process we need to apply on these variables z-score normalization (from each feature value we substract mean and result divide by standart deviation). We will use function scale.
account_status duration_month credit_history credit_purpose
1 no_account -0.240737 no_prob_currbank used_car
2 no_account -0.987079 no_prob_currbank services
3 no_money_acc -0.738298 all_paid services
4 no_account -0.738298 no_prob_currbank services
5 no_account -0.738298 no_prob_currbank services
6 no_account -0.904152 no_prob_currbank services
7 no_account -1.070006 no_prob_currbank services
8 no_account -1.235859 no_prob_currbank services
9 positive_acc -0.240737 no_prob_currbank domestic
10 no_money_acc 0.256825 all_paid domestic
11 no_account -0.821225 no_prob_currbank services
12 no_account 0.754386 no_prob_currbank new_car
13 no_account -1.235859 no_prob_currbank domestic
14 no_money_acc 2.247070 no_prob_currbank services
15 no_account -0.240737 all_paid domestic
16 no_account -1.235859 all_paid domestic
17 no_account -0.821225 no_prob_currbank services
18 no_money_acc -0.240737 all_paid domestic
19 no_money_acc 1.251947 no_prob_currbank domestic
20 positive_acc -0.821225 no_prob_currbank services
21 no_account -1.235859 no_prob_currbank services
22 no_money_acc -0.738298 no_prob_currbank services
23 no_money_acc 1.251947 all_paid domestic
24 no_money_acc -0.738298 no_prob_currbank domestic
25 no_account -1.235859 no_prob_currbank services
26 no_money_acc -0.821225 no_prob_currbank domestic
27 no_account -0.738298 all_paid used_car
28 no_money_acc -0.987079 no_prob_currbank domestic
29 positive_acc -0.489517 all_paid services
30 positive_acc 1.749509 no_prob_currbank new_car
31 positive_acc 0.754386 no_prob_currbank domestic
32 positive_acc 1.251947 no_prob_currbank services
33 positive_acc 1.251947 no_prob_currbank services
34 positive_acc 0.256825 all_paid domestic
35 no_account -0.489517 all_paid services
36 no_account -1.235859 no_prob_currbank services
37 positive_acc -0.738298 no_prob_currbank services
38 positive_acc -0.738298 no_prob_currbank domestic
39 positive_acc -0.240737 all_paid new_car
40 positive_acc 0.256825 no_prob_currbank new_car
41 positive_acc -0.738298 no_prob_currbank domestic
42 no_account 0.256825 all_paid services
43 positive_acc -0.240737 no_prob_currbank services
44 no_money_acc 0.256825 no_prob_currbank services
45 no_money_acc -0.240737 all_paid services
46 no_account -0.240737 all_paid services
47 positive_acc 0.256825 all_paid services
48 positive_acc -0.240737 no_prob_currbank services
49 positive_acc 0.256825 all_paid services
50 no_account 0.256825 no_prob_currbank services
51 positive_acc -0.738298 all_paid services
52 positive_acc 1.251947 all_paid domestic
53 positive_acc -0.987079 no_prob_currbank services
54 positive_acc -0.738298 no_prob_currbank domestic
55 positive_acc 0.256825 all_paid new_car
56 no_account -0.738298 no_prob_currbank domestic
57 positive_acc -0.738298 no_prob_currbank domestic
58 no_account -0.489517 all_paid domestic
59 positive_acc 0.008044 all_paid domestic
60 positive_acc 1.251947 all_paid services
61 positive_acc -0.738298 no_prob_currbank services
62 positive_acc 0.256825 all_paid new_car
63 positive_acc 2.247070 no_prob_currbank domestic
64 positive_acc 1.251947 no_prob_currbank services
65 no_account -0.738298 no_prob_currbank services
66 positive_acc -1.235859 no_prob_currbank domestic
67 positive_acc -0.738298 all_paid domestic
68 positive_acc 0.256825 all_paid domestic
69 no_money_acc -0.738298 all_paid domestic
70 positive_acc 0.256825 no_prob_currbank services
71 no_money_acc 0.008044 no_prob_currbank used_car
72 positive_acc 0.754386 all_paid domestic
73 positive_acc 1.251947 all_paid domestic
74 positive_acc 0.256825 all_paid used_car
75 positive_acc -0.738298 all_paid domestic
76 no_money_acc -0.987079 all_paid used_car
77 positive_acc 0.008044 no_prob_currbank new_car
78 positive_acc 0.256825 no_prob_currbank services
79 no_account 0.008044 no_prob_currbank services
80 positive_acc -0.489517 all_paid domestic
81 positive_acc 0.256825 no_prob_currbank services
82 positive_acc 1.251947 no_prob_currbank domestic
83 no_money_acc -0.240737 all_paid services
84 positive_acc -0.489517 no_prob_currbank new_car
85 positive_acc -0.489517 no_prob_currbank used_car
86 no_account -0.738298 all_paid services
87 positive_acc 0.256825 no_prob_currbank new_car
88 positive_acc 1.251947 no_prob_currbank domestic
89 no_account -1.235859 no_prob_currbank services
90 no_money_acc 0.256825 no_prob_currbank services
91 no_money_acc -0.738298 no_prob_currbank services
92 no_money_acc 0.754386 all_paid domestic
93 no_money_acc 0.754386 pay_problems services
94 no_account -0.987079 all_paid domestic
95 no_money_acc -0.240737 no_prob_currbank used_car
96 positive_acc 0.505605 no_prob_currbank used_car
97 no_money_acc -0.738298 no_prob_currbank domestic
98 no_money_acc 1.251947 no_prob_currbank services
99 no_account -0.987079 all_paid used_car
100 no_money_acc 1.749509 no_prob_currbank services
101 positive_acc 0.256825 no_prob_currbank used_car
102 no_account -0.489517 all_paid services
103 no_money_acc 0.256825 no_prob_currbank services
104 no_money_acc 1.251947 no_prob_currbank services
105 positive_acc 0.256825 no_prob_currbank domestic
106 positive_acc 0.256825 all_paid services
107 positive_acc -0.738298 no_prob_currbank services
108 positive_acc -0.240737 all_paid domestic
109 positive_acc 0.256825 all_paid domestic
110 positive_acc -0.738298 no_prob_currbank services
111 no_account -0.489517 all_paid services
112 no_account -1.235859 all_paid used_car
113 no_money_acc -0.738298 no_prob_currbank services
114 positive_acc -0.738298 all_paid used_car
115 no_money_acc 0.008044 all_paid used_car
116 no_money_acc -0.240737 all_paid services
117 no_money_acc -0.987079 no_prob_currbank used_car
118 positive_acc 0.256825 all_paid new_car
119 positive_acc -0.987079 no_prob_currbank services
120 positive_acc 0.256825 all_paid used_car
121 no_money_acc 1.251947 all_paid domestic
122 positive_acc 1.251947 no_prob_currbank new_car
123 no_money_acc -1.235859 all_paid domestic
124 positive_acc -0.489517 no_prob_currbank domestic
125 positive_acc -0.489517 all_paid domestic
126 positive_acc 0.256825 no_prob_currbank domestic
127 positive_acc -0.489517 all_paid domestic
128 positive_acc -1.235859 all_paid used_car
129 positive_acc -0.240737 all_paid services
130 positive_acc 0.256825 no_prob_currbank domestic
131 positive_acc 0.256825 all_paid used_car
132 positive_acc -0.240737 all_paid used_car
133 positive_acc -1.235859 all_paid used_car
134 positive_acc -0.240737 all_paid domestic
135 positive_acc -0.904152 all_paid services
136 positive_acc -1.235859 all_paid used_car
137 no_money_acc -0.738298 all_paid services
138 no_account 0.256825 pay_problems services
139 no_money_acc -1.235859 no_prob_currbank services
140 positive_acc 0.256825 no_prob_currbank domestic
141 positive_acc 1.251947 all_paid domestic
142 positive_acc -0.987079 all_paid services
143 no_money_acc 0.256825 all_paid domestic
144 positive_acc -0.987079 no_prob_currbank used_car
145 positive_acc 1.251947 all_paid domestic
146 positive_acc 0.008044 all_paid new_car
147 no_account 0.256825 all_paid new_car
148 no_account -0.738298 all_paid used_car
149 positive_acc -0.738298 all_paid services
150 no_money_acc 0.256825 no_prob_currbank domestic
151 positive_acc -0.738298 pay_problems domestic
152 positive_acc -0.738298 all_paid domestic
153 positive_acc 2.247070 no_prob_currbank new_car
154 no_money_acc 0.256825 all_paid services
155 no_money_acc -0.738298 all_paid domestic
156 positive_acc 0.256825 no_prob_currbank domestic
157 no_account -0.738298 all_paid domestic
158 positive_acc 0.754386 no_prob_currbank domestic
159 no_money_acc 2.247070 pay_problems services
160 no_money_acc -0.738298 no_prob_currbank used_car
161 positive_acc -0.738298 no_prob_currbank domestic
162 positive_acc 0.256825 no_prob_currbank services
163 positive_acc 0.256825 all_paid used_car
164 positive_acc -0.489517 no_prob_currbank used_car
165 positive_acc -0.489517 all_paid services
166 positive_acc -0.987079 no_prob_currbank services
167 positive_acc 0.754386 no_prob_currbank domestic
168 positive_acc 0.256825 no_prob_currbank services
169 positive_acc -0.489517 no_prob_currbank used_car
170 positive_acc -1.235859 no_prob_currbank domestic
171 positive_acc 1.251947 all_paid domestic
172 no_account -0.738298 all_paid services
173 positive_acc -0.738298 all_paid domestic
174 positive_acc 0.256825 all_paid domestic
175 positive_acc -0.738298 all_paid domestic
176 positive_acc 0.256825 all_paid domestic
177 positive_acc 0.256825 no_prob_currbank services
178 no_money_acc -0.738298 no_prob_currbank new_car
179 positive_acc -0.240737 all_paid services
180 positive_acc 2.247070 no_prob_currbank domestic
181 positive_acc -0.987079 all_paid domestic
182 positive_acc -0.240737 no_prob_currbank services
183 no_account 0.754386 pay_problems services
184 positive_acc 0.754386 no_prob_currbank domestic
185 positive_acc -0.987079 all_paid services
186 positive_acc 1.251947 all_paid services
187 positive_acc -0.738298 all_paid services
188 positive_acc 0.256825 all_paid domestic
189 no_money_acc 1.251947 all_paid services
190 positive_acc 0.008044 all_paid services
191 positive_acc 0.256825 all_paid domestic
192 no_money_acc 1.251947 all_paid services
193 no_money_acc 2.247070 all_paid services
194 positive_acc 0.256825 all_paid services
195 positive_acc -0.738298 all_paid domestic
196 positive_acc 1.003167 no_prob_currbank new_car
197 positive_acc -1.235859 no_prob_currbank services
198 positive_acc -0.240737 no_prob_currbank used_car
199 positive_acc -0.738298 all_paid domestic
200 positive_acc 2.247070 pay_problems services
201 positive_acc 0.754386 all_paid domestic
202 positive_acc 0.588532 pay_problems new_car
203 positive_acc -0.240737 pay_problems domestic
204 no_account 0.256825 all_paid used_car
205 no_account 0.008044 all_paid services
206 no_money_acc -0.240737 all_paid services
207 no_account -0.738298 all_paid domestic
208 no_money_acc -0.489517 all_paid domestic
209 no_money_acc 2.247070 pay_problems services
210 positive_acc -0.987079 all_paid domestic
211 positive_acc -1.401713 all_paid services
212 no_account 0.256825 pay_problems used_car
213 no_account 0.256825 pay_problems used_car
214 positive_acc -1.235859 no_prob_currbank services
215 no_money_acc -0.987079 all_paid services
216 positive_acc -0.904152 all_paid services
217 positive_acc -0.904152 all_paid new_car
218 positive_acc -1.235859 all_paid services
219 no_account 2.164143 all_paid services
220 positive_acc -0.904152 all_paid services
221 no_account -0.240737 pay_problems domestic
222 positive_acc 0.754386 no_prob_currbank domestic
223 positive_acc 0.256825 no_prob_currbank new_car
224 positive_acc 0.505605 no_prob_currbank new_car
225 no_account -0.240737 all_paid used_car
226 positive_acc 0.256825 no_prob_currbank domestic
227 no_account -0.240737 all_paid services
228 positive_acc -0.572444 no_prob_currbank services
229 positive_acc 0.008044 all_paid services
230 no_money_acc 2.247070 pay_problems services
231 positive_acc 0.256825 all_paid domestic
232 positive_acc -1.235859 pay_problems domestic
233 positive_acc 1.500728 all_paid new_car
234 no_account 0.754386 all_paid new_car
235 no_money_acc -0.738298 all_paid services
236 no_account 0.256825 all_paid domestic
237 positive_acc 0.008044 all_paid used_car
238 no_account 0.256825 all_paid domestic
239 positive_acc -1.401713 all_paid used_car
240 positive_acc 1.500728 all_paid new_car
241 positive_acc -0.489517 no_prob_currbank domestic
242 positive_acc 3.242193 all_paid services
243 positive_acc -0.240737 all_paid services
244 positive_acc -0.240737 no_prob_currbank domestic
245 positive_acc -1.235859 pay_problems domestic
246 positive_acc 0.256825 all_paid new_car
247 positive_acc -0.240737 no_prob_currbank domestic
248 positive_acc 0.256825 no_prob_currbank used_car
249 no_money_acc -0.489517 all_paid domestic
250 positive_acc 0.008044 all_paid new_car
251 no_money_acc -0.240737 no_prob_currbank services
252 no_money_acc -0.240737 no_prob_currbank domestic
253 positive_acc -0.738298 all_paid domestic
254 positive_acc 1.251947 all_paid domestic
255 positive_acc 1.251947 no_prob_currbank new_car
256 positive_acc -0.489517 all_paid services
257 no_account -0.489517 no_prob_currbank used_car
258 positive_acc -0.904152 no_prob_currbank used_car
259 no_account -0.904152 all_paid domestic
260 positive_acc -1.318786 all_paid services
261 positive_acc -0.489517 all_paid used_car
262 positive_acc -0.821225 no_prob_currbank services
263 positive_acc -0.904152 all_paid used_car
264 positive_acc -0.987079 all_paid used_car
265 positive_acc -0.738298 all_paid domestic
266 positive_acc 0.090971 all_paid domestic
267 no_money_acc -0.987079 all_paid domestic
268 positive_acc 1.251947 all_paid services
269 positive_acc -0.738298 no_prob_currbank used_car
270 positive_acc -0.489517 pay_problems domestic
271 positive_acc -1.235859 all_paid new_car
272 positive_acc 1.251947 no_prob_currbank used_car
273 positive_acc -1.235859 all_paid domestic
274 positive_acc 0.256825 all_paid used_car
275 positive_acc 0.256825 all_paid new_car
276 positive_acc -0.738298 pay_problems services
277 positive_acc -0.489517 all_paid domestic
278 no_money_acc 0.008044 no_prob_currbank services
279 no_account 0.256825 all_paid domestic
280 positive_acc -0.987079 all_paid domestic
281 positive_acc -1.235859 no_prob_currbank domestic
282 positive_acc -0.738298 all_paid used_car
283 positive_acc -0.738298 all_paid new_car
284 no_money_acc 0.008044 no_prob_currbank services
285 no_account 0.008044 all_paid domestic
286 positive_acc -1.235859 all_paid services
287 no_account -1.235859 no_prob_currbank domestic
288 positive_acc -0.987079 all_paid domestic
289 positive_acc -0.987079 all_paid services
290 positive_acc -0.489517 no_prob_currbank domestic
291 positive_acc -0.738298 no_prob_currbank services
292 positive_acc -0.489517 all_paid used_car
293 positive_acc -1.235859 no_prob_currbank domestic
294 no_money_acc -1.235859 no_prob_currbank services
295 positive_acc -0.489517 no_prob_currbank used_car
296 positive_acc 1.251947 all_paid new_car
297 positive_acc -0.987079 all_paid used_car
298 positive_acc -1.235859 no_prob_currbank services
299 no_money_acc -0.738298 all_paid used_car
300 positive_acc -0.240737 no_prob_currbank domestic
301 no_account -0.738298 pay_problems services
302 positive_acc 0.256825 all_paid domestic
303 positive_acc 0.256825 all_paid used_car
304 positive_acc -0.987079 no_prob_currbank domestic
305 positive_acc -0.987079 all_paid domestic
306 positive_acc 0.256825 all_paid services
307 no_account -1.235859 all_paid used_car
308 positive_acc -1.235859 pay_problems services
309 no_account 0.008044 all_paid domestic
310 positive_acc 2.744631 pay_problems new_car
311 positive_acc -0.738298 no_prob_currbank domestic
312 positive_acc 2.247070 no_prob_currbank new_car
313 positive_acc -1.235859 no_prob_currbank services
314 no_money_acc 0.256825 all_paid services
315 no_account -1.235859 all_paid services
316 positive_acc -0.489517 all_paid new_car
317 positive_acc 0.256825 pay_problems services
318 positive_acc -0.738298 all_paid domestic
319 positive_acc -0.489517 no_prob_currbank domestic
320 positive_acc -1.235859 pay_problems services
321 positive_acc -0.904152 all_paid services
322 positive_acc -0.738298 all_paid domestic
323 positive_acc -0.821225 all_paid services
324 no_account -0.904152 no_prob_currbank used_car
325 positive_acc -0.904152 all_paid services
326 positive_acc 0.256825 no_prob_currbank services
327 positive_acc -0.904152 all_paid services
328 positive_acc -1.235859 no_prob_currbank services
329 positive_acc -0.240737 all_paid services
330 positive_acc -0.240737 no_prob_currbank domestic
331 positive_acc 0.256825 no_prob_currbank services
332 positive_acc -0.240737 no_prob_currbank domestic
333 positive_acc -1.235859 no_prob_currbank domestic
334 positive_acc 0.090971 all_paid services
335 positive_acc 0.256825 no_prob_currbank services
336 no_account 0.256825 all_paid used_car
337 no_account -0.987079 no_prob_currbank domestic
338 no_account -0.904152 no_prob_currbank services
339 positive_acc -0.904152 all_paid new_car
340 positive_acc -0.738298 all_paid new_car
341 positive_acc 0.754386 no_prob_currbank domestic
342 no_account 0.256825 pay_problems new_car
343 positive_acc -0.240737 no_prob_currbank new_car
344 positive_acc -0.987079 all_paid services
345 positive_acc -0.738298 no_prob_currbank services
346 positive_acc -0.904152 all_paid domestic
347 positive_acc -0.904152 all_paid services
348 positive_acc -0.904152 no_prob_currbank services
349 no_account -0.738298 no_prob_currbank services
350 positive_acc -0.738298 no_prob_currbank services
351 positive_acc -0.904152 no_prob_currbank used_car
352 positive_acc 0.256825 all_paid services
353 positive_acc 2.247070 no_prob_currbank services
354 no_account -0.738298 no_prob_currbank services
355 positive_acc -1.235859 all_paid domestic
356 positive_acc 1.251947 no_prob_currbank new_car
357 no_account 0.256825 all_paid new_car
358 positive_acc -0.904152 no_prob_currbank services
359 positive_acc -0.240737 all_paid services
360 positive_acc -0.489517 no_prob_currbank services
361 positive_acc -0.738298 no_prob_currbank services
362 no_account -0.738298 all_paid used_car
363 positive_acc -1.235859 no_prob_currbank used_car
364 positive_acc -0.987079 all_paid used_car
365 positive_acc -0.738298 all_paid domestic
366 positive_acc -0.738298 pay_problems used_car
367 positive_acc 0.256825 all_paid domestic
368 no_money_acc -0.738298 pay_problems services
369 no_account -0.489517 all_paid services
370 no_account 0.256825 all_paid used_car
371 no_account 0.256825 all_paid services
372 positive_acc 0.256825 no_prob_currbank domestic
373 no_money_acc 0.256825 no_prob_currbank new_car
374 no_account -1.235859 all_paid domestic
375 positive_acc 0.008044 no_prob_currbank used_car
376 no_account 0.505605 all_paid domestic
377 no_account -0.738298 pay_problems domestic
378 no_money_acc 0.505605 no_prob_currbank new_car
379 no_money_acc -0.489517 all_paid domestic
380 positive_acc 0.754386 no_prob_currbank domestic
381 no_account -0.240737 all_paid used_car
382 no_account 0.008044 all_paid used_car
383 positive_acc 3.242193 no_prob_currbank services
384 no_money_acc -0.987079 all_paid services
385 positive_acc 1.749509 no_prob_currbank used_car
386 no_money_acc -0.987079 all_paid domestic
387 no_money_acc -0.987079 all_paid used_car
388 positive_acc 0.256825 all_paid services
389 positive_acc -0.904152 all_paid domestic
390 no_account 0.256825 all_paid new_car
391 positive_acc -0.489517 all_paid new_car
392 positive_acc -0.738298 no_prob_currbank services
393 positive_acc -1.235859 no_prob_currbank services
394 positive_acc -0.489517 no_prob_currbank domestic
395 positive_acc 0.256825 all_paid used_car
396 no_money_acc -0.987079 all_paid domestic
397 no_money_acc 0.256825 no_prob_currbank domestic
398 positive_acc -0.738298 all_paid domestic
399 positive_acc -0.738298 no_prob_currbank new_car
400 no_money_acc -0.738298 all_paid services
401 no_money_acc 0.505605 all_paid services
402 no_money_acc -0.738298 all_paid services
403 no_account -1.235859 all_paid new_car
404 positive_acc 0.256825 all_paid domestic
405 positive_acc -0.240737 all_paid domestic
406 no_money_acc 2.247070 all_paid services
407 positive_acc -0.489517 all_paid new_car
408 no_money_acc -0.987079 all_paid services
409 no_money_acc -0.240737 all_paid services
410 positive_acc 1.749509 all_paid domestic
411 positive_acc -0.655371 all_paid domestic
412 positive_acc 0.256825 no_prob_currbank services
413 positive_acc -0.738298 no_prob_currbank domestic
414 positive_acc 0.256825 no_prob_currbank services
415 positive_acc -0.738298 no_prob_currbank domestic
416 positive_acc 0.588532 no_prob_currbank domestic
417 positive_acc -0.821225 no_prob_currbank domestic
418 positive_acc 0.256825 no_prob_currbank new_car
419 positive_acc -0.240737 no_prob_currbank domestic
420 no_account -0.489517 no_prob_currbank used_car
421 positive_acc -0.738298 all_paid domestic
422 no_money_acc -0.821225 no_prob_currbank services
423 no_money_acc -0.406591 no_prob_currbank services
424 positive_acc -0.738298 all_paid services
425 positive_acc -0.489517 no_prob_currbank domestic
426 positive_acc -0.738298 no_prob_currbank domestic
427 no_money_acc 1.500728 no_prob_currbank services
428 no_money_acc -0.987079 no_prob_currbank services
429 no_account -0.738298 all_paid services
430 no_money_acc -0.987079 all_paid services
431 positive_acc 0.754386 no_prob_currbank domestic
432 positive_acc -0.738298 no_prob_currbank domestic
433 no_money_acc -0.489517 no_prob_currbank services
434 no_money_acc -0.240737 no_prob_currbank services
435 positive_acc -0.738298 no_prob_currbank services
436 positive_acc -1.152933 no_prob_currbank domestic
437 positive_acc -0.489517 no_prob_currbank services
438 positive_acc -1.235859 no_prob_currbank domestic
439 no_account 0.505605 no_prob_currbank services
440 no_money_acc -0.240737 no_prob_currbank services
441 positive_acc 0.008044 no_prob_currbank used_car
442 positive_acc 0.505605 no_prob_currbank services
443 no_account 1.500728 no_prob_currbank used_car
444 positive_acc -0.489517 all_paid domestic
445 positive_acc -0.738298 no_prob_currbank domestic
446 positive_acc -0.738298 all_paid used_car
447 positive_acc -1.235859 no_prob_currbank domestic
448 positive_acc -0.738298 all_paid domestic
449 positive_acc 1.251947 all_paid new_car
450 no_money_acc -0.987079 all_paid domestic
451 no_money_acc -0.738298 all_paid domestic
452 no_account -0.074883 all_paid used_car
453 no_money_acc -0.904152 all_paid services
454 no_money_acc 0.256825 no_prob_currbank services
455 no_account -0.572444 all_paid services
456 no_money_acc 3.242193 no_prob_currbank domestic
457 no_money_acc -0.074883 no_prob_currbank services
458 no_money_acc -0.240737 all_paid services
459 no_money_acc 0.256825 no_prob_currbank used_car
460 positive_acc -0.738298 all_paid new_car
461 no_money_acc -0.074883 all_paid new_car
462 no_money_acc -0.240737 no_prob_currbank used_car
463 positive_acc -0.489517 all_paid new_car
464 no_account 0.588532 all_paid services
465 no_money_acc -0.738298 all_paid services
466 positive_acc -0.738298 all_paid used_car
467 no_money_acc -0.738298 all_paid new_car
468 positive_acc -0.489517 all_paid services
469 no_money_acc 1.251947 all_paid domestic
470 positive_acc -0.738298 all_paid services
471 positive_acc -0.240737 all_paid used_car
472 positive_acc 0.256825 all_paid domestic
473 positive_acc 1.251947 all_paid services
474 positive_acc -0.489517 all_paid used_car
475 positive_acc 1.251947 all_paid domestic
476 positive_acc 0.256825 all_paid services
477 positive_acc -0.240737 all_paid used_car
478 positive_acc 0.256825 all_paid domestic
479 positive_acc -0.738298 no_prob_currbank services
480 no_money_acc -0.240737 all_paid domestic
481 positive_acc 0.505605 all_paid domestic
482 no_money_acc -0.240737 all_paid used_car
483 positive_acc 0.256825 no_prob_currbank services
484 positive_acc -0.738298 no_prob_currbank used_car
485 positive_acc -0.738298 no_prob_currbank used_car
486 positive_acc -0.738298 no_prob_currbank services
487 positive_acc -0.240737 no_prob_currbank used_car
488 no_money_acc -0.240737 no_prob_currbank used_car
489 positive_acc -0.738298 all_paid services
490 positive_acc -0.738298 all_paid services
491 positive_acc -0.240737 all_paid domestic
492 positive_acc -0.738298 no_prob_currbank used_car
493 no_account -0.240737 pay_problems services
494 positive_acc 0.256825 no_prob_currbank domestic
495 no_account -0.738298 no_prob_currbank new_car
496 positive_acc 0.256825 all_paid domestic
497 positive_acc -1.235859 all_paid domestic
498 positive_acc 0.256825 no_prob_currbank new_car
499 positive_acc -0.738298 no_prob_currbank services
500 no_account -0.738298 all_paid domestic
501 positive_acc 0.256825 all_paid services
502 positive_acc 0.256825 no_prob_currbank services
503 positive_acc -1.235859 all_paid domestic
504 positive_acc 0.256825 no_prob_currbank domestic
505 positive_acc 0.256825 all_paid new_car
506 positive_acc -1.235859 no_prob_currbank domestic
507 positive_acc -0.738298 no_prob_currbank domestic
508 positive_acc 0.256825 no_prob_currbank new_car
509 positive_acc 0.256825 no_prob_currbank used_car
510 no_account -1.235859 all_paid services
511 positive_acc -1.235859 no_prob_currbank services
512 positive_acc -1.235859 all_paid services
513 no_money_acc 0.256825 no_prob_currbank services
514 no_money_acc 0.754386 all_paid used_car
515 positive_acc -0.489517 all_paid services
516 no_money_acc 0.256825 all_paid domestic
517 no_money_acc 0.256825 no_prob_currbank services
518 positive_acc 1.251947 all_paid services
519 positive_acc 0.256825 all_paid domestic
520 positive_acc 1.251947 no_prob_currbank used_car
521 positive_acc 1.251947 all_paid used_car
522 positive_acc 1.251947 all_paid used_car
523 positive_acc -1.235859 all_paid domestic
524 positive_acc -0.240737 all_paid domestic
525 no_money_acc -0.738298 no_prob_currbank new_car
526 positive_acc 1.251947 no_prob_currbank domestic
527 no_account -0.738298 all_paid domestic
528 no_money_acc -0.738298 all_paid domestic
529 positive_acc -0.240737 all_paid domestic
530 positive_acc -0.240737 no_prob_currbank domestic
531 positive_acc -1.401713 no_prob_currbank domestic
532 positive_acc 0.256825 no_prob_currbank new_car
533 positive_acc -0.738298 all_paid domestic
534 no_account -0.240737 no_prob_currbank domestic
535 no_account -0.240737 all_paid domestic
536 no_money_acc 0.256825 all_paid domestic
537 positive_acc -1.401713 no_prob_currbank services
538 positive_acc -1.401713 no_prob_currbank services
539 positive_acc -1.152933 no_prob_currbank domestic
540 no_money_acc -0.240737 pay_problems used_car
541 no_money_acc -0.987079 all_paid domestic
542 no_money_acc 2.247070 all_paid domestic
543 no_money_acc -0.738298 all_paid used_car
544 no_money_acc -0.240737 no_prob_currbank used_car
545 positive_acc -1.401713 no_prob_currbank domestic
546 no_money_acc -1.070006 all_paid services
547 no_money_acc 0.754386 all_paid domestic
548 positive_acc -0.904152 no_prob_currbank domestic
549 no_money_acc -0.738298 all_paid services
550 positive_acc -0.738298 no_prob_currbank used_car
551 no_money_acc -0.738298 all_paid services
552 positive_acc -0.738298 no_prob_currbank services
553 positive_acc -0.738298 all_paid services
554 positive_acc -0.904152 all_paid services
555 no_money_acc -0.821225 all_paid used_car
556 positive_acc 1.003167 no_prob_currbank services
557 no_money_acc 2.247070 pay_problems services
558 positive_acc -0.738298 all_paid used_car
559 positive_acc 0.256825 all_paid new_car
560 no_money_acc -0.572444 all_paid services
561 positive_acc -0.074883 no_prob_currbank services
562 positive_acc -0.240737 no_prob_currbank new_car
563 no_money_acc 3.242193 all_paid services
564 positive_acc 0.256825 all_paid domestic
565 positive_acc 0.754386 no_prob_currbank services
566 no_money_acc 0.256825 no_prob_currbank domestic
567 no_money_acc 1.251947 no_prob_currbank services
568 positive_acc -1.235859 no_prob_currbank services
569 positive_acc -0.738298 no_prob_currbank used_car
570 positive_acc 2.247070 all_paid domestic
571 positive_acc -0.738298 all_paid services
572 positive_acc 1.251947 all_paid services
573 no_money_acc 0.422678 all_paid new_car
574 no_money_acc 0.754386 pay_problems used_car
575 no_money_acc 1.251947 all_paid new_car
576 no_money_acc 2.247070 pay_problems services
577 no_account 1.251947 all_paid used_car
578 no_account -0.738298 all_paid services
579 no_account 1.003167 no_prob_currbank used_car
580 no_account 1.749509 all_paid domestic
581 no_account 0.256825 pay_problems domestic
582 no_account 0.256825 all_paid used_car
583 positive_acc 0.256825 all_paid domestic
584 no_account -0.738298 all_paid domestic
585 no_account -0.738298 all_paid used_car
586 no_account 0.256825 all_paid new_car
587 no_account -0.240737 no_prob_currbank services
588 no_account 1.251947 all_paid used_car
589 no_account -0.240737 all_paid domestic
590 no_money_acc -0.738298 all_paid used_car
591 no_account -0.738298 all_paid used_car
592 no_account -1.070006 no_prob_currbank services
593 no_account 1.251947 no_prob_currbank used_car
594 no_account 0.256825 pay_problems services
595 no_account 0.754386 pay_problems used_car
596 no_account 1.251947 no_prob_currbank used_car
597 no_account -0.738298 all_paid used_car
598 no_account 0.008044 no_prob_currbank services
599 no_account 0.754386 all_paid domestic
600 no_account 1.251947 all_paid used_car
601 no_account 1.251947 all_paid new_car
602 positive_acc 0.256825 no_prob_currbank used_car
603 no_account -1.235859 all_paid services
604 no_account -0.738298 all_paid used_car
605 no_account 1.251947 all_paid used_car
606 no_account -0.489517 no_prob_currbank used_car
607 no_money_acc -1.235859 no_prob_currbank used_car
608 no_account -1.235859 no_prob_currbank services
609 no_account 2.247070 all_paid new_car
610 no_money_acc 0.256825 all_paid used_car
611 no_money_acc -0.738298 all_paid services
612 no_account -0.738298 all_paid used_car
613 no_account -0.738298 all_paid used_car
614 no_account -0.489517 all_paid used_car
615 no_account 0.256825 all_paid new_car
616 no_account -0.738298 all_paid services
617 no_account 0.754386 no_prob_currbank new_car
618 no_account -0.240737 all_paid services
619 no_account 0.754386 all_paid used_car
620 no_money_acc -0.738298 no_prob_currbank services
621 positive_acc 0.256825 all_paid new_car
622 positive_acc 0.256825 no_prob_currbank services
623 no_account -0.738298 no_prob_currbank new_car
624 no_account -0.738298 all_paid used_car
625 no_account 0.256825 no_prob_currbank new_car
626 no_account -1.235859 no_prob_currbank used_car
627 positive_acc -0.738298 all_paid services
628 positive_acc -0.240737 no_prob_currbank domestic
629 positive_acc -1.235859 all_paid services
630 no_account -0.738298 all_paid used_car
631 no_account -0.489517 no_prob_currbank used_car
632 no_account 1.749509 all_paid used_car
633 no_account 0.256825 all_paid used_car
634 no_account 1.251947 all_paid used_car
635 no_account 1.251947 all_paid services
636 no_account 0.256825 all_paid used_car
637 no_account -0.738298 no_prob_currbank used_car
638 no_account -0.655371 no_prob_currbank services
639 no_account -0.074883 no_prob_currbank used_car
640 no_account 0.256825 no_prob_currbank new_car
641 no_account 1.251947 no_prob_currbank used_car
642 positive_acc 1.749509 pay_problems services
643 no_account 0.256825 no_prob_currbank new_car
644 no_account 2.247070 no_prob_currbank new_car
645 positive_acc 0.256825 no_prob_currbank services
646 no_account 1.251947 all_paid services
647 positive_acc 0.256825 no_prob_currbank domestic
648 positive_acc 2.247070 no_prob_currbank domestic
649 no_money_acc 0.754386 no_prob_currbank services
650 no_money_acc -0.240737 all_paid services
651 no_money_acc 0.256825 all_paid used_car
652 no_money_acc -1.235859 all_paid domestic
653 no_money_acc -0.738298 all_paid services
654 positive_acc 0.256825 no_prob_currbank domestic
655 no_money_acc 2.247070 no_prob_currbank services
656 no_money_acc -0.240737 no_prob_currbank services
657 no_money_acc 0.256825 no_prob_currbank domestic
658 no_money_acc -1.235859 all_paid domestic
659 no_money_acc -1.152933 all_paid domestic
660 no_money_acc -1.235859 all_paid domestic
661 no_money_acc -1.070006 all_paid domestic
662 no_money_acc -0.738298 all_paid domestic
663 no_money_acc -0.738298 no_prob_currbank domestic
664 no_money_acc -1.235859 all_paid domestic
665 no_account -1.070006 no_prob_currbank services
666 no_money_acc -0.738298 all_paid domestic
667 no_money_acc -1.152933 all_paid domestic
668 no_money_acc -0.655371 no_prob_currbank domestic
669 no_money_acc -0.240737 all_paid domestic
670 no_money_acc -1.152933 all_paid domestic
671 no_money_acc -0.655371 all_paid domestic
672 no_money_acc -0.240737 all_paid domestic
673 no_money_acc -0.240737 all_paid domestic
674 no_money_acc -1.070006 all_paid domestic
675 no_money_acc -0.738298 all_paid domestic
676 positive_acc -1.235859 no_prob_currbank services
677 no_account -0.987079 no_prob_currbank domestic
678 no_money_acc -0.240737 no_prob_currbank domestic
679 no_money_acc -0.489517 no_prob_currbank domestic
680 no_money_acc -1.235859 all_paid domestic
681 no_money_acc -0.904152 pay_problems domestic
682 no_money_acc -0.738298 all_paid domestic
683 no_money_acc -0.074883 no_prob_currbank new_car
684 no_money_acc -0.489517 no_prob_currbank domestic
685 no_account -0.738298 all_paid domestic
686 positive_acc 0.256825 no_prob_currbank used_car
687 no_money_acc -0.904152 all_paid used_car
688 no_money_acc 1.251947 pay_problems domestic
689 positive_acc -0.240737 all_paid used_car
690 no_account 0.256825 all_paid domestic
691 positive_acc 3.242193 all_paid domestic
692 no_account -0.738298 all_paid services
693 no_money_acc -1.235859 all_paid domestic
694 positive_acc -0.489517 no_prob_currbank new_car
695 positive_acc -0.738298 all_paid used_car
696 positive_acc 3.242193 no_prob_currbank domestic
697 positive_acc -0.738298 no_prob_currbank services
698 positive_acc 0.256825 all_paid domestic
699 no_money_acc 1.998289 no_prob_currbank new_car
700 no_account 0.256825 no_prob_currbank domestic
701 no_account 1.251947 all_paid new_car
702 no_money_acc 1.251947 no_prob_currbank new_car
703 no_account -0.240737 no_prob_currbank services
704 no_account 0.754386 all_paid used_car
705 no_account -1.235859 no_prob_currbank domestic
706 positive_acc -0.489517 all_paid domestic
707 positive_acc 0.256825 no_prob_currbank used_car
708 no_money_acc 0.754386 no_prob_currbank services
709 no_account 2.247070 pay_problems services
710 positive_acc 2.247070 no_prob_currbank services
711 positive_acc 0.256825 all_paid services
712 no_account 1.749509 no_prob_currbank domestic
713 positive_acc 1.251947 no_prob_currbank services
714 positive_acc -0.987079 no_prob_currbank services
715 positive_acc -1.235859 all_paid services
716 positive_acc 1.251947 pay_problems domestic
717 no_account 2.247070 all_paid services
718 positive_acc 0.256825 all_paid services
719 no_money_acc -0.240737 all_paid used_car
720 no_money_acc 4.237315 all_paid domestic
721 no_money_acc 2.247070 no_prob_currbank services
722 positive_acc -0.489517 all_paid services
723 positive_acc 0.008044 no_prob_currbank new_car
724 positive_acc 1.251947 no_prob_currbank new_car
725 no_account 0.256825 all_paid used_car
726 no_money_acc -0.240737 all_paid new_car
727 positive_acc 0.008044 all_paid services
728 positive_acc -0.738298 all_paid services
729 positive_acc 1.251947 no_prob_currbank new_car
730 no_money_acc 3.242193 no_prob_currbank domestic
731 no_money_acc 1.749509 pay_problems new_car
732 positive_acc 3.242193 all_paid services
733 positive_acc -0.489517 no_prob_currbank new_car
734 no_account -0.489517 all_paid services
735 no_account 1.251947 all_paid new_car
736 positive_acc -1.235859 all_paid domestic
737 no_money_acc -0.987079 all_paid domestic
738 positive_acc -0.240737 no_prob_currbank domestic
739 no_money_acc -0.489517 all_paid domestic
740 no_money_acc -0.074883 pay_problems new_car
741 positive_acc -0.738298 all_paid used_car
742 positive_acc -0.738298 all_paid domestic
743 no_account 0.256825 all_paid used_car
744 positive_acc 0.754386 no_prob_currbank new_car
745 positive_acc 0.754386 all_paid new_car
746 positive_acc -1.235859 all_paid used_car
747 no_money_acc 0.256825 all_paid new_car
748 positive_acc 0.256825 no_prob_currbank domestic
749 no_money_acc -0.987079 all_paid services
750 positive_acc 0.256825 all_paid used_car
751 no_money_acc 1.251947 no_prob_currbank services
752 no_account -0.987079 all_paid services
753 no_money_acc -0.987079 no_prob_currbank services
754 no_money_acc 0.256825 all_paid new_car
755 no_money_acc -1.235859 all_paid services
756 no_account -0.489517 pay_problems services
757 no_account 0.256825 no_prob_currbank services
758 no_account -0.738298 pay_problems services
759 no_money_acc 0.754386 all_paid services
760 no_money_acc 1.251947 no_prob_currbank services
761 no_money_acc 2.247070 all_paid domestic
762 no_account -0.240737 all_paid domestic
763 positive_acc 0.008044 pay_problems services
764 no_money_acc 3.242193 all_paid services
765 positive_acc 0.256825 no_prob_currbank services
766 positive_acc -0.987079 all_paid domestic
767 no_money_acc 1.500728 no_prob_currbank domestic
768 positive_acc -0.240737 no_prob_currbank services
769 no_money_acc -0.987079 pay_problems services
770 no_account -0.489517 all_paid domestic
771 no_account 0.256825 all_paid domestic
772 no_account -0.987079 all_paid services
773 no_account -0.240737 all_paid domestic
774 no_account 1.251947 all_paid services
775 no_account 1.251947 no_prob_currbank services
776 no_account 1.251947 all_paid services
777 no_money_acc -0.240737 no_prob_currbank used_car
778 no_account -1.235859 no_prob_currbank used_car
779 no_money_acc -0.240737 no_prob_currbank domestic
780 positive_acc -0.489517 all_paid services
781 no_money_acc 0.754386 no_prob_currbank used_car
782 no_account 0.256825 no_prob_currbank domestic
783 no_money_acc 1.251947 all_paid services
784 no_money_acc -1.235859 pay_problems services
785 no_account -0.738298 pay_problems domestic
786 positive_acc 0.256825 all_paid domestic
787 no_money_acc -1.235859 pay_problems services
788 no_money_acc -0.489517 no_prob_currbank domestic
789 no_money_acc 0.256825 pay_problems services
790 no_money_acc 0.256825 no_prob_currbank used_car
791 no_money_acc -0.489517 pay_problems services
792 positive_acc -0.489517 all_paid domestic
793 no_account 0.256825 pay_problems used_car
794 no_account -0.738298 all_paid services
795 positive_acc 0.754386 no_prob_currbank services
796 no_money_acc 1.251947 pay_problems services
797 positive_acc -0.240737 all_paid used_car
798 positive_acc 0.008044 no_prob_currbank services
799 no_account 0.256825 all_paid services
800 positive_acc 0.256825 all_paid services
801 no_account 0.256825 all_paid services
802 no_account 0.256825 all_paid services
803 no_account 0.256825 all_paid services
804 no_money_acc -0.240737 all_paid services
805 no_account -0.738298 all_paid services
806 no_account 0.256825 all_paid services
807 no_money_acc -0.240737 pay_problems services
808 no_account 3.242193 no_prob_currbank services
809 no_account 0.256825 all_paid used_car
810 no_account -1.235859 pay_problems services
811 no_money_acc 2.247070 all_paid services
812 no_account 3.242193 all_paid services
813 positive_acc -0.240737 all_paid domestic
814 no_account -0.240737 all_paid domestic
815 no_money_acc -0.987079 pay_problems new_car
816 positive_acc -0.240737 no_prob_currbank used_car
817 positive_acc -0.904152 all_paid services
818 no_account -0.738298 all_paid services
819 no_money_acc -1.070006 all_paid used_car
820 positive_acc -0.987079 all_paid used_car
821 no_money_acc 2.247070 all_paid domestic
822 no_account 1.251947 no_prob_currbank services
823 no_account 0.256825 all_paid domestic
824 no_account 0.008044 all_paid domestic
825 no_account 0.256825 no_prob_currbank domestic
826 no_money_acc -1.235859 no_prob_currbank services
827 no_money_acc 2.247070 pay_problems services
828 no_account -0.738298 no_prob_currbank services
829 no_money_acc -0.738298 all_paid domestic
830 no_money_acc 2.247070 all_paid domestic
831 no_money_acc 1.251947 pay_problems domestic
832 positive_acc 1.251947 no_prob_currbank domestic
833 positive_acc 1.251947 no_prob_currbank services
834 positive_acc 1.251947 all_paid domestic
835 positive_acc -1.235859 all_paid used_car
836 no_money_acc 0.256825 all_paid new_car
837 positive_acc -0.240737 pay_problems services
838 no_money_acc 0.256825 all_paid used_car
839 positive_acc -0.240737 pay_problems services
840 positive_acc -0.738298 all_paid services
841 no_account 1.251947 all_paid services
842 no_money_acc -0.240737 no_prob_currbank used_car
843 positive_acc -0.738298 all_paid used_car
844 no_money_acc 0.256825 all_paid services
845 no_money_acc 0.256825 no_prob_currbank services
846 no_money_acc 0.505605 no_prob_currbank domestic
847 no_money_acc 0.754386 no_prob_currbank domestic
848 no_money_acc 3.242193 pay_problems services
849 no_money_acc 1.251947 all_paid domestic
850 no_money_acc 1.251947 all_paid services
851 no_money_acc 1.998289 all_paid domestic
852 no_account -0.738298 pay_problems domestic
853 no_money_acc 0.256825 no_prob_currbank services
854 positive_acc 0.256825 no_prob_currbank services
855 positive_acc -0.240737 all_paid used_car
856 no_account 2.247070 all_paid services
857 no_account 0.256825 pay_problems used_car
858 no_account 1.251947 all_paid domestic
859 no_account 1.749509 all_paid domestic
860 no_account -0.738298 all_paid domestic
861 positive_acc 2.247070 all_paid services
862 no_account 2.247070 all_paid services
863 no_money_acc -0.738298 all_paid domestic
864 positive_acc -0.240737 no_prob_currbank services
865 no_account 1.583655 no_prob_currbank services
866 positive_acc -0.489517 no_prob_currbank domestic
867 no_money_acc -0.738298 all_paid services
868 no_money_acc 1.251947 all_paid new_car
869 no_money_acc -0.738298 all_paid used_car
870 no_money_acc 0.256825 all_paid services
871 no_account 2.247070 all_paid domestic
872 positive_acc 1.251947 no_prob_currbank services
873 positive_acc -0.240737 all_paid domestic
874 positive_acc 1.251947 no_prob_currbank services
875 no_money_acc 0.256825 pay_problems services
876 no_money_acc 0.754386 no_prob_currbank services
877 no_money_acc 0.754386 no_prob_currbank services
878 no_account 2.247070 all_paid domestic
879 no_account -0.987079 all_paid domestic
880 no_account 0.256825 pay_problems services
881 no_account -0.240737 all_paid used_car
882 positive_acc -0.987079 pay_problems domestic
883 no_account 2.247070 all_paid services
884 no_money_acc -0.489517 pay_problems services
885 no_money_acc -0.489517 all_paid services
886 no_money_acc 2.247070 all_paid services
887 no_account 0.256825 all_paid services
888 no_account 1.251947 no_prob_currbank services
889 no_account 0.256825 all_paid domestic
890 no_money_acc 1.251947 all_paid used_car
891 no_money_acc 3.242193 all_paid services
892 no_account 1.251947 no_prob_currbank new_car
893 no_money_acc -0.738298 all_paid domestic
894 no_account -0.240737 all_paid used_car
895 no_money_acc 0.256825 no_prob_currbank used_car
896 no_money_acc -0.240737 all_paid new_car
897 positive_acc 0.008044 no_prob_currbank services
898 positive_acc 0.505605 all_paid services
899 no_money_acc 0.505605 all_paid services
900 positive_acc -0.904152 all_paid services
901 no_account 0.256825 all_paid services
902 no_account -0.738298 all_paid services
903 no_money_acc 1.251947 no_prob_currbank services
904 no_account -0.240737 all_paid used_car
905 no_account -0.240737 pay_problems used_car
906 no_account -0.240737 no_prob_currbank used_car
907 no_account -0.240737 pay_problems used_car
908 no_account 0.754386 all_paid used_car
909 no_account 0.256825 no_prob_currbank services
910 no_account 2.247070 pay_problems used_car
911 no_account 0.256825 no_prob_currbank services
912 no_account -0.738298 no_prob_currbank services
913 no_account 1.749509 no_prob_currbank domestic
914 no_account 1.251947 pay_problems used_car
915 no_account 0.256825 pay_problems used_car
916 no_account -0.240737 all_paid used_car
917 no_account -0.738298 all_paid used_car
918 no_money_acc -0.738298 pay_problems used_car
919 no_account 2.247070 pay_problems new_car
920 no_account 2.247070 no_prob_currbank new_car
921 no_account 0.256825 pay_problems used_car
922 no_account -0.738298 pay_problems services
923 no_account 0.256825 all_paid services
924 no_account 0.505605 pay_problems services
925 no_account 0.008044 no_prob_currbank services
926 no_account -0.240737 all_paid used_car
927 no_account 0.256825 pay_problems services
928 no_account -0.738298 all_paid services
929 no_account 2.247070 all_paid new_car
930 no_money_acc 2.247070 pay_problems services
931 no_money_acc -0.240737 no_prob_currbank services
932 no_account -0.738298 all_paid services
933 no_money_acc -0.738298 all_paid services
934 no_account -0.738298 all_paid services
935 no_account -0.406591 no_prob_currbank services
936 no_account -0.074883 no_prob_currbank services
937 no_money_acc -0.987079 all_paid used_car
938 no_money_acc -0.240737 no_prob_currbank services
939 no_money_acc 0.256825 all_paid services
940 no_money_acc 1.251947 no_prob_currbank services
941 positive_acc 2.247070 no_prob_currbank services
942 no_money_acc -0.738298 all_paid services
943 positive_acc -0.738298 all_paid services
944 no_money_acc 1.251947 all_paid services
945 no_account -0.738298 all_paid domestic
946 no_money_acc -0.489517 pay_problems services
947 positive_acc -0.904152 all_paid used_car
948 positive_acc 0.754386 pay_problems new_car
949 no_account -0.240737 pay_problems services
950 positive_acc -0.738298 no_prob_currbank domestic
951 no_money_acc 1.998289 no_prob_currbank domestic
952 positive_acc -0.738298 no_prob_currbank services
953 no_money_acc 0.008044 all_paid services
954 positive_acc 2.247070 no_prob_currbank new_car
955 positive_acc -0.738298 pay_problems services
956 no_account -0.240737 no_prob_currbank domestic
957 no_money_acc 0.008044 all_paid services
958 no_money_acc 0.754386 all_paid used_car
959 no_money_acc 0.754386 pay_problems services
960 no_money_acc 0.256825 all_paid domestic
961 positive_acc -0.240737 all_paid services
962 no_money_acc -0.738298 all_paid domestic
963 no_money_acc 2.744631 pay_problems services
964 no_account 0.256825 all_paid used_car
965 no_money_acc -0.489517 all_paid domestic
966 no_money_acc 2.247070 all_paid used_car
967 positive_acc 0.256825 no_prob_currbank services
968 no_account -0.240737 all_paid domestic
969 no_account 1.998289 all_paid domestic
970 no_account 0.008044 pay_problems services
971 positive_acc 2.247070 all_paid services
972 no_money_acc 0.505605 pay_problems services
973 positive_acc -0.240737 all_paid domestic
974 no_account 1.998289 pay_problems services
975 no_account -1.235859 all_paid services
976 no_account 0.754386 all_paid domestic
977 no_money_acc 2.247070 pay_problems services
978 no_account -1.235859 all_paid services
979 no_money_acc -0.738298 all_paid used_car
980 no_account -0.738298 all_paid new_car
981 no_money_acc 0.256825 all_paid domestic
982 positive_acc -0.240737 no_prob_currbank services
983 no_money_acc 2.247070 no_prob_currbank used_car
984 no_account -0.240737 all_paid domestic
985 no_account 2.247070 all_paid domestic
986 positive_acc -0.738298 no_prob_currbank services
987 no_account -0.572444 all_paid services
988 no_account -0.738298 all_paid domestic
989 no_account -0.240737 all_paid services
990 no_money_acc 0.256825 all_paid services
991 no_account -0.240737 all_paid services
992 no_money_acc 0.256825 all_paid new_car
993 no_account -0.240737 all_paid new_car
994 no_account -0.240737 no_prob_currbank services
995 no_account -0.738298 pay_problems domestic
996 no_account 0.256825 all_paid domestic
997 no_account 0.256825 all_paid services
998 positive_acc 0.008044 no_prob_currbank services
999 no_money_acc -0.738298 all_paid domestic
1000 no_account 0.754386 all_paid used_car
credit_amount savings_account employment_present installment_rate_pct
1 -0.787263 no_sav unemp_less1year 4
2 -0.167301 no_sav 1to4 2
3 -0.860950 less100 4to7 2
4 -0.407137 no_sav 1to4 3
5 -0.389779 no_sav 1to4 4
6 -0.364980 no_sav unemp_less1year 1
7 0.044904 no_sav 4to7 1
8 -0.676733 no_sav unemp_less1year 2
9 -0.769904 no_sav unemp_less1year 4
10 0.172439 100to1000 unemp_less1year 1
11 0.224516 no_sav 1to4 2
12 1.032947 less100 4to7 1
13 -0.465591 no_sav 4to7 1
14 1.527145 less100 unemp_less1year 2
15 -0.473031 over1000 4to7 2
16 -0.221149 100to1000 1to4 2
17 0.236561 no_sav 1to4 1
18 -0.020635 100to1000 unemp_less1year 1
19 -0.330971 no_sav 7plus 4
20 1.401736 no_sav 1to4 1
21 0.143389 no_sav 1to4 1
22 -0.052165 no_sav unemp_less1year 1
23 -0.314320 no_sav unemp_less1year 4
24 -0.654414 no_sav 4to7 4
25 0.511824 over1000 unemp_less1year 1
26 0.531308 no_sav 4to7 2
27 -0.927906 no_sav 7plus 4
28 -0.750065 no_sav 7plus 2
29 0.100877 over1000 1to4 3
30 0.540165 no_sav 7plus 4
31 -0.090071 no_sav 7plus 4
32 0.093438 no_sav 4to7 4
33 1.184217 no_sav 7plus 4
34 -0.671419 100to1000 4to7 4
35 -0.549197 no_sav unemp_less1year 2
36 -0.854219 no_sav 7plus 1
37 -0.629261 no_sav 7plus 4
38 -0.473739 no_sav 7plus 2
39 0.037818 over1000 1to4 2
40 0.211408 no_sav 7plus 4
41 -0.806039 over1000 4to7 4
42 -0.537152 no_sav 7plus 4
43 -0.794703 no_sav 1to4 4
44 -0.158090 over1000 4to7 4
45 -0.719953 over1000 1to4 4
46 -0.728101 no_sav unemp_less1year 4
47 -0.713222 no_sav 4to7 4
48 -0.498538 less100 1to4 4
49 -0.636701 less100 unemp_less1year 4
50 -0.669293 less100 4to7 4
51 -0.932157 no_sav 1to4 4
52 0.229475 no_sav 1to4 2
53 -0.725267 no_sav 1to4 3
54 -0.333096 over1000 7plus 1
55 1.077584 over1000 7plus 3
56 -1.022494 no_sav 4to7 4
57 -0.572579 no_sav 7plus 2
58 -0.785846 no_sav unemp_less1year 4
59 -0.039411 over1000 7plus 4
60 -0.068107 over1000 1to4 4
61 -0.746877 100to1000 1to4 4
62 -0.209812 no_sav unemp_less1year 4
63 0.108671 over1000 7plus 4
64 2.693737 no_sav 7plus 2
65 -0.682755 no_sav 1to4 4
66 -0.720661 less100 1to4 1
67 -0.068815 no_sav 1to4 2
68 -0.349747 no_sav 4to7 4
69 -0.603754 no_sav 1to4 1
70 -0.439021 no_sav 7plus 4
71 -0.186431 100to1000 4to7 3
72 -0.497475 over1000 7plus 4
73 -0.344433 100to1000 7plus 4
74 -0.829775 over1000 4to7 4
75 0.045258 over1000 7plus 2
76 -0.439730 over1000 4to7 2
77 0.001329 no_sav 7plus 1
78 -0.471614 100to1000 7plus 4
79 -0.591355 no_sav 7plus 4
80 -0.457797 over1000 7plus 4
81 -0.442564 no_sav 1to4 4
82 0.025065 over1000 7plus 4
83 0.919228 less100 1to4 2
84 -0.322823 100to1000 1to4 2
85 -0.620405 over1000 7plus 4
86 0.134533 100to1000 1to4 1
87 -0.327782 no_sav 4to7 4
88 0.419007 no_sav 1to4 4
89 -0.922946 100to1000 4to7 3
90 -0.462757 over1000 1to4 4
91 -0.452129 less100 unemp_less1year 4
92 -0.099282 over1000 7plus 2
93 0.336463 no_sav 1to4 2
94 -0.675670 no_sav 4to7 3
95 1.094589 no_sav 7plus 2
96 0.444514 100to1000 unemp_less1year 4
97 0.106900 no_sav 1to4 1
98 0.419361 no_sav 1to4 2
99 -0.402178 no_sav 1to4 3
100 0.950403 no_sav 4to7 2
101 0.179170 100to1000 1to4 4
102 -0.873349 no_sav 1to4 4
103 0.510407 over1000 1to4 4
104 1.474006 no_sav 1to4 2
105 -0.503143 no_sav 4to7 4
106 -0.665396 no_sav 1to4 2
107 -0.658665 no_sav 1to4 4
108 -0.637055 no_sav unemp_less1year 3
109 -0.615799 no_sav unemp_less1year 4
110 -0.446107 over1000 4to7 4
111 0.243646 no_sav 1to4 3
112 -1.007261 no_sav 7plus 2
113 -0.320697 100to1000 4to7 3
114 -0.888583 no_sav 1to4 4
115 0.249668 over1000 4to7 2
116 1.058808 no_sav 4to7 3
117 -0.479053 no_sav 4to7 4
118 -0.236736 100to1000 1to4 2
119 -0.827295 100to1000 7plus 4
120 -0.074129 100to1000 7plus 4
121 0.539811 no_sav unemp_less1year 4
122 0.910725 no_sav 7plus 2
123 -0.428039 no_sav unemp_less1year 4
124 -0.642015 no_sav 1to4 4
125 -0.729164 100to1000 7plus 4
126 0.648924 no_sav unemp_less1year 3
127 -0.849259 over1000 unemp_less1year 4
128 -0.103887 100to1000 1to4 1
129 -0.514125 no_sav 1to4 2
130 -0.141439 less100 7plus 3
131 -0.476928 no_sav 1to4 2
132 -0.267912 no_sav 1to4 3
133 -0.409263 no_sav 1to4 2
134 -0.644140 no_sav unemp_less1year 3
135 -0.675670 no_sav 1to4 2
136 -0.612256 100to1000 1to4 4
137 -0.691966 100to1000 7plus 4
138 -0.335222 less100 4to7 2
139 -0.828712 over1000 4to7 1
140 -0.043662 over1000 1to4 3
141 0.199717 over1000 7plus 2
142 0.198654 over1000 7plus 1
143 0.642193 over1000 7plus 2
144 -0.306526 no_sav unemp_less1year 2
145 -0.310778 over1000 1to4 4
146 -0.281728 over1000 7plus 4
147 -0.108847 over1000 7plus 4
148 -0.711805 over1000 7plus 2
149 -0.612611 no_sav 4to7 2
150 -0.541404 no_sav 7plus 4
151 -1.013992 100to1000 1to4 3
152 -0.389779 no_sav unemp_less1year 2
153 1.979186 over1000 4to7 2
154 0.085290 less100 4to7 2
155 -0.748648 100to1000 1to4 3
156 -0.208041 no_sav 1to4 4
157 -0.628198 no_sav 1to4 4
158 0.950403 no_sav 4to7 3
159 1.114073 no_sav 7plus 4
160 0.122488 no_sav 7plus 1
161 -0.701531 no_sav 1to4 4
162 -0.707199 100to1000 1to4 2
163 0.248251 no_sav 4to7 2
164 0.025419 no_sav 1to4 4
165 -1.020015 no_sav unemp_less1year 4
166 -0.402886 no_sav 1to4 4
167 0.885573 no_sav 4to7 4
168 0.444514 no_sav 1to4 3
169 -0.171197 no_sav 4to7 2
170 -0.669293 no_sav 1to4 1
171 0.912851 no_sav 1to4 4
172 -0.723850 no_sav 1to4 4
173 -0.699405 no_sav 1to4 3
174 -0.609068 no_sav 4to7 3
175 -0.463465 no_sav 4to7 4
176 -0.012841 100to1000 7plus 3
177 0.307414 less100 1to4 3
178 -0.519793 less100 unemp_less1year 3
179 -0.468071 no_sav 4to7 4
180 3.357629 100to1000 4to7 4
181 -0.721016 no_sav unemp_less1year 1
182 -0.785137 no_sav unemp_less1year 4
183 1.700735 over1000 unemp_less1year 2
184 -0.155964 no_sav 1to4 4
185 -0.645557 no_sav 4to7 3
186 0.875299 less100 4to7 2
187 -0.312195 over1000 7plus 4
188 0.056240 100to1000 7plus 3
189 -0.353644 no_sav 4to7 3
190 -0.123372 less100 1to4 1
191 -0.485430 less100 1to4 4
192 0.155788 over1000 1to4 2
193 1.847754 over1000 4to7 1
194 -0.360020 over1000 unemp_less1year 4
195 -0.711805 no_sav 1to4 3
196 1.410592 no_sav 4to7 3
197 1.236294 no_sav 4to7 1
198 -0.515188 no_sav 1to4 4
199 -0.400406 less100 4to7 3
200 0.119653 no_sav 1to4 1
201 -0.332388 100to1000 7plus 4
202 1.612877 over1000 unemp_less1year 3
203 -0.646974 over1000 4to7 4
204 1.576388 over1000 unemp_less1year 1
205 0.174210 over1000 4to7 2
206 0.413693 no_sav 7plus 1
207 -0.766716 no_sav 1to4 2
208 -0.647329 over1000 unemp_less1year 4
209 3.152155 over1000 unemp_less1year 4
210 -0.183597 less100 7plus 3
211 -0.629615 over1000 unemp_less1year 1
212 -0.157027 100to1000 1to4 4
213 -0.279248 100to1000 1to4 4
214 -0.698697 no_sav 1to4 1
215 -0.610131 over1000 unemp_less1year 4
216 0.240103 no_sav unemp_less1year 1
217 -0.131166 over1000 unemp_less1year 1
218 -0.907713 100to1000 unemp_less1year 2
219 2.639535 no_sav unemp_less1year 1
220 -0.702948 over1000 7plus 4
221 -0.471614 no_sav unemp_less1year 3
222 0.136304 over1000 7plus 4
223 0.498716 no_sav 4to7 3
224 1.892392 100to1000 1to4 2
225 -0.216898 100to1000 1to4 4
226 -0.621822 100to1000 1to4 4
227 0.392791 less100 1to4 3
228 -0.874766 no_sav 1to4 4
229 -0.601983 100to1000 7plus 4
230 0.104420 less100 4to7 4
231 -0.706136 no_sav 7plus 4
232 -1.007970 no_sav 7plus 4
233 1.883535 less100 7plus 4
234 0.207511 no_sav 1to4 4
235 -0.916215 no_sav 4to7 2
236 -0.591001 no_sav 7plus 4
237 -0.364980 no_sav 7plus 4
238 -0.314320 no_sav 7plus 4
239 -0.945973 no_sav unemp_less1year 1
240 -0.248781 100to1000 1to4 4
241 -0.692674 100to1000 1to4 2
242 2.513417 no_sav 7plus 2
243 -0.603400 less100 1to4 3
244 -0.936054 100to1000 7plus 4
245 -0.538924 100to1000 7plus 2
246 0.076787 less100 4to7 3
247 -0.521211 no_sav 1to4 4
248 0.311665 less100 1to4 2
249 -0.226817 less100 1to4 3
250 0.700293 over1000 1to4 1
251 -0.131874 over1000 7plus 4
252 1.038969 no_sav 1to4 2
253 -0.874058 no_sav 7plus 4
254 0.114694 no_sav 7plus 4
255 0.864317 100to1000 7plus 4
256 -0.206978 no_sav 4to7 2
257 0.131698 no_sav 7plus 1
258 -0.398635 no_sav unemp_less1year 1
259 -0.338764 no_sav 7plus 3
260 0.062617 no_sav 4to7 1
261 -0.199539 no_sav unemp_less1year 2
262 -0.665396 no_sav unemp_less1year 4
263 -0.707199 no_sav unemp_less1year 4
264 -0.693737 no_sav 7plus 1
265 -0.629970 no_sav unemp_less1year 4
266 -0.211229 100to1000 7plus 3
267 -0.408555 no_sav 1to4 2
268 -0.836860 100to1000 7plus 4
269 -0.713222 no_sav unemp_less1year 2
270 -0.603046 less100 7plus 4
271 -0.721016 100to1000 1to4 2
272 1.561155 100to1000 4to7 2
273 -0.925072 100to1000 4to7 2
274 -0.154547 100to1000 7plus 3
275 -0.213001 no_sav 7plus 4
276 0.062263 100to1000 1to4 4
277 0.105129 no_sav 7plus 4
278 0.134887 no_sav 4to7 2
279 0.137721 no_sav 1to4 2
280 -0.759985 less100 7plus 2
281 -0.916924 no_sav unemp_less1year 2
282 -0.361437 no_sav 1to4 1
283 0.497299 over1000 unemp_less1year 1
284 -0.325302 no_sav 1to4 1
285 0.030379 100to1000 unemp_less1year 4
286 -0.920821 no_sav unemp_less1year 1
287 -1.039145 100to1000 7plus 4
288 -0.203436 no_sav 1to4 1
289 -0.270746 100to1000 7plus 2
290 -0.635284 no_sav 1to4 4
291 0.104066 over1000 unemp_less1year 2
292 -0.372065 100to1000 1to4 2
293 -0.486493 over1000 1to4 1
294 -0.645557 less100 7plus 1
295 -0.818793 100to1000 4to7 3
296 1.722345 no_sav 1to4 1
297 -0.343724 less100 unemp_less1year 2
298 -0.541404 less100 1to4 1
299 -0.810644 100to1000 unemp_less1year 1
300 -0.336993 no_sav unemp_less1year 2
301 -1.038791 no_sav 7plus 4
302 0.666283 no_sav 4to7 4
303 0.169250 no_sav unemp_less1year 2
304 -0.069878 over1000 1to4 1
305 -0.894959 no_sav 1to4 3
306 -0.638472 less100 7plus 4
307 -0.672127 no_sav 1to4 1
308 -0.881497 over1000 1to4 1
309 -0.235674 no_sav unemp_less1year 4
310 2.183951 over1000 1to4 2
311 -0.829420 over1000 7plus 4
312 -0.184305 over1000 7plus 4
313 -1.070320 100to1000 1to4 2
314 -0.733415 no_sav unemp_less1year 4
315 -0.924363 no_sav unemp_less1year 3
316 -0.698343 over1000 7plus 4
317 -0.606588 no_sav 4to7 4
318 -0.090425 no_sav 1to4 3
319 -0.677087 no_sav 1to4 4
320 -0.732352 less100 1to4 4
321 -0.593126 100to1000 1to4 3
322 -0.424496 less100 1to4 4
323 -0.400052 100to1000 7plus 1
324 -0.403595 over1000 unemp_less1year 2
325 -0.611194 no_sav 1to4 3
326 -0.702948 100to1000 7plus 4
327 -0.656539 less100 1to4 3
328 -0.683109 no_sav 7plus 1
329 -0.215835 over1000 4to7 4
330 0.991498 no_sav 7plus 3
331 -0.476219 over1000 1to4 3
332 -0.307235 no_sav 1to4 2
333 -0.608360 no_sav 4to7 1
334 -0.704365 over1000 4to7 4
335 -0.904879 over1000 7plus 4
336 -0.539987 no_sav unemp_less1year 4
337 -0.702594 less100 7plus 3
338 -0.791160 no_sav 4to7 4
339 -0.149942 less100 1to4 1
340 -0.658311 100to1000 4to7 3
341 -0.068815 over1000 7plus 3
342 0.127802 no_sav 1to4 1
343 -0.014967 over1000 unemp_less1year 2
344 0.108317 less100 1to4 1
345 -0.917278 less100 4to7 4
346 -0.477282 no_sav 1to4 1
347 -0.901336 100to1000 7plus 4
348 -0.882206 no_sav 7plus 4
349 -0.407492 no_sav 1to4 4
350 -0.910547 no_sav 1to4 4
351 -0.425913 over1000 1to4 2
352 -0.618633 100to1000 4to7 4
353 1.543796 over1000 7plus 4
354 0.080684 no_sav 1to4 3
355 -0.682047 less100 7plus 2
356 2.552740 over1000 7plus 2
357 -0.123018 no_sav 1to4 3
358 -0.722787 no_sav 7plus 3
359 -0.464174 no_sav 7plus 3
360 0.628377 over1000 7plus 1
361 -0.714285 no_sav 7plus 4
362 -0.500663 no_sav unemp_less1year 4
363 -0.726330 over1000 1to4 1
364 -0.667167 no_sav 1to4 4
365 -0.351518 over1000 1to4 4
366 -0.181471 no_sav 7plus 2
367 -0.713222 100to1000 1to4 3
368 -0.659374 no_sav 1to4 2
369 -0.661853 no_sav 1to4 2
370 -0.088654 no_sav 1to4 2
371 1.167921 no_sav 1to4 2
372 -0.245593 100to1000 7plus 2
373 1.589496 100to1000 7plus 2
374 -1.037374 no_sav unemp_less1year 4
375 -0.595252 less100 4to7 4
376 0.051280 no_sav 1to4 3
377 -0.766361 no_sav 4to7 4
378 0.954300 no_sav 7plus 1
379 -0.622530 less100 1to4 4
380 1.229563 over1000 4to7 2
381 0.134178 no_sav unemp_less1year 1
382 0.116111 no_sav 4to7 1
383 3.714373 over1000 7plus 2
384 -1.061109 no_sav 1to4 4
385 0.272696 100to1000 1to4 4
386 -0.996633 no_sav 1to4 4
387 -0.833672 no_sav 1to4 4
388 1.460189 no_sav 1to4 1
389 -0.724912 no_sav 1to4 2
390 -0.162695 over1000 7plus 2
391 -0.085820 no_sav 4to7 2
392 -0.634575 100to1000 unemp_less1year 2
393 -0.787972 no_sav 1to4 2
394 -0.637763 no_sav 1to4 4
395 0.793464 less100 1to4 4
396 -0.731644 no_sav 7plus 4
397 1.109468 no_sav unemp_less1year 1
398 -0.908421 no_sav 1to4 4
399 -0.626427 no_sav 1to4 4
400 0.994332 no_sav 4to7 2
401 -0.263306 no_sav unemp_less1year 4
402 -0.791514 less100 4to7 3
403 -0.679921 100to1000 unemp_less1year 1
404 -0.031972 no_sav unemp_less1year 4
405 0.468604 no_sav unemp_less1year 3
406 0.747410 over1000 unemp_less1year 3
407 0.490922 no_sav 1to4 3
408 -0.666105 no_sav 1to4 2
409 -0.481179 100to1000 unemp_less1year 3
410 1.379771 over1000 4to7 2
411 -0.659728 less100 unemp_less1year 2
412 -0.103887 over1000 1to4 4
413 -0.813124 over1000 7plus 4
414 -0.317509 100to1000 1to4 4
415 -0.973960 100to1000 7plus 4
416 -0.187139 no_sav 7plus 4
417 -0.750065 less100 unemp_less1year 4
418 0.897263 100to1000 1to4 4
419 -0.744751 over1000 1to4 4
420 -0.635284 no_sav 7plus 4
421 -0.883977 no_sav 1to4 4
422 -0.690549 100to1000 1to4 4
423 -0.742626 no_sav unemp_less1year 2
424 -0.403241 over1000 7plus 4
425 -0.510937 no_sav 7plus 4
426 -0.904879 no_sav 7plus 4
427 3.007261 less100 4to7 2
428 -0.627136 no_sav 7plus 2
429 -0.733769 over1000 1to4 4
430 -0.027012 over1000 1to4 1
431 0.445931 no_sav 4to7 4
432 -0.608005 100to1000 7plus 4
433 -0.334868 100to1000 1to4 2
434 -0.490390 over1000 1to4 4
435 -0.711096 over1000 7plus 4
436 -0.859179 over1000 7plus 3
437 -0.616153 less100 1to4 4
438 -0.827649 no_sav 1to4 3
439 -0.293773 no_sav 7plus 4
440 0.112922 no_sav unemp_less1year 3
441 -0.348330 no_sav unemp_less1year 4
442 0.653884 no_sav 4to7 3
443 3.864226 over1000 4to7 4
444 -0.667876 over1000 1to4 4
445 -0.939951 no_sav 7plus 4
446 -0.601274 no_sav 1to4 4
447 -0.910901 over1000 7plus 4
448 -0.845008 over1000 1to4 4
449 0.501196 no_sav 1to4 2
450 -0.879017 100to1000 1to4 4
451 -0.887520 100to1000 1to4 4
452 -0.375254 over1000 4to7 4
453 1.430077 no_sav unemp_less1year 2
454 0.875653 no_sav unemp_less1year 2
455 0.248606 no_sav unemp_less1year 1
456 1.469046 over1000 1to4 1
457 -0.227525 no_sav 1to4 2
458 -0.471259 100to1000 1to4 4
459 -0.332388 over1000 unemp_less1year 4
460 -0.292710 over1000 unemp_less1year 2
461 1.132495 over1000 unemp_less1year 1
462 1.453458 no_sav unemp_less1year 4
463 0.191569 less100 unemp_less1year 1
464 0.260296 no_sav 1to4 3
465 1.488176 over1000 unemp_less1year 1
466 -0.654414 over1000 7plus 3
467 -0.440438 over1000 1to4 4
468 0.727217 100to1000 7plus 1
469 -0.335930 no_sav 4to7 4
470 -0.665396 no_sav 7plus 4
471 -0.456026 no_sav 1to4 4
472 -0.804976 over1000 7plus 4
473 1.465858 over1000 7plus 3
474 -0.384465 over1000 4to7 1
475 0.425738 no_sav 7plus 4
476 -0.826941 no_sav unemp_less1year 4
477 0.053406 no_sav 7plus 4
478 -0.058896 over1000 unemp_less1year 4
479 -0.185368 no_sav 7plus 2
480 0.212825 no_sav unemp_less1year 2
481 0.679745 over1000 7plus 4
482 -0.095739 no_sav 4to7 2
483 0.209637 no_sav 1to4 1
484 0.896201 over1000 7plus 2
485 -0.594898 100to1000 4to7 3
486 -0.739083 no_sav 1to4 3
487 0.180233 no_sav unemp_less1year 3
488 0.120716 no_sav 7plus 3
489 -0.777698 no_sav 1to4 2
490 0.090604 over1000 unemp_less1year 2
491 -0.432290 no_sav unemp_less1year 4
492 0.021168 no_sav 7plus 2
493 -0.059250 no_sav 4to7 3
494 -0.233902 no_sav 7plus 4
495 -0.659728 no_sav 7plus 4
496 -0.694446 less100 4to7 4
497 -0.412097 no_sav 4to7 2
498 0.273050 over1000 4to7 3
499 -0.830837 no_sav unemp_less1year 1
500 -0.563722 100to1000 7plus 3
501 -0.716410 no_sav unemp_less1year 4
502 -0.286333 less100 4to7 4
503 -0.593835 no_sav 4to7 3
504 -0.429810 no_sav 1to4 4
505 1.609335 no_sav 4to7 3
506 -0.542466 no_sav 7plus 2
507 -0.719599 over1000 7plus 4
508 1.264990 over1000 1to4 2
509 0.665575 no_sav 7plus 4
510 -0.732706 less100 7plus 3
511 -0.422017 100to1000 1to4 1
512 -0.614028 no_sav unemp_less1year 1
513 0.214951 less100 unemp_less1year 4
514 0.198654 no_sav unemp_less1year 2
515 -0.030200 100to1000 4to7 2
516 -0.132937 less100 unemp_less1year 2
517 1.309273 less100 4to7 4
518 -0.514480 no_sav 1to4 4
519 0.946506 over1000 unemp_less1year 1
520 1.365955 no_sav unemp_less1year 2
521 0.027545 no_sav 1to4 4
522 2.728810 no_sav unemp_less1year 4
523 -0.975377 no_sav 1to4 3
524 -0.759985 over1000 unemp_less1year 4
525 -0.499955 no_sav unemp_less1year 4
526 2.230006 no_sav 1to4 2
527 -0.910547 no_sav 1to4 4
528 -0.120892 no_sav 4to7 2
529 -0.625719 no_sav 1to4 4
530 -0.366043 no_sav 1to4 2
531 -0.626427 no_sav 4to7 2
532 -0.380568 over1000 4to7 4
533 -0.492515 no_sav 1to4 2
534 -0.492869 no_sav 4to7 4
535 -0.312549 no_sav unemp_less1year 4
536 -0.462048 no_sav 7plus 4
537 0.038527 no_sav 4to7 1
538 -0.643432 no_sav 4to7 2
539 -0.900273 over1000 7plus 4
540 -0.009653 no_sav 1to4 1
541 -0.567265 no_sav unemp_less1year 4
542 0.250731 over1000 4to7 4
543 -0.477990 no_sav 1to4 4
544 -0.700114 no_sav unemp_less1year 4
545 -0.611902 no_sav 4to7 2
546 -0.837569 no_sav unemp_less1year 3
547 -0.551323 over1000 1to4 4
548 -0.681692 over1000 4to7 4
549 -0.802142 100to1000 1to4 4
550 -0.662208 100to1000 4to7 3
551 -0.449649 no_sav 4to7 3
552 -0.416348 no_sav 4to7 2
553 -0.768841 no_sav 1to4 3
554 -0.842174 over1000 4to7 4
555 -0.600211 100to1000 unemp_less1year 4
556 -0.179700 no_sav 1to4 2
557 1.802054 100to1000 unemp_less1year 1
558 -0.636701 no_sav unemp_less1year 4
559 0.765831 over1000 unemp_less1year 2
560 -0.659374 100to1000 7plus 1
561 0.075725 over1000 unemp_less1year 2
562 0.205031 no_sav 4to7 3
563 1.465503 less100 unemp_less1year 4
564 -0.671064 less100 7plus 4
565 0.354531 less100 1to4 2
566 -0.608714 less100 4to7 3
567 2.333096 less100 4to7 1
568 -1.030643 less100 1to4 4
569 -0.473385 no_sav 7plus 4
570 2.462403 over1000 4to7 4
571 -0.687715 no_sav unemp_less1year 4
572 2.048976 over1000 1to4 2
573 1.663183 no_sav unemp_less1year 2
574 0.079622 100to1000 1to4 4
575 1.302542 no_sav 1to4 2
576 3.164555 over1000 1to4 2
577 0.061908 no_sav 7plus 4
578 -0.916569 no_sav 1to4 4
579 0.357719 100to1000 1to4 1
580 1.382605 over1000 4to7 4
581 -0.611194 no_sav 4to7 4
582 -0.323177 less100 unemp_less1year 1
583 0.123905 less100 7plus 2
584 -0.896376 less100 unemp_less1year 4
585 1.627402 no_sav 7plus 4
586 -0.127977 no_sav 4to7 2
587 0.719423 no_sav 7plus 2
588 0.123550 no_sav 1to4 1
589 0.084227 no_sav 4to7 4
590 -0.090071 no_sav unemp_less1year 3
591 -0.571870 no_sav 1to4 2
592 -0.746523 no_sav 7plus 3
593 1.047826 no_sav unemp_less1year 4
594 -0.736249 no_sav unemp_less1year 1
595 0.464707 no_sav 1to4 2
596 0.743867 no_sav 1to4 3
597 -0.908067 no_sav 1to4 2
598 -0.956601 no_sav 7plus 4
599 -0.265432 no_sav 7plus 1
600 0.675848 no_sav 4to7 4
601 1.756354 no_sav 1to4 2
602 -0.440438 no_sav 4to7 2
603 -0.672127 over1000 unemp_less1year 4
604 -0.702240 no_sav 1to4 4
605 -0.198122 no_sav 7plus 2
606 -0.813479 no_sav 1to4 2
607 -0.786909 no_sav unemp_less1year 4
608 -0.943139 no_sav 4to7 4
609 0.537331 no_sav 4to7 4
610 -0.071649 less100 7plus 4
611 -0.862721 less100 unemp_less1year 4
612 -0.245947 no_sav 1to4 2
613 -0.584978 no_sav 1to4 2
614 -0.505269 no_sav unemp_less1year 4
615 1.171818 no_sav unemp_less1year 4
616 -0.488264 no_sav 1to4 4
617 2.604463 no_sav 7plus 3
618 -0.362146 less100 4to7 4
619 -0.057833 no_sav unemp_less1year 2
620 -0.819501 no_sav 4to7 2
621 2.127623 over1000 1to4 2
622 1.077938 no_sav unemp_less1year 4
623 -0.618279 no_sav 7plus 4
624 0.112922 no_sav 1to4 2
625 1.184572 no_sav unemp_less1year 2
626 -0.495704 no_sav unemp_less1year 4
627 -0.146045 over1000 unemp_less1year 4
628 -0.598440 100to1000 7plus 4
629 -0.720307 over1000 unemp_less1year 4
630 -0.245593 no_sav unemp_less1year 3
631 -0.651226 no_sav 1to4 4
632 1.633425 no_sav 4to7 2
633 0.318041 no_sav 1to4 4
634 0.243646 no_sav unemp_less1year 4
635 -0.007882 no_sav 4to7 2
636 -0.043308 no_sav unemp_less1year 4
637 -0.363209 no_sav 7plus 3
638 -0.522273 no_sav unemp_less1year 3
639 0.354531 no_sav 7plus 1
640 -0.111327 no_sav 7plus 4
641 -0.327074 no_sav 1to4 3
642 1.069082 no_sav unemp_less1year 2
643 1.115136 no_sav 7plus 2
644 1.017359 no_sav 7plus 4
645 -0.593126 no_sav 7plus 4
646 4.458682 no_sav unemp_less1year 2
647 -0.371357 less100 7plus 4
648 1.405278 over1000 7plus 3
649 -0.272163 less100 7plus 4
650 -0.230005 less100 1to4 4
651 0.382518 over1000 1to4 1
652 -1.028517 over1000 7plus 4
653 -0.891771 over1000 7plus 4
654 -0.300150 over1000 7plus 4
655 1.207953 over1000 1to4 4
656 -0.299087 over1000 7plus 4
657 -0.728101 less100 unemp_less1year 4
658 -0.892125 no_sav 1to4 2
659 -0.246302 no_sav 1to4 2
660 -0.949870 no_sav unemp_less1year 3
661 -0.657957 no_sav 1to4 4
662 -0.768133 no_sav 4to7 4
663 -0.951642 no_sav 1to4 4
664 -0.780532 no_sav 7plus 4
665 -0.906296 no_sav 7plus 4
666 -0.772030 no_sav 1to4 4
667 -0.333805 no_sav unemp_less1year 1
668 -0.846425 no_sav unemp_less1year 4
669 -0.852093 no_sav 1to4 4
670 -0.303338 no_sav 1to4 3
671 -0.414577 no_sav unemp_less1year 2
672 -0.697988 no_sav 7plus 4
673 -0.764590 no_sav 1to4 4
674 -0.889645 no_sav 4to7 4
675 -0.937471 no_sav unemp_less1year 4
676 -0.690195 less100 7plus 2
677 -0.755733 no_sav 1to4 4
678 -0.522982 no_sav 7plus 3
679 -0.192453 over1000 4to7 4
680 -0.987422 no_sav 4to7 3
681 -0.787617 no_sav 1to4 4
682 -0.749711 no_sav 7plus 3
683 1.341157 over1000 4to7 3
684 -0.614382 over1000 7plus 4
685 -0.374545 no_sav 1to4 4
686 -0.597377 no_sav 4to7 4
687 -0.620050 no_sav 1to4 4
688 0.254628 over1000 unemp_less1year 3
689 -0.078735 no_sav unemp_less1year 1
690 -0.704719 less100 1to4 4
691 2.434770 less100 4to7 2
692 -0.745106 no_sav 1to4 4
693 -0.998050 no_sav unemp_less1year 3
694 0.114339 no_sav unemp_less1year 1
695 -0.532547 no_sav 1to4 3
696 4.386412 no_sav 4to7 2
697 -0.362854 no_sav 1to4 2
698 -0.658311 no_sav 1to4 4
699 0.462227 less100 unemp_less1year 3
700 -0.722787 100to1000 7plus 4
701 1.793906 over1000 7plus 3
702 0.895846 no_sav 1to4 3
703 1.842086 over1000 1to4 1
704 0.124259 100to1000 7plus 4
705 -0.744751 over1000 7plus 4
706 -0.711805 100to1000 4to7 4
707 0.122488 over1000 7plus 4
708 -0.386236 over1000 7plus 4
709 1.563634 no_sav 4to7 2
710 1.005668 no_sav 1to4 1
711 0.172085 no_sav 7plus 4
712 0.043487 no_sav unemp_less1year 4
713 1.074396 over1000 7plus 4
714 -0.718181 over1000 7plus 4
715 0.087415 no_sav 1to4 2
716 -0.233194 no_sav 1to4 4
717 1.489593 no_sav 4to7 4
718 0.467541 100to1000 1to4 2
719 -0.477282 over1000 unemp_less1year 4
720 0.823222 less100 1to4 2
721 1.046054 no_sav 7plus 4
722 -0.484013 no_sav 7plus 4
723 -0.098573 no_sav 1to4 3
724 2.010716 over1000 4to7 3
725 0.265256 no_sav 1to4 2
726 -0.174386 no_sav 1to4 1
727 -0.173323 100to1000 4to7 1
728 -0.491452 no_sav 7plus 4
729 2.757151 over1000 1to4 4
730 2.085111 over1000 1to4 2
731 2.129749 no_sav unemp_less1year 1
732 1.153396 over1000 1to4 4
733 0.034276 100to1000 7plus 3
734 -0.269329 no_sav unemp_less1year 1
735 0.787087 no_sav 7plus 2
736 -0.684881 100to1000 1to4 1
737 -0.775572 no_sav 7plus 4
738 -0.751837 100to1000 1to4 4
739 -0.695509 no_sav 7plus 4
740 1.019130 less100 7plus 3
741 -0.543883 no_sav 4to7 3
742 -0.075192 100to1000 4to7 2
743 -0.097511 over1000 1to4 2
744 1.532105 over1000 7plus 1
745 0.545479 over1000 4to7 2
746 -0.533256 no_sav 1to4 1
747 -0.181117 over1000 7plus 4
748 0.792047 no_sav 7plus 3
749 -0.734123 no_sav 4to7 4
750 -0.134354 no_sav 7plus 3
751 -0.144982 less100 7plus 4
752 -0.927197 no_sav 1to4 4
753 -0.756442 100to1000 7plus 4
754 0.298203 100to1000 unemp_less1year 3
755 3.997430 over1000 unemp_less1year 1
756 -0.822335 no_sav 7plus 4
757 -0.734123 no_sav 7plus 4
758 -0.775572 no_sav 1to4 4
759 -0.397218 no_sav 1to4 4
760 -0.159861 no_sav unemp_less1year 4
761 -0.074838 no_sav 4to7 4
762 -0.237799 no_sav 1to4 4
763 0.613498 over1000 1to4 1
764 1.068727 no_sav 1to4 4
765 -0.259764 no_sav 7plus 4
766 -0.635284 no_sav 4to7 4
767 0.588699 no_sav 4to7 2
768 -0.616862 no_sav 1to4 3
769 -0.649808 less100 4to7 2
770 -0.707199 over1000 1to4 4
771 -0.513062 no_sav unemp_less1year 4
772 -0.655122 no_sav unemp_less1year 3
773 -0.727747 no_sav 1to4 4
774 2.125498 no_sav 4to7 2
775 -0.398989 no_sav 4to7 2
776 -0.506331 no_sav unemp_less1year 4
777 0.363387 no_sav 7plus 4
778 0.039944 no_sav 1to4 1
779 -0.717827 no_sav 1to4 4
780 0.478877 less100 1to4 3
781 1.811974 no_sav 4to7 2
782 -0.796120 no_sav unemp_less1year 4
783 3.913469 no_sav 7plus 4
784 -1.005490 100to1000 unemp_less1year 4
785 -0.397572 no_sav 1to4 4
786 -0.309715 100to1000 7plus 3
787 -0.829066 less100 unemp_less1year 1
788 -0.623239 100to1000 1to4 3
789 0.343548 no_sav 1to4 1
790 0.518909 no_sav unemp_less1year 2
791 -0.529004 no_sav unemp_less1year 2
792 -0.334513 no_sav unemp_less1year 2
793 1.275618 no_sav unemp_less1year 2
794 -0.877246 no_sav unemp_less1year 4
795 -0.482950 no_sav 7plus 4
796 -0.467008 no_sav 7plus 4
797 -0.144273 no_sav 1to4 2
798 -0.337347 no_sav unemp_less1year 2
799 -0.834734 over1000 7plus 4
800 -0.823398 no_sav 4to7 4
801 -0.669647 over1000 1to4 4
802 -0.703657 over1000 4to7 4
803 -0.673190 over1000 1to4 4
804 -0.789743 over1000 1to4 4
805 -0.840048 over1000 1to4 4
806 -0.731289 no_sav unemp_less1year 4
807 -0.351872 less100 unemp_less1year 3
808 1.262864 no_sav 7plus 3
809 0.026128 no_sav 7plus 4
810 -0.734478 no_sav 7plus 4
811 4.393143 no_sav 1to4 2
812 1.426180 no_sav 7plus 4
813 -0.470551 no_sav unemp_less1year 4
814 -0.028783 no_sav 1to4 2
815 0.658135 no_sav 7plus 2
816 -0.518376 no_sav 4to7 4
817 -0.719599 less100 7plus 1
818 -0.890000 no_sav 4to7 4
819 -0.720661 no_sav 1to4 3
820 -0.457443 no_sav unemp_less1year 2
821 2.724204 100to1000 4to7 1
822 1.280932 no_sav 1to4 4
823 -0.472322 no_sav unemp_less1year 4
824 -0.508811 no_sav 1to4 3
825 -0.571162 no_sav unemp_less1year 4
826 -0.730581 no_sav unemp_less1year 4
827 0.202906 less100 4to7 4
828 0.556816 no_sav 7plus 3
829 -0.932511 no_sav 1to4 4
830 0.949340 no_sav 1to4 2
831 0.188735 no_sav 1to4 4
832 0.422195 no_sav 1to4 4
833 1.668142 over1000 unemp_less1year 4
834 0.332566 no_sav 1to4 4
835 0.474626 no_sav unemp_less1year 1
836 2.936408 no_sav 1to4 1
837 0.316624 no_sav 1to4 2
838 0.278364 no_sav 4to7 3
839 1.128952 no_sav 7plus 2
840 -0.667876 100to1000 1to4 2
841 -0.458506 over1000 7plus 4
842 -0.475865 no_sav unemp_less1year 2
843 -0.761047 100to1000 1to4 4
844 2.854219 no_sav 1to4 2
845 3.070320 no_sav 1to4 2
846 -0.266140 100to1000 1to4 4
847 -0.479053 less100 unemp_less1year 4
848 4.077848 less100 7plus 3
849 -0.212646 less100 1to4 4
850 3.309094 less100 1to4 1
851 -0.085111 less100 1to4 4
852 -0.937117 no_sav 1to4 4
853 -0.473385 no_sav 7plus 4
854 -0.682755 over1000 4to7 4
855 -0.615799 no_sav unemp_less1year 4
856 0.233727 no_sav 4to7 4
857 0.027545 100to1000 unemp_less1year 4
858 -0.343370 no_sav 1to4 4
859 0.245772 no_sav unemp_less1year 4
860 -0.901336 less100 unemp_less1year 4
861 0.227704 over1000 1to4 4
862 0.367284 no_sav unemp_less1year 3
863 -0.615445 no_sav unemp_less1year 1
864 -0.175803 no_sav 4to7 2
865 0.965991 no_sav 1to4 4
866 -0.708616 over1000 1to4 3
867 -0.700114 no_sav unemp_less1year 3
868 2.170489 no_sav unemp_less1year 1
869 -0.821981 less100 unemp_less1year 4
870 -0.678858 no_sav unemp_less1year 3
871 -0.078026 no_sav 1to4 3
872 1.623859 no_sav 1to4 4
873 -1.005490 no_sav unemp_less1year 3
874 2.232131 no_sav unemp_less1year 1
875 -0.508103 no_sav 4to7 4
876 0.346383 no_sav unemp_less1year 4
877 0.695333 no_sav unemp_less1year 4
878 1.235232 no_sav 1to4 3
879 -0.674961 no_sav unemp_less1year 3
880 -0.677795 over1000 7plus 4
881 -0.282791 no_sav unemp_less1year 4
882 -0.685235 no_sav unemp_less1year 4
883 1.591267 no_sav 7plus 4
884 -0.711096 less100 1to4 2
885 -0.226817 less100 1to4 2
886 1.165087 less100 4to7 3
887 -0.052519 no_sav unemp_less1year 4
888 1.698255 no_sav 1to4 3
889 -0.294836 no_sav unemp_less1year 4
890 2.041537 less100 unemp_less1year 4
891 3.810378 no_sav 4to7 4
892 2.252324 no_sav 4to7 4
893 -0.633158 over1000 1to4 2
894 -0.758213 no_sav unemp_less1year 4
895 -0.427685 no_sav unemp_less1year 3
896 3.438047 no_sav unemp_less1year 3
897 -0.244884 100to1000 unemp_less1year 4
898 -0.248427 no_sav 1to4 3
899 0.228058 no_sav 1to4 4
900 -0.695154 over1000 1to4 4
901 0.547605 no_sav 4to7 2
902 -0.245239 no_sav unemp_less1year 4
903 -0.370648 no_sav 7plus 4
904 0.312373 no_sav 1to4 2
905 -0.055707 no_sav unemp_less1year 1
906 -0.406429 no_sav 1to4 4
907 -0.608714 no_sav 1to4 4
908 -0.306526 no_sav 4to7 4
909 -0.686652 no_sav unemp_less1year 4
910 1.363121 no_sav 1to4 3
911 0.566381 no_sav 1to4 3
912 -0.914090 no_sav 7plus 4
913 0.389249 no_sav 4to7 3
914 -0.186077 no_sav 7plus 4
915 0.297140 no_sav 7plus 3
916 -0.286688 no_sav 1to4 2
917 -0.704719 no_sav 1to4 2
918 -0.107076 no_sav unemp_less1year 4
919 0.472501 no_sav 7plus 3
920 1.083961 no_sav 7plus 4
921 0.099460 no_sav 4to7 3
922 -0.911964 no_sav unemp_less1year 4
923 -0.648037 no_sav 4to7 4
924 0.716234 no_sav unemp_less1year 2
925 0.050572 no_sav unemp_less1year 2
926 -0.436541 no_sav 1to4 1
927 -0.039057 no_sav 1to4 4
928 -0.839340 no_sav 4to7 4
929 2.488973 no_sav 4to7 4
930 3.949958 no_sav 1to4 2
931 -0.784783 no_sav 7plus 3
932 -0.707554 no_sav unemp_less1year 3
933 -0.725621 no_sav 7plus 1
934 -0.672836 no_sav 4to7 2
935 -0.228943 no_sav 7plus 2
936 -0.367106 no_sav 1to4 4
937 -0.819147 no_sav 1to4 1
938 -0.845717 no_sav 7plus 4
939 -0.717473 no_sav unemp_less1year 4
940 1.705694 less100 7plus 2
941 2.428748 100to1000 1to4 2
942 -0.844300 no_sav 7plus 4
943 -0.904170 no_sav 7plus 4
944 3.230093 over1000 1to4 1
945 -0.907713 no_sav 7plus 4
946 1.267824 less100 unemp_less1year 1
947 -0.375962 no_sav 1to4 2
948 1.492782 over1000 unemp_less1year 4
949 -0.648037 no_sav 4to7 4
950 -0.876538 over1000 7plus 4
951 0.522452 no_sav unemp_less1year 4
952 -0.826232 100to1000 4to7 4
953 -0.738020 no_sav 7plus 2
954 2.947036 less100 1to4 2
955 -0.943139 no_sav unemp_less1year 4
956 -0.737312 no_sav unemp_less1year 2
957 -0.178637 less100 7plus 4
958 0.060137 less100 1to4 2
959 0.357365 less100 1to4 4
960 -0.063501 less100 unemp_less1year 3
961 1.236294 over1000 1to4 2
962 -0.687360 no_sav unemp_less1year 2
963 4.489857 no_sav unemp_less1year 3
964 -0.013196 no_sav unemp_less1year 4
965 -0.874766 no_sav 7plus 4
966 2.369586 no_sav unemp_less1year 1
967 1.904791 no_sav unemp_less1year 2
968 -0.682401 no_sav 1to4 4
969 -0.505269 no_sav 1to4 4
970 -0.575413 over1000 1to4 4
971 0.557170 no_sav unemp_less1year 3
972 1.787884 no_sav 7plus 2
973 -0.414931 no_sav 1to4 4
974 3.027100 no_sav 7plus 2
975 -1.000176 no_sav unemp_less1year 4
976 3.091576 no_sav unemp_less1year 1
977 5.368078 no_sav 1to4 1
978 4.118234 no_sav 7plus 1
979 -0.180408 over1000 7plus 1
980 0.040653 no_sav 7plus 3
981 -0.436541 no_sav unemp_less1year 1
982 -0.390487 no_sav 1to4 4
983 0.646444 no_sav 1to4 2
984 -0.492161 no_sav 1to4 4
985 1.320609 no_sav 4to7 1
986 -0.346913 no_sav unemp_less1year 4
987 2.021698 no_sav 7plus 1
988 -0.920112 less100 4to7 4
989 -0.813124 no_sav unemp_less1year 1
990 -0.195996 no_sav 1to4 3
991 -0.893188 no_sav unemp_less1year 4
992 3.297404 no_sav 7plus 4
993 1.501993 over1000 7plus 1
994 0.246126 no_sav 7plus 1
995 1.037198 no_sav 1to4 4
996 -0.454963 no_sav 1to4 2
997 -0.343016 no_sav 7plus 4
998 3.333184 over1000 7plus 4
999 1.132495 over1000 unemp_less1year 2
1000 1.090692 over1000 7plus 4
status_sex other_debtors_guar residence_duration property age_years
1 m_single_divorced no 4 2 -1.28093
2 m_married_wid no 2 1 0.04034
3 m_single_divorced no 4 1 -1.10476
4 m_married_wid no 2 1 0.30460
5 m_married_wid no 4 2 0.21651
6 m_married_wid no 3 1 1.09736
7 m_married_wid no 4 1 0.30460
8 m_married_wid no 4 1 0.39268
9 m_single_divorced no 4 3 2.59481
10 m_single_divorced no 4 4 -1.10476
11 m_married_wid no 2 1 0.04034
12 female no 4 3 -1.01668
13 m_single_divorced no 4 3 -0.40008
14 m_married_wid no 4 4 -0.40008
15 female no 4 3 -1.10476
16 m_married_wid no 3 1 0.74502
17 m_married_wid no 2 1 0.39268
18 female no 3 1 -0.92859
19 m_married_wid no 4 1 0.04034
20 m_married_wid no 4 2 0.30460
21 m_married_wid no 3 1 0.12843
22 m_married_wid no 3 1 1.18545
23 m_married_wid no 1 4 -0.22391
24 m_married_wid no 3 2 -0.84051
25 m_married_wid no 3 1 0.74502
26 m_married_wid no 4 2 1.36162
27 m_single_divorced no 4 2 -1.01668
28 m_married_wid no 4 1 0.12843
29 m_married_wid no 2 4 -0.57625
30 m_married_wid no 4 4 1.80204
31 m_married_wid no 4 2 1.00928
32 m_married_wid no 4 3 0.12843
33 m_married_wid no 4 3 -0.13583
34 m_single_divorced no 1 3 -0.66434
35 m_married_wid no 3 1 0.04034
36 m_single_divorced no 4 4 0.30460
37 m_married_wid no 1 1 0.21651
38 m_married_wid no 2 4 -0.84051
39 m_married_wid no 1 2 -0.40008
40 m_single_divorced no 2 3 0.48077
41 m_single_divorced no 4 1 -1.10476
42 m_single_divorced yes 4 1 1.97821
43 m_single_divorced no 3 1 0.04034
44 m_married_wid no 3 4 -0.13583
45 m_married_wid no 4 4 2.24247
46 m_single_divorced no 3 3 -1.10476
47 m_married_wid no 1 1 -0.92859
48 m_single_divorced no 2 1 -0.48817
49 female no 3 1 -0.22391
50 m_married_wid no 1 1 -0.84051
51 m_single_divorced no 2 1 1.18545
52 m_married_wid no 2 1 -1.10476
53 m_married_wid no 1 1 -0.48817
54 m_married_wid yes 4 1 1.18545
55 m_married_wid no 4 3 0.48077
56 m_single_divorced no 3 1 1.97821
57 m_married_wid no 4 1 2.41864
58 female no 2 1 -0.75242
59 m_married_wid no 3 2 0.48077
60 m_married_wid no 4 1 0.04034
61 m_married_wid no 4 1 0.74502
62 m_single_divorced no 1 4 -0.57625
63 m_married_wid no 1 1 1.00928
64 m_married_wid no 2 3 0.83311
65 m_married_wid no 2 1 0.65694
66 m_single_divorced no 1 2 -0.75242
67 m_married_wid no 4 3 1.44970
68 m_married_wid no 2 3 -0.66434
69 m_single_divorced no 1 3 -1.19285
70 m_married_wid no 4 4 2.15438
71 m_married_wid no 2 3 -0.31200
72 m_married_wid no 4 3 1.97821
73 m_married_wid no 4 3 0.30460
74 m_married_wid no 2 3 -0.40008
75 m_married_wid no 3 3 0.12843
76 m_married_wid no 1 3 -1.01668
77 m_married_wid no 4 3 0.04034
78 m_married_wid no 4 1 2.15438
79 female no 3 3 -0.48817
80 m_married_wid no 2 3 -0.04774
81 m_single_divorced no 4 3 0.12843
82 m_married_wid no 2 3 1.36162
83 m_married_wid no 2 3 -0.48817
84 m_married_wid no 2 3 0.04034
85 m_married_wid no 4 2 2.41864
86 m_married_wid no 3 2 -0.40008
87 m_married_wid no 3 3 -0.04774
88 m_single_divorced no 4 1 -0.13583
89 m_single_divorced no 4 1 0.30460
90 m_single_divorced no 4 3 0.56885
91 m_married_wid no 1 3 -0.75242
92 m_single_divorced no 4 3 -0.92859
93 m_single_divorced no 1 3 -0.66434
94 m_married_wid no 4 1 2.06630
95 m_married_wid no 1 4 0.48077
96 m_married_wid no 2 1 -0.31200
97 m_single_divorced no 1 1 -1.10476
98 m_single_divorced no 2 1 -0.48817
99 m_married_wid no 2 1 -0.92859
100 m_single_divorced no 1 1 0.48077
101 m_married_wid no 4 1 0.39268
102 m_single_divorced no 4 2 -1.19285
103 m_married_wid no 2 2 -0.13583
104 m_single_divorced no 2 2 1.62587
105 female yes 2 3 -0.22391
106 m_married_wid yes 2 1 -0.40008
107 m_single_divorced yes 2 1 -0.57625
108 female no 4 1 0.30460
109 m_single_divorced no 3 3 0.21651
110 m_single_divorced no 2 3 2.24247
111 m_single_divorced no 2 2 -0.57625
112 m_single_divorced no 1 2 1.18545
113 m_single_divorced no 3 3 0.04034
114 m_single_divorced no 1 1 -0.84051
115 m_married_wid no 3 3 -0.04774
116 m_married_wid no 3 1 -0.66434
117 m_married_wid no 3 3 -0.04774
118 m_single_divorced no 4 3 -0.66434
119 m_married_wid no 2 3 1.44970
120 m_married_wid no 3 4 -0.31200
121 m_single_divorced no 1 4 -0.48817
122 m_married_wid no 2 2 -0.04774
123 female no 3 3 -0.48817
124 m_single_divorced no 2 3 0.65694
125 m_married_wid no 3 2 1.00928
126 female no 3 4 1.00928
127 m_single_divorced no 1 1 -1.01668
128 m_married_wid no 2 3 -0.31200
129 female no 2 2 -0.48817
130 m_married_wid no 4 1 0.04034
131 m_married_wid no 2 1 -0.84051
132 m_married_wid no 4 1 0.65694
133 m_married_wid no 2 1 0.48077
134 m_single_divorced no 1 1 -0.84051
135 m_single_divorced no 4 3 2.50672
136 m_single_divorced no 2 1 -0.22391
137 m_married_wid no 4 1 1.62587
138 m_married_wid no 3 3 -0.31200
139 m_single_divorced no 3 2 0.30460
140 m_married_wid no 2 3 -0.40008
141 m_single_divorced no 4 1 0.83311
142 m_married_wid no 4 1 2.50672
143 m_single_divorced no 4 3 0.56885
144 m_married_wid no 3 3 -0.40008
145 m_single_divorced no 4 3 -0.92859
146 m_married_wid no 4 1 0.92119
147 m_married_wid no 4 4 1.18545
148 m_single_divorced no 4 2 1.18545
149 m_married_wid no 4 3 0.04034
150 m_married_wid no 2 2 1.09736
151 m_single_divorced no 3 1 0.56885
152 m_single_divorced no 2 3 -0.57625
153 m_married_wid no 1 4 -0.04774
154 m_married_wid no 3 3 0.21651
155 m_single_divorced no 1 3 -0.84051
156 m_married_wid no 2 1 -0.04774
157 m_single_divorced no 1 3 -1.10476
158 m_married_wid yes 2 3 0.21651
159 m_single_divorced no 3 4 2.06630
160 m_married_wid no 4 3 -0.66434
161 m_single_divorced no 2 2 -0.04774
162 m_single_divorced no 4 1 0.04034
163 m_single_divorced no 4 2 -0.92859
164 m_married_wid no 2 4 -0.66434
165 m_single_divorced no 4 2 -1.10476
166 m_married_wid no 4 3 1.09736
167 m_single_divorced no 2 3 -0.92859
168 m_married_wid no 2 1 3.38757
169 m_single_divorced yes 3 3 -1.01668
170 m_single_divorced no 1 3 -0.66434
171 m_married_wid no 1 3 -1.01668
172 m_single_divorced no 2 1 -1.01668
173 female no 4 1 -1.10476
174 m_married_wid no 1 3 -0.31200
175 m_married_wid no 2 3 -0.40008
176 m_single_divorced no 2 3 0.04034
177 m_married_wid no 3 2 -0.75242
178 m_married_wid no 4 2 0.74502
179 m_married_wid no 1 3 -0.13583
180 m_married_wid no 1 3 0.12843
181 m_single_divorced no 4 1 -1.10476
182 m_single_divorced no 1 2 -0.48817
183 m_married_wid no 3 3 -0.92859
184 m_single_divorced no 2 3 -0.22391
185 m_single_divorced no 2 3 -0.75242
186 m_married_wid no 2 3 -0.40008
187 m_married_wid no 3 3 1.27353
188 m_married_wid no 2 3 -0.40008
189 m_married_wid no 1 3 -0.31200
190 m_single_divorced no 1 3 -0.66434
191 m_married_wid no 4 3 -0.57625
192 female no 2 3 -0.75242
193 m_single_divorced no 2 3 -1.01668
194 m_married_wid no 1 2 1.62587
195 m_married_wid no 2 3 -0.92859
196 m_married_wid no 2 3 -0.04774
197 m_married_wid no 3 4 0.83311
198 m_single_divorced no 2 4 -0.66434
199 m_married_wid no 1 4 -0.04774
200 m_single_divorced no 1 1 -0.75242
201 m_married_wid no 2 3 -0.48817
202 m_married_wid yes 4 1 0.39268
203 m_married_wid no 4 3 1.18545
204 m_single_divorced no 2 2 -0.48817
205 m_married_wid yes 2 1 -1.01668
206 m_married_wid yes 1 1 -0.22391
207 m_married_wid no 2 1 -1.36902
208 m_married_wid no 1 2 -1.10476
209 m_married_wid yes 4 4 0.04034
210 m_married_wid yes 4 3 -0.04774
211 m_married_wid no 2 1 -0.57625
212 m_married_wid no 4 1 -1.19285
213 m_married_wid no 4 1 -1.19285
214 m_married_wid no 1 1 3.38757
215 m_married_wid no 2 1 -0.04774
216 m_married_wid yes 1 2 0.12843
217 m_single_divorced no 4 1 -0.40008
218 female no 2 1 -0.75242
219 m_single_divorced no 1 1 -0.04774
220 m_married_wid yes 2 2 0.83311
221 m_married_wid yes 4 4 0.04034
222 m_married_wid no 4 2 1.18545
223 m_married_wid no 3 3 -0.04774
224 m_married_wid no 2 3 -0.75242
225 m_married_wid no 2 3 -0.66434
226 m_single_divorced no 1 1 0.65694
227 m_married_wid no 4 3 -0.04774
228 m_married_wid no 2 3 -0.75242
229 m_single_divorced no 4 1 0.04034
230 m_married_wid no 2 3 -0.48817
231 m_married_wid no 1 1 0.04034
232 female no 4 3 0.30460
233 m_married_wid no 2 3 0.83311
234 m_single_divorced no 4 2 0.39268
235 female no 3 3 -0.92859
236 m_single_divorced no 4 3 1.71396
237 m_married_wid no 2 1 1.27353
238 m_married_wid no 4 1 2.50672
239 m_single_divorced no 3 1 -1.10476
240 m_married_wid no 4 3 -1.01668
241 female no 2 2 1.00928
242 m_married_wid no 4 2 0.56885
243 m_single_divorced no 4 2 -1.01668
244 m_married_wid no 3 2 -0.31200
245 m_married_wid no 4 2 0.83311
246 m_single_divorced no 4 3 -1.10476
247 m_married_wid no 2 3 -1.01668
248 m_married_wid no 3 2 -0.04774
249 m_single_divorced no 2 1 -0.92859
250 m_married_wid no 3 3 -0.84051
251 m_married_wid no 4 3 0.65694
252 m_married_wid no 4 1 0.74502
253 m_married_wid no 4 3 0.21651
254 m_married_wid no 2 3 -0.66434
255 m_married_wid no 2 3 0.21651
256 m_married_wid no 4 2 -0.84051
257 m_single_divorced no 4 2 -0.75242
258 m_single_divorced no 3 1 -1.10476
259 m_married_wid no 4 1 1.44970
260 m_married_wid no 4 1 3.38757
261 m_married_wid no 3 2 -0.75242
262 m_single_divorced no 4 3 -0.04774
263 m_single_divorced no 2 2 -1.10476
264 m_married_wid no 4 3 -1.36902
265 m_single_divorced no 3 3 -0.13583
266 m_married_wid no 4 3 0.39268
267 m_married_wid no 2 1 0.12843
268 m_married_wid no 4 2 0.04034
269 m_single_divorced no 4 2 -1.19285
270 m_married_wid no 4 3 -0.13583
271 m_married_wid no 4 2 1.27353
272 m_single_divorced no 4 3 0.39268
273 female no 4 1 -1.10476
274 m_married_wid no 4 2 1.53779
275 m_married_wid no 4 3 -0.04774
276 m_single_divorced no 3 1 -0.04774
277 m_single_divorced no 2 3 1.62587
278 m_married_wid no 3 2 -0.75242
279 m_single_divorced no 4 3 -0.66434
280 m_single_divorced no 4 1 1.18545
281 m_single_divorced no 1 2 -0.57625
282 m_single_divorced no 2 3 0.92119
283 m_single_divorced no 4 3 -1.36902
284 m_single_divorced no 4 2 1.00928
285 m_single_divorced no 2 3 -0.57625
286 m_single_divorced no 4 1 1.62587
287 m_married_wid no 4 3 1.44970
288 m_married_wid no 2 1 -0.31200
289 m_married_wid no 4 4 1.36162
290 female no 3 1 -0.22391
291 m_married_wid no 1 2 0.12843
292 m_single_divorced no 4 3 -1.36902
293 m_married_wid no 2 1 -0.13583
294 m_single_divorced no 2 3 -0.40008
295 m_single_divorced no 2 2 -0.48817
296 m_single_divorced no 2 2 -0.48817
297 m_single_divorced no 4 2 -1.19285
298 m_married_wid no 2 1 -0.13583
299 m_single_divorced no 4 1 -1.45710
300 female no 3 1 -0.13583
301 female no 1 3 0.83311
302 m_married_wid no 2 3 -0.92859
303 m_single_divorced no 4 3 -0.84051
304 m_married_wid no 2 1 -0.22391
305 m_single_divorced no 2 1 -0.66434
306 female no 4 1 0.48077
307 m_married_wid no 2 1 0.04034
308 m_married_wid yes 2 1 -0.84051
309 m_single_divorced no 4 2 -0.66434
310 m_married_wid no 2 2 0.30460
311 m_married_wid no 4 1 2.59481
312 m_married_wid no 3 3 0.21651
313 m_single_divorced no 2 1 0.48077
314 m_married_wid no 1 2 -0.84051
315 m_married_wid no 4 1 0.48077
316 m_married_wid no 4 4 0.83311
317 m_married_wid no 4 3 0.39268
318 female no 1 3 -1.01668
319 m_married_wid no 2 2 -0.40008
320 m_married_wid no 1 4 -0.04774
321 m_married_wid no 2 4 0.39268
322 m_single_divorced yes 2 1 -0.66434
323 m_single_divorced no 2 1 -0.66434
324 m_single_divorced yes 3 1 -0.75242
325 m_married_wid no 2 1 -0.40008
326 m_single_divorced no 4 1 0.12843
327 m_married_wid no 2 1 -0.04774
328 m_married_wid no 4 1 0.92119
329 m_married_wid no 3 2 -0.31200
330 m_married_wid no 4 3 -0.22391
331 m_single_divorced no 2 3 -0.22391
332 m_single_divorced no 2 3 -0.84051
333 m_single_divorced no 2 3 -1.01668
334 m_single_divorced no 4 2 -0.92859
335 female no 4 3 1.62587
336 m_married_wid yes 1 2 -1.01668
337 m_married_wid yes 4 1 1.09736
338 m_married_wid yes 3 2 1.18545
339 m_married_wid yes 2 1 -0.31200
340 m_married_wid no 2 2 1.71396
341 m_married_wid no 2 3 0.39268
342 m_single_divorced yes 4 3 -1.19285
343 m_married_wid no 4 4 0.21651
344 m_married_wid yes 2 1 -0.84051
345 m_single_divorced no 3 3 1.36162
346 m_married_wid no 4 2 0.21651
347 m_married_wid no 4 4 0.92119
348 m_married_wid no 4 4 2.41864
349 m_married_wid no 2 2 -0.48817
350 m_married_wid no 2 3 -0.31200
351 female no 1 3 -0.84051
352 m_single_divorced no 3 3 -0.13583
353 m_single_divorced no 2 3 0.92119
354 m_single_divorced yes 2 1 -0.57625
355 m_married_wid no 4 4 0.56885
356 m_married_wid no 4 4 0.56885
357 m_married_wid yes 4 4 2.41864
358 m_married_wid no 4 1 -0.31200
359 m_single_divorced no 2 3 -1.10476
360 m_single_divorced no 4 3 2.06630
361 m_married_wid no 4 1 2.24247
362 m_single_divorced no 1 3 -1.19285
363 female no 2 2 -0.75242
364 m_single_divorced no 2 1 -0.84051
365 m_married_wid no 4 4 0.12843
366 m_married_wid no 4 2 -0.13583
367 m_single_divorced no 3 3 1.89013
368 m_married_wid no 2 1 -0.40008
369 m_single_divorced no 4 3 -0.66434
370 m_single_divorced no 2 1 -1.01668
371 female no 2 3 -1.28093
372 m_married_wid no 2 3 -0.13583
373 m_single_divorced no 4 4 -0.57625
374 m_single_divorced no 1 1 -0.75242
375 m_married_wid no 3 1 -0.13583
376 m_married_wid no 2 3 -0.75242
377 m_married_wid no 3 1 -0.66434
378 m_married_wid no 2 3 -0.48817
379 m_married_wid yes 2 1 -1.19285
380 m_married_wid no 3 2 0.04034
381 m_single_divorced no 4 3 -1.19285
382 m_single_divorced no 4 3 -0.84051
383 m_married_wid no 4 4 2.41864
384 female no 4 1 -1.19285
385 m_married_wid no 4 1 0.04034
386 m_married_wid no 3 1 -1.01668
387 m_single_divorced no 1 2 -0.48817
388 m_married_wid no 4 2 0.65694
389 m_married_wid no 2 3 0.12843
390 m_single_divorced no 4 1 -0.84051
391 m_married_wid no 2 3 -0.22391
392 m_married_wid no 4 4 2.68289
393 m_single_divorced no 4 2 1.27353
394 m_married_wid no 4 4 -0.04774
395 m_married_wid no 1 3 -0.92859
396 m_single_divorced no 4 1 -0.92859
397 m_married_wid no 2 3 -0.22391
398 m_married_wid no 2 1 -0.48817
399 female no 4 1 0.48077
400 m_married_wid no 2 3 -0.31200
401 m_single_divorced no 1 2 -0.31200
402 m_married_wid no 4 1 0.30460
403 m_single_divorced no 2 2 -1.10476
404 m_single_divorced no 4 2 -0.84051
405 m_married_wid no 2 3 -0.31200
406 m_married_wid no 4 4 0.39268
407 m_married_wid no 2 3 -0.48817
408 female no 1 1 -0.75242
409 female no 3 1 0.04034
410 female no 4 2 -0.57625
411 m_single_divorced no 4 1 2.50672
412 m_married_wid no 4 1 -0.31200
413 m_married_wid no 4 3 -0.04774
414 m_married_wid no 2 3 0.74502
415 m_married_wid no 4 2 0.56885
416 m_married_wid no 2 3 -0.57625
417 m_single_divorced no 4 1 1.89013
418 m_married_wid no 2 1 -0.75242
419 m_married_wid no 3 2 -0.57625
420 m_married_wid no 4 3 0.74502
421 female no 2 1 -0.66434
422 m_single_divorced no 4 3 0.39268
423 m_married_wid no 3 3 2.85906
424 m_single_divorced no 4 4 1.44970
425 m_married_wid no 4 3 0.92119
426 m_married_wid no 4 1 1.44970
427 m_married_wid no 3 4 -0.31200
428 m_single_divorced no 3 3 -0.13583
429 m_single_divorced no 4 2 -1.10476
430 m_single_divorced no 2 1 -0.22391
431 m_single_divorced no 4 3 -0.84051
432 m_married_wid no 4 4 1.71396
433 m_married_wid no 4 3 -0.75242
434 female no 4 1 -0.66434
435 m_married_wid no 4 4 1.89013
436 m_married_wid no 4 4 0.04034
437 m_single_divorced no 3 3 -0.40008
438 m_single_divorced no 2 1 -1.01668
439 m_married_wid no 4 3 0.65694
440 female no 3 3 0.39268
441 m_single_divorced no 4 2 -1.10476
442 m_married_wid no 4 3 -0.84051
443 m_married_wid no 4 2 -0.48817
444 female no 2 1 0.39268
445 m_married_wid no 4 1 1.80204
446 m_married_wid no 2 1 1.27353
447 m_married_wid no 4 4 0.04034
448 m_single_divorced no 2 3 -1.28093
449 m_married_wid no 2 4 -0.31200
450 m_single_divorced no 3 1 2.68289
451 m_married_wid no 3 1 2.68289
452 m_married_wid no 4 3 0.30460
453 m_married_wid no 4 4 3.03523
454 m_single_divorced no 4 4 -1.01668
455 m_married_wid no 4 4 -1.19285
456 m_married_wid no 1 1 -0.75242
457 m_married_wid no 3 3 -0.57625
458 m_married_wid no 2 2 -0.04774
459 m_married_wid no 2 2 -0.57625
460 female no 4 3 -0.84051
461 m_single_divorced no 4 1 2.15438
462 m_married_wid no 4 2 0.39268
463 m_single_divorced no 4 3 -1.10476
464 m_married_wid no 2 3 0.83311
465 m_single_divorced no 2 1 -1.01668
466 m_single_divorced no 4 1 1.71396
467 m_married_wid no 2 3 -0.48817
468 m_single_divorced no 4 4 -0.04774
469 m_married_wid no 4 3 -1.01668
470 m_married_wid no 4 2 1.00928
471 m_married_wid no 4 4 1.00928
472 m_married_wid no 2 3 -0.92859
473 m_married_wid no 2 2 0.12843
474 m_single_divorced no 4 1 -0.22391
475 m_married_wid no 2 3 -0.40008
476 female no 3 3 -0.75242
477 m_married_wid no 4 2 1.00928
478 m_married_wid no 2 3 -0.92859
479 m_single_divorced no 4 4 1.89013
480 m_single_divorced no 4 3 2.77098
481 m_married_wid no 4 2 1.09736
482 m_single_divorced no 4 1 0.39268
483 m_married_wid no 2 4 -0.31200
484 m_married_wid no 4 2 1.18545
485 m_single_divorced no 2 2 -0.04774
486 m_single_divorced no 2 1 -0.75242
487 m_single_divorced no 2 3 -0.04774
488 m_single_divorced no 4 2 0.12843
489 female no 2 1 -0.84051
490 m_married_wid no 3 2 0.83311
491 m_married_wid no 1 1 -0.22391
492 m_married_wid no 4 2 0.56885
493 m_married_wid no 1 2 -0.40008
494 female yes 3 1 0.92119
495 m_married_wid no 3 1 1.62587
496 female no 3 2 -0.84051
497 female no 2 1 -0.57625
498 m_married_wid no 4 2 0.65694
499 m_single_divorced no 2 2 0.21651
500 female no 1 1 -0.04774
501 female no 2 1 -0.66434
502 female no 3 2 -0.75242
503 m_married_wid no 2 2 1.36162
504 m_single_divorced no 2 1 -0.22391
505 m_married_wid no 3 3 0.21651
506 female no 2 1 -0.48817
507 m_single_divorced no 2 1 0.21651
508 m_married_wid no 4 2 0.92119
509 m_married_wid no 4 3 -0.22391
510 m_married_wid no 2 2 0.65694
511 female no 2 3 -1.01668
512 m_single_divorced no 2 4 1.80204
513 m_single_divorced no 2 3 0.12843
514 female no 1 2 -1.19285
515 m_single_divorced no 3 3 -1.36902
516 m_married_wid no 1 3 -0.57625
517 m_married_wid no 4 3 0.04034
518 m_married_wid no 4 4 0.12843
519 m_single_divorced no 1 3 0.74502
520 m_single_divorced no 4 2 -1.10476
521 m_single_divorced no 2 3 -0.66434
522 m_single_divorced no 2 3 -0.84051
523 m_single_divorced no 1 1 -0.57625
524 m_single_divorced no 2 1 -1.28093
525 m_married_wid no 2 3 -0.13583
526 m_single_divorced no 2 3 -0.40008
527 female no 2 1 0.39268
528 m_single_divorced no 1 1 -0.75242
529 m_married_wid no 2 4 -0.31200
530 m_single_divorced no 1 3 -0.92859
531 m_married_wid no 1 1 0.56885
532 m_married_wid no 4 3 0.65694
533 m_single_divorced no 2 3 0.74502
534 female no 1 2 -0.31200
535 m_single_divorced no 1 3 -0.75242
536 m_single_divorced no 4 3 -1.36902
537 m_single_divorced no 1 1 0.12843
538 m_married_wid no 1 1 0.56885
539 m_married_wid no 2 2 0.92119
540 m_single_divorced no 4 3 -0.22391
541 m_single_divorced no 2 3 -1.19285
542 m_married_wid no 1 3 0.48077
543 m_married_wid no 2 2 0.12843
544 m_single_divorced no 1 2 -0.75242
545 m_married_wid no 1 1 0.56885
546 female no 2 1 -0.84051
547 m_single_divorced no 1 3 -0.84051
548 m_married_wid no 2 2 -0.75242
549 female no 1 1 -1.19285
550 m_single_divorced no 4 3 0.12843
551 m_married_wid no 4 2 -0.48817
552 m_married_wid no 3 1 1.18545
553 female no 2 1 -0.75242
554 m_single_divorced no 3 2 0.39268
555 m_single_divorced no 1 1 -1.36902
556 m_single_divorced no 2 3 -0.84051
557 m_single_divorced no 1 3 -0.48817
558 m_single_divorced no 1 2 -0.22391
559 m_single_divorced no 4 2 -0.84051
560 female no 2 1 -0.04774
561 m_single_divorced no 4 1 0.74502
562 m_married_wid no 1 3 -0.75242
563 m_single_divorced no 2 2 -1.01668
564 m_single_divorced no 2 4 1.00928
565 m_married_wid no 2 2 -0.84051
566 m_single_divorced no 2 2 -1.10476
567 m_married_wid no 3 2 -0.40008
568 m_single_divorced no 4 3 1.44970
569 m_married_wid no 4 1 0.65694
570 m_married_wid no 3 3 0.12843
571 m_married_wid no 1 1 -0.84051
572 m_married_wid no 4 4 -0.04774
573 m_married_wid no 3 3 -0.48817
574 m_married_wid no 2 3 -0.13583
575 m_married_wid no 2 3 -0.04774
576 m_married_wid no 2 3 1.09736
577 m_married_wid no 2 3 0.56885
578 m_married_wid no 4 3 0.39268
579 m_single_divorced no 4 3 -1.10476
580 m_single_divorced no 3 3 -0.48817
581 m_married_wid yes 4 3 -1.01668
582 m_single_divorced no 1 2 -0.22391
583 m_married_wid no 4 3 -0.40008
584 m_single_divorced no 3 2 -1.19285
585 m_married_wid no 4 4 1.53779
586 m_married_wid no 1 4 -0.13583
587 m_married_wid no 4 4 0.04034
588 m_married_wid yes 2 2 0.12843
589 m_single_divorced yes 1 1 -0.92859
590 m_single_divorced no 1 1 -0.13583
591 m_married_wid no 2 1 -0.75242
592 m_married_wid no 4 4 1.36162
593 m_single_divorced yes 4 4 -1.10476
594 m_single_divorced yes 4 4 -0.57625
595 m_single_divorced yes 2 1 -0.31200
596 m_married_wid yes 2 2 -0.66434
597 m_married_wid yes 3 2 0.21651
598 m_married_wid no 4 1 2.59481
599 m_married_wid yes 3 2 0.30460
600 m_married_wid no 2 2 -0.57625
601 m_married_wid no 2 2 -0.84051
602 m_married_wid no 2 2 -0.48817
603 m_single_divorced no 3 2 3.47566
604 m_married_wid yes 1 2 -1.28093
605 m_married_wid no 2 2 0.48077
606 m_single_divorced no 3 2 -0.92859
607 m_married_wid no 1 2 -0.04774
608 m_single_divorced no 3 2 0.12843
609 m_married_wid no 3 2 -0.84051
610 m_married_wid no 4 4 -0.48817
611 m_single_divorced no 2 2 -1.10476
612 m_single_divorced no 1 3 0.56885
613 m_single_divorced yes 3 2 -0.48817
614 m_single_divorced yes 1 2 0.92119
615 m_married_wid no 2 4 -0.57625
616 m_single_divorced yes 4 2 -0.57625
617 m_married_wid no 4 4 0.21651
618 m_married_wid no 3 3 -0.48817
619 m_single_divorced no 4 2 -0.40008
620 m_married_wid no 3 1 1.00928
621 m_single_divorced no 4 4 1.09736
622 m_married_wid yes 2 4 -0.75242
623 m_married_wid no 4 4 2.68289
624 m_married_wid yes 2 2 -0.57625
625 m_married_wid no 4 4 3.47566
626 m_married_wid no 4 4 0.04034
627 m_married_wid no 4 4 0.21651
628 m_married_wid no 4 3 0.92119
629 m_married_wid no 4 2 0.04034
630 m_single_divorced no 4 4 1.71396
631 m_single_divorced no 3 2 -0.92859
632 m_married_wid yes 4 2 0.83311
633 m_married_wid no 4 2 -0.66434
634 m_married_wid no 3 2 -0.48817
635 m_married_wid no 4 4 0.30460
636 m_married_wid no 1 4 -1.19285
637 m_married_wid no 3 2 2.15438
638 m_married_wid no 1 2 -0.66434
639 m_single_divorced no 4 2 -1.01668
640 m_married_wid no 4 2 2.41864
641 female no 2 2 0.92119
642 m_single_divorced no 1 2 -0.22391
643 m_single_divorced no 4 4 0.74502
644 m_single_divorced no 4 4 1.97821
645 m_married_wid no 4 4 1.62587
646 m_single_divorced yes 3 3 0.65694
647 m_married_wid no 4 2 1.44970
648 m_married_wid no 3 3 -0.31200
649 m_married_wid no 2 2 0.48077
650 m_married_wid no 4 3 -0.13583
651 m_single_divorced no 4 2 1.09736
652 m_married_wid no 4 2 0.21651
653 m_married_wid no 4 2 0.21651
654 m_married_wid no 4 2 1.53779
655 m_married_wid no 4 4 0.21651
656 m_married_wid no 2 2 0.56885
657 m_married_wid no 4 4 0.21651
658 m_single_divorced yes 3 1 2.50672
659 m_married_wid yes 2 1 -0.04774
660 female no 3 1 -0.84051
661 m_married_wid yes 2 1 -0.22391
662 m_married_wid yes 3 1 -0.57625
663 female yes 4 1 -1.36902
664 m_married_wid no 4 3 -0.66434
665 m_married_wid no 4 1 1.00928
666 m_single_divorced yes 4 1 1.18545
667 m_single_divorced yes 1 1 0.83311
668 m_married_wid yes 4 1 -1.10476
669 female yes 2 1 -0.92859
670 m_married_wid yes 2 1 -0.13583
671 m_single_divorced yes 4 2 -1.10476
672 female yes 2 1 -0.31200
673 m_single_divorced yes 4 1 -0.84051
674 m_single_divorced yes 2 1 0.74502
675 female yes 1 1 -0.84051
676 m_single_divorced no 4 3 -0.66434
677 m_married_wid no 4 1 -0.92859
678 m_single_divorced yes 4 1 1.09736
679 m_married_wid yes 2 1 -0.04774
680 female yes 3 1 -0.66434
681 m_married_wid no 4 1 -1.10476
682 female yes 3 1 0.39268
683 m_married_wid no 4 2 0.04034
684 m_married_wid yes 4 1 1.27353
685 m_married_wid no 3 2 -1.01668
686 m_married_wid no 3 2 0.39268
687 m_single_divorced no 2 3 -0.40008
688 m_single_divorced no 2 4 -0.57625
689 m_single_divorced no 1 2 0.83311
690 m_single_divorced no 2 3 -0.31200
691 m_single_divorced no 4 1 -1.28093
692 female no 3 1 -0.75242
693 female no 1 2 -1.19285
694 m_single_divorced no 2 2 0.92119
695 m_married_wid no 2 1 -1.01668
696 m_married_wid no 4 3 -1.28093
697 m_single_divorced no 2 3 0.04034
698 female no 2 2 -0.66434
699 m_married_wid no 4 3 -0.75242
700 m_single_divorced no 4 2 1.89013
701 m_married_wid no 4 4 1.00928
702 m_married_wid no 4 3 -0.13583
703 m_single_divorced no 2 3 -1.10476
704 m_single_divorced no 4 2 1.89013
705 m_married_wid no 4 1 2.77098
706 m_married_wid no 3 2 0.04034
707 m_married_wid yes 4 4 -1.36902
708 m_married_wid no 4 1 0.04034
709 m_single_divorced yes 4 3 0.12843
710 m_married_wid no 3 4 -0.40008
711 m_single_divorced yes 4 4 2.33055
712 m_married_wid yes 4 3 2.59481
713 m_married_wid no 4 1 0.04034
714 m_single_divorced no 4 2 0.48077
715 m_married_wid yes 3 2 -0.84051
716 m_married_wid no 2 3 -0.75242
717 m_married_wid no 1 4 1.27353
718 m_married_wid no 3 2 1.62587
719 m_single_divorced no 3 1 -0.75242
720 female no 2 3 -1.01668
721 m_married_wid no 4 4 1.27353
722 m_married_wid no 4 3 0.39268
723 m_married_wid no 2 1 -0.66434
724 m_married_wid no 2 3 -0.40008
725 m_married_wid no 2 3 -0.75242
726 female no 3 3 -1.28093
727 m_single_divorced no 2 3 -0.40008
728 m_married_wid no 4 3 0.30460
729 m_married_wid no 2 3 -0.48817
730 m_married_wid no 2 4 -0.75242
731 m_married_wid no 2 4 1.71396
732 m_married_wid no 4 4 -0.13583
733 m_married_wid no 4 4 -1.10476
734 m_single_divorced no 4 3 -1.10476
735 m_married_wid no 4 4 0.56885
736 m_single_divorced no 4 1 2.33055
737 m_married_wid no 4 3 0.12843
738 m_married_wid no 3 1 0.92119
739 m_married_wid no 4 3 0.21651
740 female no 4 3 -0.40008
741 m_single_divorced no 4 1 -0.40008
742 m_single_divorced no 4 1 2.24247
743 female no 4 3 -1.36902
744 m_married_wid no 4 3 2.41864
745 m_single_divorced no 4 2 -1.01668
746 female no 2 2 -1.28093
747 m_married_wid no 4 4 0.04034
748 m_married_wid no 4 4 0.74502
749 m_single_divorced no 4 2 2.77098
750 m_single_divorced no 4 4 1.36162
751 m_married_wid no 3 4 -0.48817
752 m_married_wid no 3 3 -0.66434
753 m_married_wid no 3 4 -0.31200
754 m_single_divorced no 4 3 -0.66434
755 m_married_wid no 2 2 -1.10476
756 m_married_wid no 3 3 -0.22391
757 m_married_wid no 4 3 2.15438
758 m_married_wid no 4 3 1.09736
759 m_single_divorced yes 2 4 -1.01668
760 m_single_divorced no 4 3 -0.75242
761 m_married_wid no 4 1 -0.66434
762 m_married_wid no 4 4 2.59481
763 m_single_divorced no 4 2 -0.57625
764 m_married_wid no 4 4 0.56885
765 m_married_wid no 4 3 1.00928
766 m_married_wid no 2 3 -1.19285
767 m_married_wid yes 2 1 -0.92859
768 m_married_wid no 2 2 -0.31200
769 m_married_wid no 3 4 -0.57625
770 m_single_divorced no 2 3 -1.01668
771 m_married_wid no 2 3 -0.48817
772 m_married_wid no 2 4 -0.75242
773 female no 3 1 1.00928
774 m_married_wid no 1 3 -1.01668
775 m_married_wid no 1 3 -1.01668
776 m_single_divorced no 4 3 -0.13583
777 m_single_divorced no 3 4 0.39268
778 m_single_divorced no 4 1 0.74502
779 female no 2 3 -0.22391
780 m_married_wid no 2 2 0.39268
781 m_married_wid no 2 2 1.18545
782 female no 4 1 1.09736
783 m_married_wid no 2 4 1.89013
784 m_single_divorced no 2 2 -1.01668
785 m_single_divorced no 1 4 -0.57625
786 m_married_wid no 2 3 -0.04774
787 m_single_divorced no 1 2 -0.31200
788 female no 3 2 2.24247
789 m_married_wid no 4 1 0.04034
790 m_single_divorced no 4 3 -0.92859
791 m_single_divorced no 1 1 -0.84051
792 m_single_divorced no 3 1 -0.92859
793 m_single_divorced no 1 2 1.71396
794 m_single_divorced no 4 2 1.53779
795 m_married_wid no 4 1 2.68289
796 m_married_wid no 4 4 2.24247
797 m_married_wid no 1 1 -0.13583
798 m_single_divorced no 1 3 -0.22391
799 m_single_divorced no 2 3 -0.57625
800 m_married_wid no 3 4 0.21651
801 m_single_divorced no 2 2 -0.04774
802 m_single_divorced no 4 4 -0.31200
803 m_single_divorced no 4 1 -0.92859
804 m_single_divorced no 2 2 -0.22391
805 female no 2 3 -1.10476
806 m_single_divorced no 4 2 -1.01668
807 m_single_divorced no 3 3 -0.66434
808 m_married_wid no 4 4 2.41864
809 m_married_wid no 2 2 0.30460
810 m_single_divorced no 4 4 -0.04774
811 m_married_wid no 2 3 -1.10476
812 m_married_wid yes 4 4 0.04034
813 m_single_divorced no 4 1 -1.10476
814 m_single_divorced no 2 1 -1.01668
815 m_single_divorced no 4 4 3.38757
816 m_single_divorced no 1 1 -1.19285
817 m_single_divorced no 4 4 1.09736
818 m_married_wid no 2 1 -0.84051
819 m_single_divorced no 4 1 -1.01668
820 m_single_divorced yes 2 3 -1.45710
821 m_married_wid yes 2 4 -0.75242
822 m_married_wid no 3 2 -0.57625
823 m_single_divorced no 3 2 -0.31200
824 m_single_divorced no 2 1 -0.92859
825 m_single_divorced no 2 3 -0.57625
826 m_married_wid no 4 2 1.00928
827 m_married_wid no 4 4 -0.13583
828 m_married_wid yes 4 2 0.65694
829 m_married_wid no 2 3 -0.48817
830 m_single_divorced no 2 1 -1.19285
831 m_single_divorced no 1 3 0.56885
832 m_married_wid no 2 3 -0.84051
833 m_married_wid no 4 3 -0.75242
834 m_married_wid no 2 3 -0.84051
835 m_single_divorced no 4 2 -0.31200
836 m_single_divorced no 4 3 -1.10476
837 m_married_wid no 2 3 0.04034
838 m_single_divorced no 3 3 0.65694
839 m_married_wid no 4 4 0.30460
840 m_single_divorced no 2 2 -0.84051
841 m_married_wid no 4 4 0.39268
842 m_married_wid no 2 1 -0.40008
843 m_single_divorced no 4 3 -0.57625
844 m_married_wid yes 3 3 -0.57625
845 m_married_wid yes 3 3 0.30460
846 m_married_wid no 2 2 -1.10476
847 m_married_wid no 3 4 -0.48817
848 m_single_divorced no 4 4 2.15438
849 m_single_divorced yes 4 4 1.27353
850 m_married_wid no 4 4 1.00928
851 m_married_wid yes 4 2 -1.28093
852 m_single_divorced no 4 1 -1.01668
853 m_single_divorced no 4 1 -0.40008
854 m_married_wid no 2 1 0.12843
855 female yes 1 2 0.65694
856 m_married_wid no 4 4 0.92119
857 m_married_wid no 4 4 -0.48817
858 m_single_divorced no 4 3 -0.40008
859 m_married_wid no 3 3 -0.13583
860 female no 3 4 -0.22391
861 m_single_divorced no 2 1 0.21651
862 m_single_divorced no 4 2 -1.01668
863 female no 1 1 -1.10476
864 m_married_wid no 2 2 -0.40008
865 m_married_wid no 3 4 -0.75242
866 m_married_wid no 4 4 0.30460
867 m_single_divorced no 1 3 -0.92859
868 female no 4 3 -0.66434
869 m_single_divorced no 4 3 -0.75242
870 m_single_divorced no 4 3 -0.92859
871 m_married_wid no 4 3 1.62587
872 m_single_divorced no 2 1 -0.92859
873 m_single_divorced yes 4 1 -1.19285
874 m_single_divorced no 1 3 -0.66434
875 m_single_divorced no 4 4 -0.13583
876 female no 2 3 -0.66434
877 female no 2 3 -0.66434
878 m_single_divorced no 2 3 -0.40008
879 m_single_divorced no 4 2 -1.19285
880 m_married_wid no 3 3 0.39268
881 m_married_wid no 1 3 -0.92859
882 m_married_wid no 2 3 -0.13583
883 m_married_wid no 4 4 0.56885
884 female no 2 2 -0.92859
885 m_single_divorced no 4 3 -0.66434
886 m_married_wid no 2 2 -1.01668
887 m_single_divorced no 1 2 -0.75242
888 m_single_divorced no 2 4 -0.92859
889 m_single_divorced no 4 1 -0.04774
890 m_married_wid yes 1 4 -0.57625
891 m_married_wid no 2 4 -0.75242
892 m_married_wid no 4 3 -1.01668
893 female no 1 1 -0.92859
894 m_single_divorced no 2 3 -0.22391
895 m_single_divorced no 2 2 -0.13583
896 m_single_divorced no 4 4 0.21651
897 m_married_wid no 2 1 0.48077
898 m_single_divorced no 3 1 -1.28093
899 m_married_wid no 2 3 0.04034
900 m_married_wid yes 4 2 -0.75242
901 m_married_wid yes 3 2 -0.40008
902 m_married_wid no 1 1 -0.22391
903 m_married_wid no 4 4 1.89013
904 m_married_wid yes 3 3 0.56885
905 m_single_divorced no 4 2 -0.84051
906 m_single_divorced no 4 1 -1.01668
907 m_married_wid no 3 3 0.74502
908 m_single_divorced no 4 1 -1.10476
909 m_married_wid no 2 1 0.65694
910 m_married_wid no 4 4 1.53779
911 m_married_wid no 4 4 1.53779
912 m_married_wid no 3 2 -0.04774
913 m_married_wid no 2 2 -0.84051
914 m_married_wid no 4 3 -0.40008
915 m_married_wid no 4 4 -1.10476
916 m_married_wid no 2 3 -1.19285
917 m_single_divorced no 4 3 -1.36902
918 m_single_divorced no 3 2 -0.92859
919 m_married_wid no 4 4 -1.01668
920 m_married_wid no 4 4 0.92119
921 m_married_wid no 4 3 -0.75242
922 m_married_wid no 2 3 0.92119
923 m_single_divorced no 4 3 -1.10476
924 m_married_wid no 4 2 1.27353
925 m_married_wid no 1 2 -0.84051
926 m_single_divorced no 4 1 -1.36902
927 m_married_wid no 2 2 -0.40008
928 female no 4 2 -1.28093
929 m_married_wid no 4 4 0.30460
930 m_married_wid no 2 3 -0.92859
931 m_married_wid yes 3 1 -0.48817
932 m_single_divorced no 1 1 0.12843
933 m_single_divorced no 1 1 0.92119
934 m_single_divorced no 3 3 0.04034
935 m_married_wid yes 4 2 0.65694
936 female yes 2 2 -0.22391
937 m_single_divorced no 2 3 -0.57625
938 m_married_wid no 4 3 0.04034
939 m_married_wid no 2 1 -1.10476
940 m_married_wid no 4 3 0.56885
941 m_married_wid no 2 4 0.74502
942 m_married_wid no 4 3 0.48077
943 m_married_wid no 4 3 0.48077
944 m_married_wid no 4 4 0.12843
945 m_married_wid no 4 1 1.89013
946 m_married_wid no 2 2 -0.13583
947 m_married_wid no 2 1 -0.92859
948 m_single_divorced no 1 1 1.53779
949 m_married_wid no 4 4 -0.31200
950 m_single_divorced no 3 2 -0.22391
951 m_married_wid no 2 2 -1.01668
952 female no 2 1 -0.66434
953 m_single_divorced no 4 2 0.30460
954 m_single_divorced no 4 3 -1.01668
955 m_single_divorced no 1 1 -0.84051
956 m_single_divorced no 4 4 1.71396
957 m_single_divorced no 2 3 2.24247
958 m_single_divorced yes 4 3 -1.28093
959 m_single_divorced no 4 3 -0.84051
960 female no 2 3 -1.19285
961 m_married_wid no 4 3 2.85906
962 m_married_wid no 1 3 -1.19285
963 m_married_wid no 4 4 1.97821
964 m_single_divorced no 4 1 -1.10476
965 m_married_wid no 3 3 0.12843
966 m_single_divorced no 2 3 -0.84051
967 m_married_wid no 2 3 -0.75242
968 female no 3 1 -0.84051
969 m_married_wid no 4 4 -1.10476
970 m_married_wid no 2 2 0.39268
971 m_married_wid no 2 3 -0.22391
972 m_single_divorced no 4 4 0.56885
973 m_married_wid yes 2 1 0.12843
974 m_married_wid no 4 3 -0.57625
975 m_single_divorced no 4 2 -1.10476
976 m_single_divorced no 1 4 -0.13583
977 m_single_divorced no 2 2 -0.31200
978 m_married_wid no 4 4 2.85906
979 m_single_divorced no 2 2 -0.92859
980 m_married_wid no 4 4 -0.04774
981 female no 1 2 -1.19285
982 female no 2 3 -0.66434
983 m_single_divorced no 3 3 -0.48817
984 m_single_divorced no 4 3 -0.92859
985 female yes 1 1 -0.13583
986 m_married_wid no 2 3 0.56885
987 m_single_divorced no 4 2 0.83311
988 female no 1 2 -1.36902
989 m_single_divorced no 2 3 -1.10476
990 m_single_divorced no 4 2 -1.36902
991 m_single_divorced no 1 1 -0.75242
992 m_single_divorced no 2 4 0.74502
993 m_married_wid no 4 2 1.36162
994 m_single_divorced no 4 1 -0.22391
995 m_married_wid no 2 2 -0.66434
996 m_married_wid no 4 1 -1.28093
997 m_married_wid yes 1 1 0.83311
998 m_married_wid no 4 4 -0.48817
999 m_married_wid no 1 4 1.44970
1000 m_married_wid no 4 2 -0.40008
other_install_plans housing exist_credits_nr job dependents_nr
1 no 1 one 3 2
2 no 1 morethan1 3 1
3 no 1 one 2 2
4 no 1 morethan1 2 1
5 yes 2 morethan1 2 2
6 no 1 morethan1 2 1
7 no 2 morethan1 2 2
8 no 2 one 2 1
9 no 2 morethan1 1 2
10 no 1 one 1 2
11 no 1 morethan1 3 1
12 no 1 morethan1 3 2
13 no 2 one 3 2
14 no 2 one 4 2
15 no 1 morethan1 2 2
16 no 1 one 3 1
17 no 2 morethan1 2 1
18 no 1 one 3 2
19 no 2 one 3 2
20 no 2 morethan1 2 2
21 no 1 morethan1 3 1
22 yes 2 morethan1 2 1
23 no 1 one 2 2
24 no 2 one 3 2
25 no 2 morethan1 2 1
26 no 2 one 3 2
27 no 1 one 3 2
28 no 2 morethan1 2 2
29 no 2 one 3 2
30 no 3 one 3 2
31 no 2 one 3 2
32 no 2 morethan1 3 2
33 no 2 morethan1 4 2
34 no 2 one 3 2
35 no 2 one 3 2
36 no 2 morethan1 3 2
37 no 2 morethan1 2 1
38 no 2 morethan1 3 2
39 no 2 one 3 2
40 no 1 morethan1 4 2
41 no 2 morethan1 3 2
42 no 2 one 2 2
43 no 2 morethan1 3 2
44 no 2 morethan1 3 1
45 no 3 one 3 2
46 no 1 one 3 2
47 no 2 one 3 2
48 no 2 morethan1 3 2
49 no 2 one 3 2
50 no 2 morethan1 3 2
51 no 2 one 2 2
52 no 2 one 3 2
53 no 2 morethan1 3 2
54 no 2 one 3 2
55 no 2 one 4 1
56 no 2 morethan1 2 2
57 no 2 morethan1 2 2
58 no 2 one 3 2
59 no 2 one 3 2
60 no 2 one 3 2
61 no 2 one 3 2
62 no 2 one 4 2
63 no 2 one 3 2
64 no 2 morethan1 3 1
65 no 2 morethan1 2 1
66 no 2 morethan1 3 2
67 no 2 one 3 2
68 no 2 one 3 2
69 no 2 one 3 2
70 no 3 morethan1 3 2
71 no 2 morethan1 3 2
72 no 2 one 3 2
73 no 2 one 3 2
74 yes 2 one 3 2
75 no 2 one 4 2
76 no 2 one 3 2
77 no 2 one 4 2
78 no 2 one 3 2
79 no 2 morethan1 3 2
80 no 2 one 3 2
81 no 2 one 3 2
82 no 2 one 3 2
83 no 2 morethan1 3 2
84 no 2 one 3 2
85 no 2 one 3 2
86 no 2 one 3 1
87 no 2 morethan1 3 2
88 no 2 morethan1 3 2
89 no 2 morethan1 2 2
90 no 1 morethan1 3 2
91 no 2 one 3 2
92 no 2 one 3 2
93 no 2 morethan1 3 2
94 no 2 one 3 2
95 no 2 one 3 2
96 yes 2 morethan1 2 1
97 no 2 one 2 2
98 yes 2 morethan1 4 2
99 no 2 one 3 2
100 yes 2 morethan1 2 2
101 no 2 one 3 2
102 no 2 one 2 2
103 yes 2 morethan1 4 2
104 no 1 one 3 2
105 no 2 morethan1 3 2
106 no 2 one 3 2
107 no 2 morethan1 4 2
108 no 2 one 3 2
109 yes 2 one 3 2
110 no 2 one 3 2
111 no 2 one 3 2
112 yes 2 one 3 2
113 no 2 one 4 2
114 no 2 one 3 2
115 no 2 one 3 2
116 no 1 one 2 2
117 no 1 one 3 2
118 no 1 one 3 2
119 no 2 morethan1 3 2
120 no 1 one 3 2
121 no 2 one 4 2
122 no 2 morethan1 3 1
123 no 1 one 4 2
124 no 2 one 2 2
125 yes 2 one 3 2
126 no 3 morethan1 3 2
127 no 2 one 3 2
128 no 2 one 3 2
129 no 2 one 4 2
130 no 2 one 3 1
131 no 2 one 3 2
132 no 2 one 3 2
133 no 2 one 3 2
134 no 2 one 3 2
135 no 2 one 3 2
136 no 2 one 3 2
137 no 2 one 3 2
138 yes 2 one 3 2
139 no 2 morethan1 2 2
140 no 2 morethan1 3 2
141 no 2 one 2 2
142 no 2 one 2 2
143 no 2 one 3 2
144 no 2 one 4 2
145 no 2 one 3 2
146 no 2 one 4 2
147 yes 3 one 3 1
148 no 2 one 2 2
149 no 2 one 3 2
150 no 2 morethan1 2 2
151 no 1 morethan1 3 2
152 yes 2 one 3 2
153 no 3 morethan1 3 2
154 yes 2 morethan1 3 2
155 no 2 one 3 2
156 no 2 morethan1 2 2
157 yes 2 one 3 2
158 no 2 one 3 2
159 no 1 one 3 2
160 no 1 morethan1 3 2
161 no 2 morethan1 3 2
162 no 2 morethan1 3 2
163 no 1 one 3 2
164 no 3 one 3 2
165 no 1 one 3 2
166 no 2 morethan1 3 2
167 no 2 morethan1 3 2
168 no 2 one 4 2
169 yes 2 morethan1 3 2
170 no 2 morethan1 3 2
171 no 2 one 3 2
172 no 2 one 2 2
173 no 1 one 3 2
174 yes 2 one 3 1
175 no 1 morethan1 4 1
176 no 2 one 4 2
177 no 2 morethan1 2 2
178 no 2 one 3 2
179 yes 2 morethan1 3 2
180 no 2 one 4 2
181 no 1 one 3 2
182 no 2 morethan1 3 2
183 yes 2 morethan1 3 2
184 no 2 one 3 2
185 no 2 morethan1 3 2
186 no 2 morethan1 3 2
187 no 2 one 3 2
188 no 2 one 3 1
189 no 2 morethan1 3 1
190 yes 2 one 4 2
191 no 1 one 4 2
192 no 2 one 3 2
193 no 2 one 3 2
194 no 2 one 3 2
195 no 2 one 3 2
196 no 2 morethan1 4 2
197 no 2 morethan1 4 1
198 no 2 morethan1 3 2
199 no 2 one 3 2
200 yes 2 one 3 2
201 yes 2 one 4 2
202 yes 1 morethan1 3 1
203 yes 2 one 2 2
204 no 2 one 3 2
205 no 2 one 2 2
206 yes 2 one 4 2
207 no 1 one 4 1
208 no 2 one 3 2
209 no 3 one 4 2
210 no 2 one 3 2
211 no 2 one 2 1
212 yes 2 one 3 2
213 yes 2 one 3 2
214 no 2 morethan1 1 1
215 no 2 one 1 2
216 no 2 one 2 1
217 no 1 one 3 2
218 no 2 one 1 2
219 no 2 one 2 2
220 no 2 one 2 2
221 yes 3 one 4 2
222 yes 2 morethan1 2 2
223 no 2 morethan1 2 2
224 no 2 morethan1 3 2
225 no 2 one 3 2
226 no 2 morethan1 2 2
227 no 2 one 2 1
228 no 2 morethan1 2 2
229 yes 2 one 2 2
230 no 2 one 3 2
231 no 2 one 4 2
232 no 2 one 2 2
233 no 2 one 4 2
234 no 2 one 4 2
235 yes 2 one 2 2
236 no 2 one 3 2
237 no 2 morethan1 3 2
238 yes 1 one 2 2
239 no 1 one 2 1
240 no 2 one 3 2
241 no 2 morethan1 2 2
242 no 2 one 4 2
243 no 1 one 2 2
244 yes 2 morethan1 4 2
245 yes 2 one 2 1
246 no 2 one 3 2
247 no 2 morethan1 3 2
248 no 2 morethan1 3 2
249 no 2 one 2 2
250 no 2 one 3 2
251 no 2 one 3 1
252 no 2 one 2 1
253 no 2 one 3 2
254 no 2 one 3 2
255 no 2 morethan1 4 2
256 no 1 one 3 2
257 no 2 morethan1 2 2
258 no 1 morethan1 3 2
259 no 2 one 2 2
260 no 2 one 2 2
261 yes 2 morethan1 2 2
262 no 2 morethan1 4 2
263 no 2 one 3 2
264 no 2 one 3 2
265 no 2 one 3 1
266 no 2 one 3 2
267 no 2 one 2 1
268 no 2 one 3 2
269 no 1 morethan1 2 2
270 yes 2 one 2 1
271 no 1 one 3 2
272 no 2 morethan1 3 2
273 no 1 one 2 2
274 no 2 one 3 2
275 no 2 one 4 2
276 no 2 one 2 1
277 yes 1 one 4 2
278 no 2 morethan1 3 2
279 no 2 one 3 2
280 no 2 one 3 2
281 yes 2 one 3 2
282 no 2 one 2 2
283 no 1 one 3 2
284 no 2 morethan1 3 2
285 yes 2 one 3 2
286 no 2 one 1 2
287 no 2 morethan1 3 2
288 no 2 one 3 1
289 no 3 one 2 2
290 yes 2 morethan1 3 2
291 no 2 morethan1 2 1
292 no 1 one 3 2
293 no 2 morethan1 2 1
294 yes 2 morethan1 3 1
295 no 2 morethan1 3 2
296 yes 2 one 3 2
297 no 1 one 3 2
298 no 2 morethan1 2 2
299 no 1 one 2 2
300 no 2 morethan1 3 2
301 yes 2 one 2 2
302 yes 2 one 3 2
303 no 2 one 3 2
304 no 2 morethan1 3 1
305 no 2 one 2 2
306 no 1 one 2 2
307 yes 2 one 2 2
308 yes 2 one 2 1
309 no 1 one 4 2
310 no 2 one 2 1
311 no 2 morethan1 3 2
312 no 2 morethan1 3 1
313 yes 2 morethan1 2 2
314 no 2 one 3 2
315 no 2 one 2 1
316 yes 3 one 3 1
317 yes 2 one 3 2
318 no 2 one 3 2
319 no 2 morethan1 3 2
320 yes 1 one 3 2
321 no 1 one 2 1
322 no 2 one 3 2
323 no 2 one 3 2
324 no 1 morethan1 3 2
325 no 2 one 2 1
326 no 2 morethan1 3 2
327 no 1 one 2 2
328 no 2 morethan1 3 1
329 no 2 one 3 2
330 no 2 morethan1 3 2
331 no 2 morethan1 3 2
332 no 2 morethan1 3 2
333 no 1 morethan1 3 2
334 no 1 one 3 2
335 no 2 morethan1 3 2
336 no 2 one 2 2
337 no 2 morethan1 3 1
338 no 2 morethan1 3 2
339 no 2 one 3 1
340 no 2 one 3 2
341 no 2 morethan1 3 1
342 yes 1 one 3 2
343 no 2 one 4 2
344 no 1 one 3 1
345 no 2 morethan1 3 2
346 no 2 one 3 2
347 no 3 one 3 2
348 no 3 morethan1 3 2
349 no 2 morethan1 3 2
350 no 2 morethan1 3 2
351 no 2 morethan1 3 2
352 no 2 one 3 1
353 yes 2 morethan1 4 1
354 no 2 morethan1 3 2
355 yes 3 one 3 1
356 no 3 morethan1 3 2
357 yes 2 one 3 1
358 no 2 morethan1 2 1
359 no 2 one 4 2
360 no 2 one 3 2
361 no 2 morethan1 2 2
362 no 1 one 3 2
363 no 2 morethan1 3 2
364 no 1 one 3 2
365 no 3 one 3 2
366 no 2 morethan1 3 2
367 no 2 one 2 2
368 no 2 one 2 2
369 no 1 one 3 2
370 no 1 one 2 2
371 yes 2 one 2 2
372 no 2 one 3 2
373 no 1 one 3 2
374 no 2 one 3 2
375 no 2 morethan1 4 2
376 no 2 one 4 2
377 no 2 morethan1 3 2
378 no 2 morethan1 4 2
379 no 2 one 3 2
380 no 2 morethan1 3 2
381 no 1 one 3 2
382 no 1 one 2 2
383 yes 3 one 4 2
384 no 1 one 2 2
385 no 2 morethan1 3 2
386 no 2 one 3 2
387 no 2 one 3 2
388 no 2 one 2 1
389 no 2 one 3 2
390 no 1 one 3 2
391 no 2 one 3 2
392 yes 3 morethan1 1 2
393 no 2 one 2 2
394 no 3 morethan1 3 2
395 yes 2 one 3 2
396 no 2 one 3 2
397 no 2 one 3 2
398 yes 2 morethan1 3 2
399 no 1 one 3 2
400 no 2 one 3 2
401 no 2 one 3 1
402 no 2 one 2 2
403 no 1 one 1 2
404 no 2 one 3 2
405 no 2 one 3 2
406 yes 3 one 1 2
407 no 2 one 3 2
408 yes 2 one 3 2
409 yes 2 one 3 2
410 no 1 one 3 2
411 no 2 one 3 2
412 no 2 morethan1 3 1
413 no 2 morethan1 3 2
414 no 2 morethan1 3 1
415 no 2 morethan1 3 1
416 no 2 morethan1 3 2
417 no 2 morethan1 2 2
418 no 2 morethan1 3 2
419 no 2 morethan1 3 2
420 no 2 morethan1 3 1
421 no 2 one 3 2
422 no 2 morethan1 3 2
423 no 3 morethan1 1 2
424 no 3 one 4 2
425 no 2 morethan1 3 2
426 no 2 morethan1 3 2
427 no 1 one 3 2
428 no 2 morethan1 4 2
429 yes 1 one 3 2
430 no 2 one 2 2
431 no 1 one 4 2
432 no 3 morethan1 3 1
433 yes 2 one 3 2
434 yes 2 morethan1 3 2
435 no 1 one 2 2
436 no 3 one 3 2
437 no 2 one 3 2
438 no 2 one 3 2
439 yes 2 morethan1 4 1
440 no 2 morethan1 1 1
441 no 2 one 3 2
442 no 2 morethan1 3 2
443 no 2 morethan1 4 2
444 no 1 one 3 2
445 no 2 one 3 2
446 no 2 one 3 2
447 no 3 morethan1 3 2
448 no 2 one 3 2
449 no 3 one 4 2
450 no 2 one 2 2
451 no 2 one 2 2
452 no 2 one 3 2
453 yes 3 one 4 2
454 no 3 morethan1 3 2
455 no 3 one 3 2
456 no 2 one 2 2
457 yes 2 morethan1 3 2
458 no 2 one 2 2
459 yes 2 one 2 2
460 no 1 one 3 2
461 no 2 one 4 2
462 yes 2 morethan1 4 2
463 no 2 one 3 2
464 no 2 one 2 2
465 no 1 one 1 2
466 no 2 one 4 2
467 no 2 one 3 2
468 no 3 one 3 2
469 no 1 one 3 2
470 yes 2 morethan1 3 1
471 yes 3 morethan1 3 2
472 no 2 morethan1 3 2
473 no 2 morethan1 3 2
474 yes 1 one 2 2
475 no 2 one 3 2
476 no 2 morethan1 2 2
477 yes 2 morethan1 3 1
478 no 2 morethan1 3 2
479 yes 3 morethan1 2 2
480 no 2 one 3 2
481 no 2 morethan1 3 1
482 no 1 one 3 2
483 no 3 one 3 2
484 no 1 one 3 2
485 no 2 one 3 2
486 no 2 morethan1 3 2
487 no 2 morethan1 4 2
488 no 2 one 3 2
489 no 2 one 3 2
490 no 2 one 4 1
491 no 2 one 3 2
492 yes 2 one 3 2
493 yes 2 one 3 2
494 no 2 morethan1 3 2
495 no 2 one 3 2
496 no 2 one 3 2
497 no 1 one 3 2
498 no 2 morethan1 3 2
499 no 2 one 1 2
500 no 2 one 3 2
501 no 2 one 3 2
502 no 2 morethan1 3 2
503 no 2 one 3 1
504 no 2 morethan1 3 2
505 no 2 one 4 2
506 no 1 morethan1 3 2
507 no 2 morethan1 3 2
508 no 2 morethan1 4 1
509 no 2 one 3 2
510 no 2 one 3 2
511 no 2 one 3 2
512 no 2 one 3 2
513 no 2 one 3 2
514 no 2 one 3 2
515 no 1 one 3 2
516 no 2 one 3 2
517 no 1 one 4 2
518 yes 3 one 3 2
519 no 2 morethan1 3 2
520 no 1 morethan1 3 2
521 no 2 one 4 2
522 no 2 morethan1 4 2
523 no 2 one 3 2
524 no 1 one 3 2
525 no 2 morethan1 4 2
526 yes 2 morethan1 3 2
527 no 2 one 2 2
528 no 2 one 3 2
529 no 3 one 4 2
530 no 2 morethan1 3 2
531 no 2 morethan1 2 1
532 no 2 morethan1 3 1
533 no 1 one 2 2
534 no 2 morethan1 4 2
535 yes 2 one 3 2
536 no 2 one 3 2
537 no 2 one 3 1
538 no 2 morethan1 2 1
539 no 1 morethan1 2 2
540 yes 2 morethan1 3 2
541 no 2 one 3 2
542 no 2 morethan1 3 1
543 no 2 one 2 2
544 no 2 morethan1 3 2
545 no 2 morethan1 2 1
546 no 2 one 3 2
547 no 2 one 3 2
548 no 2 morethan1 3 2
549 no 2 one 3 2
550 no 1 one 3 2
551 no 1 one 3 1
552 no 2 one 2 1
553 no 2 morethan1 3 2
554 no 2 one 3 2
555 no 2 one 3 2
556 no 2 morethan1 3 2
557 no 2 morethan1 3 2
558 yes 2 one 4 2
559 no 1 one 4 2
560 no 2 one 3 2
561 no 2 morethan1 3 2
562 no 2 morethan1 3 2
563 no 2 one 4 2
564 no 3 one 3 2
565 no 2 morethan1 2 2
566 no 1 morethan1 3 2
567 no 2 morethan1 2 1
568 no 2 morethan1 2 2
569 no 2 morethan1 3 2
570 yes 2 one 3 2
571 no 2 one 3 2
572 no 3 one 2 1
573 no 2 morethan1 3 2
574 yes 2 one 3 1
575 no 1 one 4 2
576 yes 2 one 4 2
577 no 2 one 3 1
578 no 1 one 2 1
579 no 2 morethan1 3 2
580 no 2 one 4 2
581 yes 1 one 2 2
582 no 2 one 3 2
583 no 2 morethan1 3 2
584 no 2 one 3 2
585 no 3 one 4 2
586 no 3 one 4 2
587 no 3 morethan1 4 2
588 no 2 one 3 1
589 no 2 one 3 2
590 no 1 one 4 2
591 no 2 one 3 2
592 yes 3 morethan1 4 1
593 no 1 morethan1 2 2
594 no 1 morethan1 1 2
595 no 2 morethan1 3 2
596 no 2 morethan1 3 2
597 no 2 one 2 1
598 no 2 morethan1 3 2
599 no 2 one 3 1
600 no 2 one 3 2
601 no 2 one 3 1
602 no 2 morethan1 2 2
603 no 2 one 4 2
604 no 2 one 2 2
605 yes 2 one 3 1
606 no 2 morethan1 3 2
607 yes 2 morethan1 4 2
608 no 2 morethan1 3 2
609 no 2 one 3 1
610 no 3 one 3 2
611 yes 2 one 2 2
612 no 2 one 3 2
613 no 2 one 3 2
614 no 1 one 3 2
615 no 3 one 4 2
616 no 2 one 3 2
617 no 3 morethan1 4 1
618 no 2 one 4 1
619 no 2 one 2 2
620 no 2 morethan1 2 1
621 no 3 one 3 2
622 yes 2 morethan1 4 2
623 no 3 morethan1 4 2
624 no 2 one 2 1
625 no 3 morethan1 4 2
626 no 3 morethan1 4 2
627 no 2 one 4 2
628 no 2 morethan1 3 2
629 no 2 one 4 1
630 no 3 one 4 2
631 no 1 morethan1 3 2
632 no 3 one 3 1
633 no 2 one 3 2
634 no 2 one 4 2
635 yes 3 one 4 1
636 yes 3 one 3 2
637 no 2 morethan1 3 2
638 yes 2 morethan1 2 2
639 no 2 morethan1 3 2
640 no 2 morethan1 3 2
641 no 2 morethan1 3 2
642 no 2 morethan1 3 2
643 no 3 morethan1 4 1
644 yes 3 morethan1 2 2
645 no 3 morethan1 3 1
646 no 2 one 4 2
647 yes 2 morethan1 3 2
648 yes 2 morethan1 3 1
649 yes 2 morethan1 3 2
650 no 2 one 3 2
651 no 2 one 2 2
652 no 2 one 3 2
653 no 2 morethan1 3 2
654 no 2 morethan1 3 2
655 no 3 one 3 1
656 no 2 morethan1 3 2
657 yes 2 morethan1 3 1
658 no 2 one 3 2
659 no 2 one 3 2
660 no 2 one 2 2
661 no 2 one 3 2
662 no 2 morethan1 3 2
663 no 1 morethan1 3 2
664 no 2 one 3 1
665 no 2 morethan1 2 2
666 no 2 morethan1 3 2
667 no 2 one 3 2
668 no 2 morethan1 3 2
669 no 2 one 2 2
670 no 2 one 3 2
671 no 2 one 2 2
672 no 2 one 2 2
673 no 2 one 2 1
674 no 2 one 2 2
675 yes 2 one 2 2
676 no 2 morethan1 3 1
677 no 2 morethan1 2 2
678 yes 1 morethan1 2 2
679 yes 2 morethan1 3 2
680 yes 2 one 2 2
681 yes 2 one 2 2
682 yes 2 morethan1 2 2
683 yes 1 morethan1 4 1
684 no 2 morethan1 3 2
685 no 2 one 2 2
686 no 2 morethan1 3 2
687 no 2 one 2 2
688 yes 2 one 1 2
689 yes 2 one 2 2
690 no 2 one 2 2
691 no 2 one 3 2
692 no 2 one 2 2
693 no 2 one 2 2
694 no 2 morethan1 2 2
695 no 1 one 2 2
696 no 2 morethan1 3 2
697 yes 2 morethan1 3 2
698 no 2 one 3 2
699 no 2 one 3 2
700 no 1 morethan1 4 2
701 no 3 one 3 2
702 no 2 morethan1 3 2
703 no 1 morethan1 3 2
704 no 1 morethan1 3 2
705 no 2 morethan1 3 2
706 no 2 morethan1 3 2
707 no 1 morethan1 3 2
708 no 2 morethan1 3 2
709 no 1 one 3 2
710 yes 3 one 3 2
711 no 3 one 3 2
712 no 2 morethan1 1 2
713 no 2 morethan1 3 2
714 no 1 morethan1 2 2
715 no 1 one 3 2
716 no 2 morethan1 3 2
717 no 3 one 4 2
718 no 2 morethan1 4 2
719 no 1 one 3 2
720 no 2 one 3 2
721 no 3 one 3 2
722 no 1 one 4 2
723 yes 2 morethan1 2 2
724 yes 2 one 4 1
725 yes 2 one 3 2
726 no 1 one 3 2
727 yes 2 one 4 2
728 no 2 one 4 2
729 no 2 one 4 2
730 no 3 one 4 2
731 yes 3 one 4 2
732 no 3 one 3 1
733 no 1 morethan1 3 2
734 no 1 one 3 2
735 no 3 one 3 1
736 no 2 one 3 2
737 no 2 morethan1 2 2
738 no 2 morethan1 3 2
739 no 2 morethan1 2 2
740 yes 2 morethan1 3 2
741 no 2 one 2 2
742 no 2 one 2 2
743 no 2 one 3 2
744 no 2 morethan1 3 2
745 yes 1 one 2 2
746 no 1 one 3 2
747 yes 3 one 3 2
748 no 3 morethan1 3 2
749 no 2 morethan1 4 2
750 no 3 one 3 2
751 no 3 one 3 2
752 no 2 one 2 2
753 no 3 morethan1 3 1
754 no 1 one 3 2
755 no 2 one 1 2
756 no 1 morethan1 3 1
757 no 2 morethan1 2 2
758 yes 2 morethan1 3 2
759 yes 2 one 3 2
760 no 2 morethan1 3 2
761 no 2 morethan1 3 2
762 no 3 morethan1 3 2
763 yes 2 morethan1 3 2
764 no 3 one 3 2
765 no 2 morethan1 2 1
766 no 2 one 3 2
767 no 2 morethan1 3 2
768 yes 2 morethan1 3 2
769 no 2 one 3 2
770 no 1 one 3 2
771 yes 2 one 4 1
772 no 3 one 4 2
773 no 2 one 2 2
774 no 2 one 3 2
775 no 2 morethan1 3 2
776 no 2 one 3 2
777 no 2 one 4 2
778 no 1 one 4 2
779 no 2 one 3 2
780 no 2 one 4 2
781 no 2 one 3 2
782 yes 2 one 3 2
783 no 3 one 4 2
784 yes 1 one 3 1
785 no 3 one 3 2
786 yes 2 morethan1 3 2
787 yes 2 one 2 2
788 yes 2 morethan1 3 2
789 no 2 morethan1 2 2
790 yes 2 one 2 2
791 no 1 morethan1 1 2
792 no 2 one 2 2
793 yes 2 one 3 2
794 no 2 one 3 2
795 no 2 one 4 2
796 no 3 one 4 2
797 no 2 one 2 1
798 no 1 one 3 2
799 yes 2 one 3 2
800 yes 3 one 3 1
801 no 2 one 3 2
802 no 1 one 3 2
803 no 1 one 3 2
804 no 2 one 3 2
805 no 2 one 3 2
806 no 1 one 3 2
807 no 2 morethan1 3 2
808 no 2 morethan1 3 2
809 no 1 one 4 2
810 no 3 one 3 2
811 no 2 one 3 2
812 no 1 one 3 2
813 no 2 one 3 2
814 no 2 one 3 2
815 yes 3 one 4 1
816 no 2 one 3 2
817 no 3 one 2 1
818 no 2 one 3 2
819 no 2 one 3 2
820 no 1 morethan1 3 2
821 yes 2 morethan1 3 2
822 yes 2 one 3 2
823 no 2 one 3 2
824 no 2 morethan1 3 2
825 no 1 one 2 2
826 no 2 one 4 2
827 no 3 one 2 1
828 no 1 morethan1 3 2
829 no 2 one 3 2
830 no 2 one 3 2
831 no 2 one 3 2
832 no 2 morethan1 4 2
833 no 1 morethan1 3 2
834 no 2 one 3 2
835 no 2 one 3 2
836 no 1 morethan1 4 2
837 yes 2 morethan1 3 1
838 no 2 one 3 2
839 yes 2 morethan1 4 1
840 no 2 one 3 2
841 no 2 one 4 2
842 no 2 morethan1 2 2
843 no 1 one 2 2
844 yes 2 morethan1 4 2
845 no 2 morethan1 4 1
846 no 2 morethan1 2 2
847 yes 2 morethan1 4 2
848 yes 3 morethan1 4 2
849 no 3 one 3 2
850 no 3 one 3 1
851 no 1 one 3 2
852 yes 2 one 2 2
853 no 2 morethan1 3 2
854 yes 2 morethan1 2 1
855 no 2 one 2 1
856 no 3 one 3 1
857 no 3 one 3 1
858 no 1 one 3 2
859 no 2 one 3 2
860 no 2 one 2 2
861 yes 2 one 3 2
862 no 1 one 3 2
863 no 1 one 3 2
864 yes 2 morethan1 3 2
865 yes 2 one 3 2
866 no 3 morethan1 3 2
867 no 1 one 3 2
868 no 1 one 4 2
869 yes 1 morethan1 3 2
870 no 2 one 2 2
871 no 2 one 3 2
872 yes 2 morethan1 3 2
873 no 1 one 3 2
874 no 2 morethan1 3 2
875 yes 3 one 2 2
876 no 2 morethan1 4 2
877 no 2 morethan1 4 2
878 no 2 one 3 2
879 no 1 one 3 2
880 yes 2 one 4 2
881 no 2 one 1 2
882 no 2 morethan1 4 2
883 yes 3 one 4 2
884 no 1 one 3 2
885 no 1 morethan1 3 2
886 no 2 one 3 2
887 no 2 one 3 2
888 no 2 morethan1 4 2
889 no 2 one 3 2
890 no 1 one 4 2
891 no 2 one 4 2
892 no 2 morethan1 3 2
893 no 2 one 3 2
894 no 2 one 3 2
895 no 2 one 4 2
896 no 3 one 4 2
897 yes 2 one 2 1
898 no 1 one 3 2
899 no 2 one 3 1
900 no 2 one 2 2
901 no 2 one 3 2
902 no 2 one 2 1
903 yes 3 morethan1 3 2
904 no 2 one 3 2
905 no 1 one 3 2
906 no 1 morethan1 3 2
907 yes 2 one 3 2
908 no 1 one 3 2
909 no 3 morethan1 3 1
910 no 3 morethan1 3 1
911 no 3 morethan1 3 1
912 no 2 morethan1 3 2
913 yes 2 morethan1 3 1
914 yes 2 one 3 2
915 yes 1 morethan1 3 1
916 no 2 one 3 2
917 no 1 one 3 2
918 no 1 morethan1 3 2
919 no 3 morethan1 3 1
920 no 3 morethan1 3 2
921 yes 2 one 3 2
922 yes 2 morethan1 3 2
923 no 1 morethan1 3 2
924 no 2 morethan1 3 2
925 yes 2 morethan1 3 2
926 no 1 one 3 2
927 yes 1 one 3 2
928 no 1 one 3 2
929 no 3 morethan1 3 1
930 yes 2 one 3 2
931 no 2 morethan1 3 2
932 yes 2 one 2 2
933 no 1 morethan1 3 2
934 no 2 one 3 2
935 no 1 one 3 2
936 yes 1 morethan1 3 2
937 yes 2 one 3 2
938 no 2 one 3 1
939 yes 2 one 2 2
940 yes 2 morethan1 4 2
941 no 3 one 3 2
942 yes 2 one 2 1
943 yes 2 one 2 1
944 yes 3 one 3 2
945 no 2 one 2 2
946 yes 2 one 4 1
947 no 1 one 2 2
948 yes 2 one 4 2
949 yes 3 morethan1 2 1
950 no 2 one 2 1
951 yes 2 morethan1 2 2
952 no 2 morethan1 3 2
953 no 2 one 3 1
954 no 1 morethan1 2 2
955 yes 2 one 1 2
956 no 3 morethan1 1 1
957 no 1 morethan1 2 2
958 yes 1 one 3 2
959 no 1 morethan1 2 2
960 no 1 one 3 2
961 yes 1 morethan1 3 2
962 no 2 one 3 2
963 no 1 one 3 2
964 no 1 one 2 2
965 no 2 one 3 1
966 yes 2 one 3 2
967 yes 2 morethan1 3 2
968 no 2 one 3 2
969 no 3 one 3 2
970 yes 2 morethan1 2 1
971 no 1 one 4 2
972 yes 3 morethan1 4 2
973 no 2 one 3 2
974 no 1 morethan1 3 2
975 no 2 one 3 2
976 yes 2 one 2 2
977 yes 2 one 4 2
978 yes 2 one 4 2
979 no 2 one 3 2
980 no 3 one 3 2
981 no 2 one 3 2
982 no 2 one 3 2
983 no 2 one 4 2
984 yes 1 morethan1 3 2
985 no 2 morethan1 3 2
986 yes 2 morethan1 4 2
987 no 2 one 4 2
988 no 2 one 3 2
989 no 2 one 2 2
990 no 1 one 2 2
991 no 2 one 1 2
992 no 3 one 4 2
993 no 3 one 3 1
994 yes 1 morethan1 3 2
995 no 1 morethan1 3 2
996 no 1 one 2 1
997 no 2 one 3 2
998 no 3 one 4 2
999 no 2 one 4 2
1000 no 2 one 3 2
telephone_nr foreign_worker customer_good_bad
1 1 2 1
2 1 2 1
3 1 2 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 2 1
10 1 2 1
11 1 2 1
12 1 2 1
13 1 2 1
14 2 2 1
15 1 2 1
16 1 2 1
17 1 2 1
18 1 2 1
19 1 2 1
20 1 2 1
21 1 2 1
22 1 2 1
23 1 2 0
24 1 2 1
25 1 2 1
26 1 2 1
27 1 2 1
28 1 2 1
29 1 2 1
30 1 2 1
31 1 2 1
32 2 2 1
33 2 2 1
34 1 2 1
35 1 2 1
36 2 2 1
37 1 2 1
38 1 2 1
39 2 2 1
40 2 2 1
41 1 2 1
42 2 2 1
43 1 2 1
44 2 2 1
45 1 2 1
46 2 2 0
47 2 2 1
48 1 2 0
49 2 2 1
50 2 2 1
51 1 2 1
52 2 2 1
53 1 2 1
54 2 2 1
55 2 2 1
56 2 2 1
57 2 2 1
58 1 1 1
59 2 2 1
60 1 2 1
61 2 2 1
62 2 2 1
63 2 2 1
64 2 2 1
65 1 2 1
66 1 2 1
67 2 2 1
68 2 2 1
69 2 2 1
70 2 2 1
71 2 2 1
72 2 2 1
73 1 2 1
74 2 2 1
75 1 2 1
76 2 2 1
77 2 2 1
78 2 2 1
79 2 2 1
80 1 2 1
81 2 2 1
82 2 2 1
83 2 2 1
84 2 2 1
85 1 2 1
86 1 2 1
87 2 2 1
88 1 2 1
89 2 2 1
90 2 2 1
91 1 2 1
92 1 2 1
93 1 2 1
94 1 2 1
95 2 2 1
96 2 2 1
97 1 2 1
98 2 2 0
99 1 2 1
100 1 2 1
101 2 2 1
102 1 2 1
103 2 2 1
104 1 2 1
105 2 2 1
106 2 2 1
107 2 2 1
108 2 2 1
109 2 2 1
110 1 2 1
111 2 2 0
112 2 2 1
113 2 2 1
114 2 2 1
115 2 2 1
116 1 2 1
117 2 2 1
118 2 2 1
119 2 2 1
120 2 2 1
121 2 2 1
122 2 2 1
123 2 2 1
124 1 2 1
125 2 2 1
126 2 2 1
127 1 2 1
128 2 2 1
129 2 2 1
130 2 2 1
131 1 2 1
132 2 2 1
133 2 2 1
134 1 2 1
135 2 2 1
136 1 2 1
137 2 2 1
138 1 2 1
139 1 2 1
140 2 2 1
141 2 2 1
142 1 2 1
143 2 2 1
144 1 2 1
145 1 2 1
146 2 2 1
147 2 2 1
148 2 2 1
149 2 2 1
150 1 2 1
151 1 2 1
152 1 2 1
153 2 2 1
154 2 2 1
155 2 2 1
156 1 2 1
157 1 2 1
158 1 2 1
159 1 2 0
160 2 2 1
161 1 2 1
162 2 2 1
163 2 2 1
164 2 2 1
165 2 2 1
166 2 2 1
167 1 2 1
168 2 2 1
169 1 2 1
170 2 2 1
171 1 2 1
172 1 2 0
173 1 2 1
174 1 2 1
175 2 2 1
176 2 2 1
177 2 2 1
178 1 2 1
179 2 2 1
180 2 2 1
181 2 2 1
182 1 2 1
183 1 2 1
184 2 2 1
185 1 2 1
186 2 2 1
187 2 2 1
188 2 2 1
189 1 2 1
190 2 2 1
191 2 2 1
192 1 2 1
193 1 2 1
194 1 2 1
195 1 2 1
196 2 2 1
197 2 2 1
198 1 2 1
199 1 2 1
200 1 2 1
201 1 2 1
202 2 2 1
203 1 2 1
204 2 1 1
205 1 1 1
206 2 2 1
207 2 2 1
208 1 2 1
209 2 2 1
210 2 2 1
211 1 1 1
212 2 2 1
213 2 2 1
214 1 1 1
215 1 2 1
216 1 2 1
217 1 2 1
218 1 1 1
219 2 2 1
220 1 1 1
221 2 2 1
222 1 2 1
223 2 2 1
224 1 2 1
225 1 2 1
226 1 2 1
227 2 2 1
228 1 2 1
229 1 2 1
230 1 2 1
231 2 2 1
232 1 2 1
233 2 2 1
234 2 2 1
235 1 2 0
236 1 2 1
237 1 2 1
238 1 2 1
239 1 2 1
240 1 2 1
241 1 2 1
242 2 2 1
243 1 2 1
244 2 2 1
245 1 2 1
246 1 2 1
247 1 2 1
248 1 2 1
249 1 2 1
250 1 2 1
251 1 2 1
252 2 2 1
253 1 2 1
254 1 2 1
255 2 2 1
256 2 2 1
257 1 2 1
258 1 2 1
259 1 2 1
260 1 2 1
261 1 2 1
262 1 2 1
263 1 2 1
264 1 2 1
265 1 2 1
266 1 2 1
267 1 2 1
268 1 2 1
269 1 2 1
270 1 2 1
271 1 2 1
272 2 2 1
273 1 2 1
274 1 2 1
275 2 2 1
276 1 2 1
277 2 2 1
278 1 2 1
279 1 2 1
280 1 2 1
281 1 2 1
282 1 2 1
283 1 2 1
284 1 2 1
285 1 2 1
286 2 2 1
287 1 2 1
288 1 2 1
289 1 2 1
290 1 2 1
291 1 2 1
292 1 2 1
293 1 2 1
294 1 2 1
295 1 2 1
296 1 2 1
297 1 2 1
298 1 2 1
299 1 2 1
300 1 2 1
301 1 2 1
302 1 2 1
303 1 2 1
304 1 2 1
305 1 2 0
306 1 2 1
307 2 2 1
308 1 2 1
309 2 2 1
310 1 2 1
311 1 2 1
312 2 2 1
313 1 2 1
314 1 2 1
315 2 2 1
316 1 2 1
317 2 2 1
318 1 2 1
319 1 2 1
320 1 1 1
321 1 1 1
322 1 2 1
323 2 2 1
324 1 1 1
325 1 1 1
326 2 2 1
327 1 1 1
328 1 1 1
329 1 1 1
330 2 2 1
331 2 2 1
332 1 2 1
333 2 2 1
334 1 2 1
335 2 2 1
336 1 1 1
337 1 1 1
338 2 2 1
339 1 2 1
340 1 1 1
341 2 2 1
342 1 1 1
343 2 2 1
344 1 1 1
345 2 2 1
346 2 1 1
347 2 2 1
348 2 2 1
349 1 2 1
350 1 2 1
351 1 1 1
352 2 2 1
353 1 2 1
354 1 2 0
355 2 2 1
356 1 2 1
357 2 2 1
358 1 1 1
359 1 2 1
360 2 2 1
361 1 2 1
362 1 2 1
363 1 2 1
364 1 2 1
365 2 2 1
366 1 2 1
367 1 2 1
368 2 2 1
369 1 2 1
370 1 2 1
371 1 2 1
372 1 2 1
373 1 2 1
374 1 2 1
375 1 2 1
376 1 2 1
377 1 2 0
378 2 2 1
379 1 2 1
380 1 2 1
381 1 2 1
382 1 2 1
383 2 2 1
384 1 2 1
385 2 2 1
386 1 2 1
387 1 2 0
388 1 2 1
389 2 2 1
390 1 2 1
391 1 2 1
392 1 2 1
393 1 2 1
394 2 2 1
395 1 2 1
396 1 2 1
397 1 2 1
398 1 2 1
399 1 2 1
400 1 2 1
401 2 2 1
402 1 2 1
403 2 2 1
404 2 2 1
405 2 2 1
406 2 2 1
407 2 2 1
408 2 2 1
409 2 2 1
410 2 2 1
411 1 2 1
412 2 2 1
413 1 2 1
414 2 2 1
415 2 2 1
416 1 2 1
417 1 2 1
418 1 2 1
419 2 2 1
420 2 2 1
421 1 2 1
422 1 2 1
423 2 2 1
424 2 2 1
425 2 2 1
426 1 2 1
427 2 2 1
428 2 2 0
429 2 2 1
430 1 2 1
431 2 2 1
432 1 2 0
433 1 2 1
434 1 2 1
435 1 2 1
436 1 2 1
437 1 2 1
438 1 2 1
439 2 2 1
440 2 2 1
441 2 2 1
442 1 2 1
443 2 2 1
444 2 2 1
445 1 2 1
446 1 2 1
447 1 2 1
448 1 2 1
449 2 2 1
450 1 2 1
451 1 2 0
452 2 2 1
453 2 2 1
454 2 2 1
455 1 2 1
456 1 2 1
457 2 2 1
458 2 2 1
459 1 2 1
460 2 2 1
461 2 2 1
462 2 2 1
463 2 2 1
464 1 2 0
465 1 2 1
466 2 2 1
467 1 2 1
468 1 2 1
469 1 2 1
470 2 2 1
471 1 2 1
472 1 2 1
473 1 2 1
474 1 2 1
475 1 2 1
476 1 2 1
477 2 2 1
478 1 2 1
479 1 2 1
480 2 2 1
481 2 2 1
482 1 2 1
483 1 2 1
484 2 1 1
485 1 2 1
486 1 2 1
487 2 2 1
488 2 1 1
489 2 2 1
490 2 2 1
491 1 2 1
492 1 2 1
493 2 2 1
494 1 2 1
495 1 2 1
496 2 2 1
497 1 2 1
498 2 2 1
499 1 2 1
500 1 2 1
501 1 2 1
502 2 2 1
503 1 2 1
504 2 2 1
505 2 2 1
506 1 2 1
507 2 2 1
508 2 2 1
509 2 2 1
510 2 2 1
511 1 2 1
512 1 2 1
513 2 2 1
514 1 2 1
515 1 2 1
516 1 2 1
517 2 2 1
518 2 2 0
519 2 2 0
520 2 2 0
521 2 2 0
522 2 2 0
523 1 2 1
524 2 2 1
525 2 2 1
526 1 2 1
527 1 2 1
528 1 2 1
529 2 2 1
530 1 2 1
531 1 2 1
532 2 2 1
533 2 2 1
534 2 2 1
535 1 2 1
536 2 2 1
537 1 2 1
538 1 2 1
539 2 2 1
540 2 2 1
541 2 2 0
542 2 2 1
543 1 2 0
544 1 2 1
545 1 2 1
546 2 2 1
547 1 2 1
548 2 2 1
549 1 2 1
550 2 2 1
551 2 2 1
552 1 2 1
553 2 2 1
554 2 2 1
555 1 2 1
556 2 2 1
557 1 2 1
558 2 2 1
559 2 2 1
560 2 2 1
561 2 2 1
562 1 2 1
563 1 2 0
564 2 2 1
565 1 2 1
566 2 2 1
567 2 2 1
568 1 2 1
569 2 2 1
570 2 2 1
571 1 2 1
572 2 2 1
573 1 2 1
574 2 2 1
575 2 2 1
576 2 2 1
577 1 2 0
578 1 2 0
579 1 2 0
580 2 2 0
581 1 2 0
582 1 2 0
583 1 2 0
584 1 2 0
585 2 2 0
586 2 2 1
587 2 2 1
588 1 2 1
589 1 2 1
590 1 2 1
591 1 2 1
592 2 2 1
593 2 2 0
594 1 2 0
595 1 2 1
596 1 2 1
597 1 2 1
598 1 2 1
599 1 2 1
600 1 2 0
601 1 2 0
602 1 2 1
603 2 2 1
604 1 2 1
605 1 2 0
606 1 2 1
607 2 1 1
608 1 2 1
609 1 2 1
610 1 2 1
611 1 2 0
612 1 2 1
613 1 2 1
614 1 2 1
615 2 2 1
616 2 2 1
617 2 2 1
618 2 2 1
619 1 2 0
620 1 2 1
621 2 2 1
622 2 2 1
623 1 2 1
624 1 2 1
625 2 2 1
626 2 2 1
627 2 2 1
628 1 2 1
629 2 2 1
630 1 2 1
631 1 2 1
632 1 2 1
633 1 2 1
634 2 2 1
635 2 2 1
636 1 2 1
637 1 2 0
638 1 2 1
639 1 2 1
640 2 2 1
641 2 2 1
642 1 2 1
643 2 2 1
644 1 2 0
645 1 2 1
646 1 2 1
647 1 2 1
648 1 2 1
649 1 2 1
650 1 2 1
651 2 2 1
652 1 2 1
653 1 2 1
654 1 2 1
655 2 2 1
656 1 2 1
657 1 2 0
658 1 2 1
659 1 1 1
660 1 1 1
661 1 1 1
662 1 2 1
663 1 2 1
664 1 2 1
665 1 2 1
666 2 2 1
667 1 2 1
668 1 2 1
669 1 2 1
670 1 2 1
671 1 2 1
672 1 2 1
673 1 2 1
674 1 2 1
675 1 2 1
676 2 2 1
677 1 2 1
678 2 2 1
679 2 2 1
680 1 2 1
681 1 2 1
682 1 2 1
683 2 2 1
684 2 2 1
685 1 2 1
686 1 2 1
687 1 2 1
688 1 2 1
689 1 2 1
690 1 2 0
691 2 2 1
692 1 2 1
693 1 2 1
694 1 2 1
695 1 2 1
696 2 2 1
697 2 2 1
698 1 2 1
699 1 2 1
700 2 2 1
701 1 2 0
702 2 2 1
703 2 2 1
704 2 2 1
705 2 2 1
706 2 2 1
707 1 2 1
708 1 2 1
709 1 2 0
710 2 2 1
711 2 2 1
712 1 2 1
713 1 2 1
714 1 2 1
715 1 2 1
716 1 2 1
717 2 2 1
718 2 2 0
719 1 2 0
720 1 2 0
721 1 2 0
722 2 2 1
723 1 2 1
724 2 2 1
725 1 2 1
726 2 2 1
727 1 2 1
728 2 2 1
729 2 2 1
730 1 2 1
731 2 2 1
732 2 2 1
733 2 2 1
734 1 2 1
735 1 2 1
736 1 2 1
737 1 2 1
738 1 2 1
739 1 2 1
740 2 2 1
741 1 2 1
742 1 2 1
743 1 2 0
744 1 2 1
745 1 2 1
746 1 2 1
747 2 2 1
748 1 2 1
749 2 2 1
750 1 2 1
751 1 2 1
752 1 2 0
753 1 2 0
754 1 2 0
755 2 2 0
756 1 2 0
757 1 2 0
758 1 2 0
759 1 2 0
760 1 2 0
761 1 2 0
762 1 2 0
763 2 2 0
764 1 2 0
765 1 2 0
766 1 2 0
767 1 2 0
768 1 2 0
769 1 2 0
770 1 2 0
771 1 2 0
772 2 2 0
773 2 2 0
774 2 2 0
775 2 2 0
776 2 2 0
777 2 2 0
778 2 2 0
779 1 2 0
780 2 2 0
781 1 2 0
782 1 2 0
783 2 2 0
784 1 2 0
785 1 2 0
786 2 2 0
787 1 2 0
788 1 2 0
789 2 2 0
790 1 2 0
791 1 2 0
792 1 2 0
793 2 2 0
794 1 2 0
795 2 2 0
796 2 2 0
797 1 2 0
798 1 2 0
799 1 2 0
800 1 2 0
801 1 2 0
802 1 2 0
803 1 2 0
804 1 2 0
805 1 2 0
806 1 2 0
807 1 2 0
808 2 2 0
809 2 2 0
810 1 2 0
811 2 2 0
812 1 2 0
813 1 2 0
814 1 2 0
815 2 2 0
816 1 2 0
817 1 2 0
818 1 2 0
819 1 2 0
820 1 2 0
821 2 2 0
822 2 2 0
823 1 2 0
824 2 2 0
825 2 2 0
826 2 2 0
827 1 2 0
828 2 2 0
829 1 2 0
830 1 2 0
831 2 2 0
832 2 2 0
833 2 2 0
834 1 2 0
835 1 2 0
836 1 2 0
837 1 2 0
838 2 2 0
839 2 2 0
840 1 2 0
841 2 2 0
842 1 2 0
843 1 2 0
844 2 2 0
845 2 2 0
846 1 2 0
847 1 2 0
848 2 2 0
849 1 2 0
850 2 2 0
851 1 2 0
852 1 2 0
853 2 2 0
854 1 2 0
855 1 2 0
856 1 2 0
857 2 2 0
858 1 2 0
859 1 2 0
860 2 2 0
861 1 2 0
862 1 2 0
863 1 2 0
864 1 2 0
865 2 2 0
866 2 2 0
867 1 2 0
868 2 2 0
869 1 2 0
870 2 2 0
871 1 2 0
872 2 2 0
873 1 2 0
874 1 2 0
875 1 2 0
876 1 2 0
877 1 2 0
878 2 2 0
879 1 2 0
880 2 2 0
881 1 2 0
882 2 2 0
883 1 2 0
884 1 2 0
885 2 2 0
886 1 2 0
887 1 2 0
888 2 2 0
889 2 2 0
890 2 2 0
891 2 2 0
892 2 2 0
893 2 2 0
894 1 2 0
895 2 2 0
896 2 2 0
897 1 2 0
898 1 2 0
899 2 2 0
900 1 2 0
901 2 2 0
902 1 2 0
903 2 2 0
904 1 2 0
905 1 2 0
906 1 2 0
907 1 2 0
908 1 2 0
909 1 2 0
910 1 2 0
911 1 2 0
912 1 2 0
913 2 2 0
914 1 2 0
915 1 2 0
916 1 2 0
917 1 2 0
918 1 2 0
919 1 2 0
920 2 2 0
921 1 2 0
922 2 2 0
923 1 2 0
924 2 2 0
925 1 2 0
926 1 2 0
927 2 2 0
928 1 2 0
929 2 2 0
930 2 2 0
931 1 2 0
932 1 2 0
933 1 2 0
934 1 2 0
935 2 1 0
936 1 1 0
937 1 2 0
938 2 2 0
939 1 2 0
940 2 2 0
941 1 2 0
942 1 2 0
943 1 2 0
944 2 2 0
945 1 2 0
946 2 2 0
947 1 2 0
948 2 2 0
949 1 2 0
950 1 2 0
951 1 2 0
952 2 2 0
953 1 2 0
954 1 2 0
955 1 2 0
956 1 2 0
957 1 2 0
958 1 2 0
959 1 2 0
960 2 2 0
961 1 2 0
962 1 2 0
963 2 2 0
964 2 2 0
965 1 2 0
966 2 2 0
967 2 2 0
968 1 2 0
969 2 2 0
970 1 2 0
971 2 2 0
972 2 2 0
973 1 2 0
974 1 2 0
975 1 2 0
976 2 2 0
977 2 1 0
978 2 2 0
979 2 2 0
980 2 2 0
981 2 2 0
982 2 2 0
983 2 2 0
984 1 2 0
985 2 2 0
986 2 2 0
987 2 1 0
988 1 2 0
989 1 2 0
990 2 2 0
991 1 2 0
992 2 2 0
993 2 2 0
994 2 2 0
995 2 2 0
996 1 2 0
997 1 2 0
998 2 2 0
999 2 2 0
1000 1 2 0
The caret package [@R-caret] includes the function createDataPartition that helps us generates indexes for randomly splitting the data into training and test sets: We will split our data in half:
We use the result of the createDataPartition function call to define the training and test sets like this:
# compare train and validation
library(dataCompareR)
comp_train_val <- rCompare(train, validation)
comp_summ <- summary(comp_train_val)
comp_summ[c("datasetSummary", "ncolInAOnly", "ncolInBOnly", "ncolCommon",
"rowsInAOnly", "rowsInBOnly", "nrowCommon")]$datasetSummary
Dataset Name Number of Rows Number of Columns
1 train 500 21
2 validation 500 21
$ncolInAOnly
[1] 0
$ncolInBOnly
[1] 0
$ncolCommon
[1] 21
$rowsInAOnly
[1] indices_removed
<0 rows> (or 0-length row.names)
$rowsInBOnly
[1] indices_removed
<0 rows> (or 0-length row.names)
$nrowCommon
[1] 500
We will start with a Logistic Regression model. Logistic regression is a specific case of a set of generalized linear models.
For logistic regression, outcome is a categorical variable which fits very well to our case since we have outcome customer_good_bad as categorical variable with 2 levels. In R, we can fit the logistic regression model with the function glm: generalized linear models.
This function is more general than logistic regression so we need to specify the model we want through the family parameter [@irizarry2019]:
# Fitting initial model
glm_model <- glm(customer_good_bad ~ ., family = "binomial",
data = train)
# Obtain significance levels using summary()
summary(glm_model)
Call:
glm(formula = customer_good_bad ~ ., family = "binomial", data = train)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2060292 1.3176866 0.16 0.8758
account_statusno_money_acc 0.4714934 0.3220657 1.46 0.1432
account_statuspositive_acc 1.9214381 0.3302976 5.82 0.000000006 ***
duration_month -0.0070307 0.0138640 -0.51 0.6121
credit_historyall_paid 0.2335696 0.4548991 0.51 0.6076
credit_historyno_prob_currbank 1.2112308 0.4739822 2.56 0.0106 *
credit_purposenew_car 1.5122902 0.5787822 2.61 0.0090 **
credit_purposeused_car 0.9620207 0.3710509 2.59 0.0095 **
credit_purposedomestic 0.6204252 0.3115121 1.99 0.0464 *
credit_amount -0.0002192 0.0000702 -3.12 0.0018 **
savings_accountless100 0.5326944 0.4047966 1.32 0.1882
savings_account100to1000 1.0745236 0.5189242 2.07 0.0384 *
savings_accountover1000 1.1834529 0.4010053 2.95 0.0032 **
employment_present1to4 0.5107393 0.3435275 1.49 0.1371
employment_present4to7 0.6485676 0.4261576 1.52 0.1280
employment_present7plus 0.4108147 0.4049936 1.01 0.3104
installment_rate_pct2 -0.0652359 0.4927730 -0.13 0.8947
installment_rate_pct3 -0.7409467 0.5453258 -1.36 0.1742
installment_rate_pct4 -1.3321188 0.4836422 -2.75 0.0059 **
status_sexm_married_wid 0.8414334 0.2934204 2.87 0.0041 **
status_sexfemale 0.4499305 0.4812451 0.93 0.3498
other_debtors_guaryes 0.0921798 0.4416947 0.21 0.8347
residence_duration2 -1.0934504 0.4421509 -2.47 0.0134 *
residence_duration3 -1.3719931 0.4915116 -2.79 0.0052 **
residence_duration4 -0.8004271 0.4332062 -1.85 0.0646 .
property2 -0.4495755 0.3497790 -1.29 0.1987
property3 0.1024474 0.3503562 0.29 0.7700
property4 -0.7351560 0.6027972 -1.22 0.2226
age_years 0.0224649 0.0136187 1.65 0.0990 .
other_install_plansno 0.4197510 0.3412602 1.23 0.2187
housing2 -0.0380901 0.3541866 -0.11 0.9144
housing3 -0.0565226 0.6904937 -0.08 0.9348
exist_credits_nrmorethan1 -0.3824053 0.3450054 -1.11 0.2677
job2 -0.3649171 0.7592653 -0.48 0.6308
job3 -0.1728530 0.7284976 -0.24 0.8124
job4 -0.1171575 0.7845059 -0.15 0.8813
dependents_nr2 0.1155544 0.3816709 0.30 0.7621
telephone_nr2 0.4937540 0.2992690 1.65 0.0990 .
foreign_worker2 -0.6551446 0.8111144 -0.81 0.4193
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 610.86 on 499 degrees of freedom
Residual deviance: 425.59 on 461 degrees of freedom
AIC: 503.6
Number of Fisher Scoring iterations: 5
We see that some of variables have 3 stars beside them.
This variables are statistically significant(have p-values < 0.05). Le’ s filter them:
[1] "account_statuspositive_acc" "credit_historyno_prob_currbank"
[3] "credit_purposenew_car" "credit_purposeused_car"
[5] "credit_purposedomestic" "credit_amount"
[7] "savings_account100to1000" "savings_accountover1000"
[9] "installment_rate_pct4" "status_sexm_married_wid"
[11] "residence_duration2" "residence_duration3"
Next let’s obtain prediction using the predict function:
To form a prediction, we define a decision rule: predict good_creditor if pred_logit > 0.5.
Let’s evaluate the accuracy of our model using function confusionMatrix from caret library[@R-caret]:
# convert pred_logit to a vector of binary values : put as
# cut pred_logit > 0.5
y_hat_glm <- factor(ifelse(pred_logit > 0.5, 1, 0))
# print confusion matrix
confusionMatrix(y_hat_glm, reference = validation$customer_good_bad,
positive = "1")Confusion Matrix and Statistics
Reference
Prediction 0 1
0 66 48
1 84 302
Accuracy : 0.736
95% CI : (0.695, 0.774)
No Information Rate : 0.7
P-Value [Acc > NIR] : 0.04259
Kappa : 0.325
Mcnemar's Test P-Value : 0.00232
Sensitivity : 0.863
Specificity : 0.440
Pos Pred Value : 0.782
Neg Pred Value : 0.579
Prevalence : 0.700
Detection Rate : 0.604
Detection Prevalence : 0.772
Balanced Accuracy : 0.651
'Positive' Class : 1
Since the output contains too much information, let’s print only value of accuracy :
We obtained an overall accuracy of \(73.6 \%\).
The prediction for bad creditors is good judged by value of Specificity \(44\%\).
Sensitivity is \(86 \%\), which is quite good.
Also we notice that NPV is nearly \(58 \%\), and PPV is almost \(78 \%\).
Let’ build our model will all features included.
For building the decision tree we will use function rpart from rpart library[@R-rpart]
Let’s make our prediction as we did with previous model
Let’s evaluate the accuracy of our model:
# print confusion matrix
confusionMatrix(pred_tree, reference = validation$customer_good_bad,
positive = "1")Confusion Matrix and Statistics
Reference
Prediction 0 1
0 54 53
1 96 297
Accuracy : 0.702
95% CI : (0.66, 0.742)
No Information Rate : 0.7
P-Value [Acc > NIR] : 0.48313
Kappa : 0.227
Mcnemar's Test P-Value : 0.00058
Sensitivity : 0.849
Specificity : 0.360
Pos Pred Value : 0.756
Neg Pred Value : 0.505
Prevalence : 0.700
Detection Rate : 0.594
Detection Prevalence : 0.786
Balanced Accuracy : 0.604
'Positive' Class : 1
Since the output contains too much information, let’s print only value of accuracy :
We obtained an overall accuracy of \(70.2 \%\).
Sensitivity is \(84.86 \%\), a very good one, and specificity is \(36 \%\).
We build a logistic regression model with accuracy of \(73.6 \%\).
Specificity of this model was \(44 \%\) and sensitivity \(86 \%\).
We build a classification tree model with accuracy of \(70.2 \%\).
Sensitivity is 84.86 and specificity is \(36 \%\).
Credit risk models are very important for financial institutions such as banks.
The risk of creditor not turning the loan is a parameter which can be modeled and measured apriori in order to minimize loses.
Machine learning algorithms and techniques come in help in such problems.
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| account_status
customer_good_bad | no_account | no_money_acc | positive_acc | Row Total |
------------------|--------------|--------------|--------------|--------------|
0 | 135 | 105 | 60 | 300 |
| 0.5 | 0.4 | 0.1 | |
------------------|--------------|--------------|--------------|--------------|
1 | 139 | 164 | 397 | 700 |
| 0.5 | 0.6 | 0.9 | |
------------------|--------------|--------------|--------------|--------------|
Column Total | 274 | 269 | 457 | 1000 |
| 0.3 | 0.3 | 0.5 | |
------------------|--------------|--------------|--------------|--------------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 120.8 d.f. = 2 p = 0.000000000000000000000000005743
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| credit_history
customer_good_bad | pay_problems | all_paid | no_prob_currbank | Row Total |
------------------|------------------|------------------|------------------|------------------|
0 | 53 | 169 | 78 | 300 |
| 0.6 | 0.3 | 0.2 | |
------------------|------------------|------------------|------------------|------------------|
1 | 36 | 361 | 303 | 700 |
| 0.4 | 0.7 | 0.8 | |
------------------|------------------|------------------|------------------|------------------|
Column Total | 89 | 530 | 381 | 1000 |
| 0.1 | 0.5 | 0.4 | |
------------------|------------------|------------------|------------------|------------------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 54.38 d.f. = 2 p = 0.000000000001557
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| credit_purpose
customer_good_bad | services | new_car | used_car | domestic | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 151 | 17 | 58 | 74 | 300 |
| 0.4 | 0.2 | 0.3 | 0.2 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 251 | 86 | 123 | 240 | 700 |
| 0.6 | 0.8 | 0.7 | 0.8 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 402 | 103 | 181 | 314 | 1000 |
| 0.4 | 0.1 | 0.2 | 0.3 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 26.43 d.f. = 3 p = 0.000007759
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| savings_account
customer_good_bad | no_sav | less100 | 100to1000 | over1000 | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 217 | 34 | 17 | 32 | 300 |
| 0.4 | 0.3 | 0.2 | 0.2 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 386 | 69 | 94 | 151 | 700 |
| 0.6 | 0.7 | 0.8 | 0.8 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 603 | 103 | 111 | 183 | 1000 |
| 0.6 | 0.1 | 0.1 | 0.2 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 35.78 d.f. = 3 p = 0.00000008336
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| employment_present
customer_good_bad | unemp_less1year | 1to4 | 4to7 | 7plus | Row Total |
------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
0 | 93 | 104 | 39 | 64 | 300 |
| 0.4 | 0.3 | 0.2 | 0.3 | |
------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
1 | 141 | 235 | 135 | 189 | 700 |
| 0.6 | 0.7 | 0.8 | 0.7 | |
------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Column Total | 234 | 339 | 174 | 253 | 1000 |
| 0.2 | 0.3 | 0.2 | 0.3 | |
------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 18.09 d.f. = 3 p = 0.0004221
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| installment_rate_pct
customer_good_bad | 1 | 2 | 3 | 4 | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 34 | 62 | 45 | 159 | 300 |
| 0.2 | 0.3 | 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 102 | 169 | 112 | 317 | 700 |
| 0.8 | 0.7 | 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 136 | 231 | 157 | 476 | 1000 |
| 0.1 | 0.2 | 0.2 | 0.5 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 5.477 d.f. = 3 p = 0.14
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| status_sex
customer_good_bad | m_single_divorced | m_married_wid | female | Row Total |
------------------|-------------------|-------------------|-------------------|-------------------|
0 | 129 | 146 | 25 | 300 |
| 0.4 | 0.3 | 0.3 | |
------------------|-------------------|-------------------|-------------------|-------------------|
1 | 231 | 402 | 67 | 700 |
| 0.6 | 0.7 | 0.7 | |
------------------|-------------------|-------------------|-------------------|-------------------|
Column Total | 360 | 548 | 92 | 1000 |
| 0.4 | 0.5 | 0.1 | |
------------------|-------------------|-------------------|-------------------|-------------------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 9.125 d.f. = 2 p = 0.01043
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| other_debtors_guar
customer_good_bad | no | yes | Row Total |
------------------|-----------|-----------|-----------|
0 | 272 | 28 | 300 |
| 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 635 | 65 | 700 |
| 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 907 | 93 | 1000 |
| 0.9 | 0.1 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 0.0005645 d.f. = 1 p = 0.981
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 0.000000000000000000000000000006051 d.f. = 1 p = 1
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| residence_duration
customer_good_bad | 1 | 2 | 3 | 4 | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 36 | 97 | 43 | 124 | 300 |
| 0.3 | 0.3 | 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 94 | 211 | 106 | 289 | 700 |
| 0.7 | 0.7 | 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 130 | 308 | 149 | 413 | 1000 |
| 0.1 | 0.3 | 0.1 | 0.4 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 0.7493 d.f. = 3 p = 0.8616
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| property
customer_good_bad | 1 | 2 | 3 | 4 | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 60 | 71 | 102 | 67 | 300 |
| 0.2 | 0.3 | 0.3 | 0.4 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 222 | 161 | 230 | 87 | 700 |
| 0.8 | 0.7 | 0.7 | 0.6 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 282 | 232 | 332 | 154 | 1000 |
| 0.3 | 0.2 | 0.3 | 0.2 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 23.72 d.f. = 3 p = 0.00002858
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| other_install_plans
customer_good_bad | yes | no | Row Total |
------------------|-----------|-----------|-----------|
0 | 76 | 224 | 300 |
| 0.4 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 110 | 590 | 700 |
| 0.6 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 186 | 814 | 1000 |
| 0.2 | 0.8 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 12.83 d.f. = 1 p = 0.0003405
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 12.21 d.f. = 1 p = 0.0004763
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| housing
customer_good_bad | 1 | 2 | 3 | Row Total |
------------------|-----------|-----------|-----------|-----------|
0 | 70 | 186 | 44 | 300 |
| 0.4 | 0.3 | 0.4 | |
------------------|-----------|-----------|-----------|-----------|
1 | 109 | 528 | 63 | 700 |
| 0.6 | 0.7 | 0.6 | |
------------------|-----------|-----------|-----------|-----------|
Column Total | 179 | 714 | 107 | 1000 |
| 0.2 | 0.7 | 0.1 | |
------------------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 18.67 d.f. = 2 p = 0.0000881
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| exist_credits_nr
customer_good_bad | one | morethan1 | Row Total |
------------------|-----------|-----------|-----------|
0 | 200 | 100 | 300 |
| 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 433 | 267 | 700 |
| 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 633 | 367 | 1000 |
| 0.6 | 0.4 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 2.091 d.f. = 1 p = 0.1482
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 1.889 d.f. = 1 p = 0.1693
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| job
customer_good_bad | 1 | 2 | 3 | 4 | Row Total |
------------------|-----------|-----------|-----------|-----------|-----------|
0 | 7 | 56 | 186 | 51 | 300 |
| 0.3 | 0.3 | 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|-----------|-----------|
1 | 15 | 144 | 444 | 97 | 700 |
| 0.7 | 0.7 | 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Column Total | 22 | 200 | 630 | 148 | 1000 |
| 0.0 | 0.2 | 0.6 | 0.1 | |
------------------|-----------|-----------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 1.885 d.f. = 3 p = 0.5966
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| dependents_nr
customer_good_bad | 1 | 2 | Row Total |
------------------|-----------|-----------|-----------|
0 | 46 | 254 | 300 |
| 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 109 | 591 | 700 |
| 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 155 | 845 | 1000 |
| 0.2 | 0.8 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 0.009089 d.f. = 1 p = 0.924
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 0 d.f. = 1 p = 1
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| telephone_nr
customer_good_bad | 1 | 2 | Row Total |
------------------|-----------|-----------|-----------|
0 | 187 | 113 | 300 |
| 0.3 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 409 | 291 | 700 |
| 0.7 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 596 | 404 | 1000 |
| 0.6 | 0.4 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 1.33 d.f. = 1 p = 0.2488
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 1.173 d.f. = 1 p = 0.2789
Cell Contents
|-------------------------|
| N |
| N / Col Total |
|-------------------------|
Total Observations in Table: 1000
| foreign_worker
customer_good_bad | 1 | 2 | Row Total |
------------------|-----------|-----------|-----------|
0 | 4 | 296 | 300 |
| 0.1 | 0.3 | |
------------------|-----------|-----------|-----------|
1 | 33 | 667 | 700 |
| 0.9 | 0.7 | |
------------------|-----------|-----------|-----------|
Column Total | 37 | 963 | 1000 |
| 0.0 | 1.0 | |
------------------|-----------|-----------|-----------|
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 6.737 d.f. = 1 p = 0.009443
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 5.822 d.f. = 1 p = 0.01583