En este cuaderno se desea mostrar cómo hacer mapas temáticos que muestren la participación municipal de los dos grupos de cultivos más importantes del departamento de Tolima.
Se cargan las librerias a utilizar
library(sf)
## Linking to GEOS 3.11.1, GDAL 3.6.2, PROJ 9.1.1; sf_use_s2() is TRUE
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
library(readxl)
list.files("./Datos", pattern = c('csv'))
## [1] "co.csv" "Tolima_cereales.csv"
## [3] "Tolima_tuber_&_plat.csv"
list.files('./Municipios_Tolima')
## [1] "Municipios_Tolima.cpg" "Municipios_Tolima.dbf" "Municipios_Tolima.prj"
## [4] "Municipios_Tolima.shp" "Municipios_Tolima.shx"
(cereales = read.csv("./Datos/Tolima_cereales.csv"))
## Cod_Mun Municipio Gr_cultivo max_prod
## 1 73671 SALDAÑA CEREALES 69069
## 2 73268 ESPINAL CEREALES 67005
## 3 73319 GUAMO CEREALES 60541
## 4 73585 PURIFICACION CEREALES 58251
## 5 73001 IBAGUE CEREALES 55200
## 6 73030 AMBALEMA CEREALES 39830
## 7 73861 VENADILLO CEREALES 25111
## 8 73408 LERIDA CEREALES 23154
## 9 73547 PIEDRAS CEREALES 18523
## 10 73055 ARMERO (GUAYABAL) CEREALES 18416
## 11 73854 VALLE DE SAN JUAN CEREALES 17220
## 12 73168 CHAPARRAL CEREALES 16220
## 13 73563 PRADO CEREALES 15106
## 14 73483 NATAGAIMA CEREALES 14559
## 15 73026 ALVARADO CEREALES 14024
## 16 73275 FLANDES CEREALES 11354
## 17 73504 ORTEGA CEREALES 9550
## 18 73217 COYAIMA CEREALES 8390
## 19 73678 SAN LUIS CEREALES 7949
## 20 73770 SUAREZ CEREALES 4320
## 21 73200 COELLO CEREALES 2800
## 22 73443 MARIQUITA CEREALES 2722
## 23 73283 FRESNO CEREALES 2000
## 24 73067 ATACO CEREALES 1865
## 25 73024 ALPUJARRA CEREALES 1654
## 26 73555 PLANADAS CEREALES 1368
## 27 73270 FALAN CEREALES 1260
## 28 73616 RIOBLANCO CEREALES 1120
## 29 73624 ROVIRA CEREALES 992
## 30 73043 ANZOATEGUI CEREALES 968
## 31 73675 SAN ANTONIO CEREALES 748
## 32 73520 PALOCABILDO CEREALES 700
## 33 73411 LIBANO CEREALES 640
## 34 73236 DOLORES CEREALES 624
## 35 73349 HONDA CEREALES 364
## 36 73124 CAJAMARCA CEREALES 300
## 37 73347 HERVEO CEREALES 300
## 38 73449 MELGAR CEREALES 279
## 39 73622 RONCESVALLES CEREALES 274
## 40 73870 VILLAHERMOSA CEREALES 240
## 41 73873 VILLARRICA CEREALES 240
## 42 73226 CUNDAY CEREALES 175
## 43 73152 CASABIANCA CEREALES 119
## 44 73352 ICONONZO CEREALES 83
## 45 73148 CARMEN DE APICALA CEREALES 43
## 46 73461 MURILLO CEREALES 38
## 47 73686 SANTA ISABEL CEREALES 35
(munic.tmp = st_read('./Municipios_Tolima/Municipios_Tolima.shp'))
## Reading layer `Municipios_Tolima' from data source
## `C:\Users\laura\Desktop\Geomática_2023\Cuaderno_2_KT\Municipios_Tolima\Municipios_Tolima.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 47 features and 90 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: MAGNA-SIRGAS
## Simple feature collection with 47 features and 90 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: MAGNA-SIRGAS
## First 10 features:
## DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR MPIO_CDPMP VERSION
## 1 73 555 PLANADAS 73555 2018
## 2 73 616 RIOBLANCO 73616 2018
## 3 73 168 CHAPARRAL 73168 2018
## 4 73 622 RONCESVALLES 73622 2018
## 5 73 152 CASABIANCA 73152 2018
## 6 73 347 HERVEO 73347 2018
## 7 73 870 VILLAHERMOSA 73870 2018
## 8 73 283 FRESNO 73283 2018
## 9 73 443 SAN SEBASTIÃ\u0081N DE MARIQUITA 73443 2018
## 10 73 270 FALAN 73270 2018
## AREA LATITUD LONGITUD STCTNENCUE STP3_1_SI STP3_2_NO STP3A_RI
## 1 1754101831 3.098973 -75.81684 8999 359 8640 359
## 2 2046233792 3.468078 -75.85481 10173 49 10124 49
## 3 2102063236 3.743693 -75.58987 24131 0 24131 0
## 4 775849529 4.097861 -75.59428 2839 0 2839 0
## 5 175296179 5.016751 -75.18880 3575 0 3575 0
## 6 322743433 5.068554 -75.24323 4541 0 4541 0
## 7 278849941 4.965753 -75.15593 5218 0 5218 0
## 8 219661479 5.186695 -75.05229 12903 0 12903 0
## 9 293343154 5.235323 -74.90668 18061 0 18061 0
## 10 181322213 5.079257 -74.95703 4155 0 4155 0
## STP3B_TCN STP4_1_SI STP4_2_NO STP9_1_USO STP9_2_USO STP9_3_USO STP9_4_USO
## 1 0 375 8624 7358 199 1438 4
## 2 0 48 10125 6682 602 2886 3
## 3 0 40 24091 18494 521 5096 20
## 4 0 4 2835 2065 64 708 2
## 5 0 0 3575 2341 74 1160 0
## 6 0 0 4541 2921 76 1543 1
## 7 0 14 5204 3626 90 1501 1
## 8 0 0 12903 10540 299 2062 2
## 9 0 387 17674 13328 1275 3451 7
## 10 0 0 4155 2926 67 1162 0
## STP9_2_1_M STP9_2_2_M STP9_2_3_M STP9_2_4_M STP9_2_9_M STP9_3_1_N STP9_3_2_N
## 1 2 165 30 1 1 1 525
## 2 4 192 29 377 0 2 315
## 3 9 441 64 5 2 13 1017
## 4 2 53 8 1 0 6 80
## 5 0 59 15 0 0 0 83
## 6 0 65 11 0 0 0 130
## 7 0 82 8 0 0 4 207
## 8 6 235 46 9 3 14 512
## 9 41 498 233 503 0 52 568
## 10 1 61 5 0 0 2 107
## STP9_3_3_N STP9_3_4_N STP9_3_5_N STP9_3_6_N STP9_3_7_N STP9_3_8_N STP9_3_9_N
## 1 81 262 102 334 17 0 4
## 2 229 592 89 1529 6 0 5
## 3 307 232 124 3107 76 5 3
## 4 45 188 48 312 2 1 1
## 5 49 8 53 917 3 0 1
## 6 55 264 50 994 14 0 0
## 7 130 8 68 982 17 0 11
## 8 202 300 99 852 18 4 1
## 9 393 410 109 1577 75 0 20
## 10 36 843 59 98 6 0 0
## STP9_3_10 STP9_3_99 STVIVIENDA STP14_1_TI STP14_2_TI STP14_3_TI STP14_4_TI
## 1 109 3 7557 6748 404 332 9
## 2 115 4 7284 6570 427 272 2
## 3 203 9 19015 17323 1118 507 16
## 4 25 0 2129 1951 74 103 0
## 5 44 2 2415 2326 48 37 0
## 6 36 0 2997 2873 85 37 0
## 7 73 1 3716 3465 159 90 1
## 8 57 3 10839 8894 1533 404 1
## 9 245 2 14603 12150 1951 398 9
## 10 11 0 2993 2805 114 72 0
## STP14_5_TI STP14_6_TI STP15_1_OC STP15_2_OC STP15_3_OC STP15_4_OC TSP16_HOG
## 1 1 63 6159 31 1077 290 6329
## 2 3 10 5546 11 1187 540 5670
## 3 10 41 14669 16 2637 1693 15012
## 4 0 1 1650 1 83 395 1737
## 5 1 3 1802 9 152 452 1930
## 6 2 0 2099 5 534 359 2163
## 7 1 0 2869 2 89 756 2950
## 8 1 6 9803 31 246 759 10150
## 9 0 95 11493 727 1023 1360 11790
## 10 0 2 2174 298 142 379 2230
## STP19_EC_1 STP19_ES_2 STP19_EE_1 STP19_EE_2 STP19_EE_3 STP19_EE_4 STP19_EE_5
## 1 5595 564 3426 1890 106 6 2
## 2 4885 661 3504 1211 12 3 0
## 3 14204 465 8685 4327 1027 16 3
## 4 1520 130 850 647 8 1 0
## 5 1751 51 852 875 8 0 0
## 6 2041 58 560 1435 33 0 0
## 7 2688 181 802 1789 83 1 0
## 8 9627 176 4043 4435 1099 8 0
## 9 11388 105 5670 4819 714 61 5
## 10 2100 74 1139 919 23 0 3
## STP19_EE_6 STP19_EE_9 STP19_ACU1 STP19_ACU2 STP19_ALC1 STP19_ALC2 STP19_GAS1
## 1 2 163 3259 2900 2600 3559 1418
## 2 1 154 2915 2631 2004 3542 1629
## 3 1 145 10726 3943 8888 5781 7355
## 4 0 14 762 888 718 932 15
## 5 1 15 1243 559 629 1173 541
## 6 0 13 1161 938 1065 1034 1128
## 7 1 12 1409 1460 1045 1824 819
## 8 2 40 6841 2962 5615 4188 5268
## 9 5 114 9910 1583 8874 2619 8354
## 10 1 15 1720 454 652 1522 799
## STP19_GAS2 STP19_GAS9 STP19_REC1 STP19_REC2 STP19_INT1 STP19_INT2 STP19_INT9
## 1 4711 30 2473 3686 409 5715 35
## 2 3886 31 1399 4147 265 5250 31
## 3 7189 125 8957 5712 2333 12202 134
## 4 1619 16 673 977 41 1593 16
## 5 1247 14 659 1143 109 1679 14
## 6 968 3 1114 985 297 1799 3
## 7 2033 17 1128 1741 180 2672 17
## 8 4484 51 5465 4338 937 8812 54
## 9 3007 132 8956 2537 2241 9120 132
## 10 1359 16 721 1453 158 2000 16
## STP27_PERS STPERSON_L STPERSON_S STP32_1_SE STP32_2_SE STP34_1_ED STP34_2_ED
## 1 21557 54 21503 11246 10311 4241 4765
## 2 19090 25 19065 10099 8991 3951 4144
## 3 43795 574 43221 22203 21592 7305 8686
## 4 5161 68 5093 2741 2420 862 1085
## 5 5496 0 5496 2958 2538 832 1032
## 6 6368 7 6361 3307 3061 863 1153
## 7 8530 10 8520 4492 4038 1332 1562
## 8 28920 144 28776 14873 14047 4054 5204
## 9 34505 107 34398 16884 17621 4717 5699
## 10 6612 0 6612 3445 3167 882 1166
## STP34_3_ED STP34_4_ED STP34_5_ED STP34_6_ED STP34_7_ED STP34_8_ED STP34_9_ED
## 1 3407 2868 2307 1972 1065 648 284
## 2 2989 2425 2017 1738 996 583 247
## 3 6483 5607 4800 4557 3196 2039 1122
## 4 768 671 639 559 325 192 60
## 5 713 708 675 700 470 250 116
## 6 841 787 807 878 590 310 139
## 7 1058 1059 1095 1081 815 402 126
## 8 4110 3951 3516 3567 2574 1327 617
## 9 4990 4652 4395 4201 3114 1789 948
## 10 816 727 783 928 701 408 201
## STP51_PRIM STP51_SECU STP51_SUPE STP51_POST STP51_13_E STP51_99_E Shape_Leng
## 1 9976 6847 854 119 1470 215 2.0804727
## 2 9030 5547 751 116 1611 148 2.3105836
## 3 17953 14958 3167 501 3026 770 2.5792724
## 4 2409 1725 294 24 273 50 1.4122546
## 5 2726 1688 196 35 440 36 1.0707227
## 6 3136 1989 323 53 467 37 1.0242400
## 7 4498 2480 196 63 623 60 0.9470417
## 8 12567 10196 1879 276 1921 234 0.8488067
## 9 12327 14020 3717 351 1516 399 0.8394114
## 10 3022 2176 321 94 563 39 0.8617616
## Shape_Area geometry
## 1 0.14257548 POLYGON ((-75.72356 3.31827...
## 2 0.16637385 POLYGON ((-75.83841 3.77412...
## 3 0.17100865 POLYGON ((-75.74412 4.04007...
## 4 0.06314353 POLYGON ((-75.59634 4.27247...
## 5 0.01428912 POLYGON ((-75.07491 5.12314...
## 6 0.02630925 POLYGON ((-75.15427 5.17053...
## 7 0.02272901 POLYGON ((-75.11157 5.06709...
## 8 0.01791172 POLYGON ((-75.00927 5.29282...
## 9 0.02392361 POLYGON ((-74.93615 5.31237...
## 10 0.01478382 POLYGON ((-74.94871 5.17345...
munic.tmp %>% select(MPIO_CCDGO, MPIO_CNMBR, AREA) -> municipios
municipios
## Simple feature collection with 47 features and 3 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: MAGNA-SIRGAS
## First 10 features:
## MPIO_CCDGO MPIO_CNMBR AREA
## 1 555 PLANADAS 1754101831
## 2 616 RIOBLANCO 2046233792
## 3 168 CHAPARRAL 2102063236
## 4 622 RONCESVALLES 775849529
## 5 152 CASABIANCA 175296179
## 6 347 HERVEO 322743433
## 7 870 VILLAHERMOSA 278849941
## 8 283 FRESNO 219661479
## 9 443 SAN SEBASTIÃ\u0081N DE MARIQUITA 293343154
## 10 270 FALAN 181322213
## geometry
## 1 POLYGON ((-75.72356 3.31827...
## 2 POLYGON ((-75.83841 3.77412...
## 3 POLYGON ((-75.74412 4.04007...
## 4 POLYGON ((-75.59634 4.27247...
## 5 POLYGON ((-75.07491 5.12314...
## 6 POLYGON ((-75.15427 5.17053...
## 7 POLYGON ((-75.11157 5.06709...
## 8 POLYGON ((-75.00927 5.29282...
## 9 POLYGON ((-74.93615 5.31237...
## 10 POLYGON ((-74.94871 5.17345...
(ciudades = read_csv("./Datos/co.csv"))
## Rows: 1102 Columns: 9
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): city, country, iso2, admin_name, capital
## dbl (4): lat, lng, population, population_proper
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 1,102 × 9
## city lat lng country iso2 admin_name capital population
## <chr> <dbl> <dbl> <chr> <chr> <chr> <chr> <dbl>
## 1 Bogotá 4.61 -74.1 Colombia CO Bogotá primary 9464000
## 2 Medellín 6.24 -75.6 Colombia CO Antioquia admin 2529403
## 3 Cali 3.44 -76.5 Colombia CO Valle del Cauca admin 2471474
## 4 Barranquilla 11.0 -74.8 Colombia CO Atlántico admin 1274250
## 5 Cartagena 10.4 -75.5 Colombia CO Bolívar admin 1036412
## 6 Soacha 4.58 -74.2 Colombia CO Cundinamarca minor 995268
## 7 Palermo 2.89 -75.4 Colombia CO Huila minor 800000
## 8 Cúcuta 7.91 -72.5 Colombia CO Norte de Santander admin 750000
## 9 Soledad 10.9 -74.8 Colombia CO Atlántico minor 698852
## 10 Pereira 4.81 -75.7 Colombia CO Risaralda admin 590554
## # ℹ 1,092 more rows
## # ℹ 1 more variable: population_proper <dbl>
sf.ciudades <- st_as_sf(x = ciudades, coords = c("lng", "lat"))
sf.ciudades
## Simple feature collection with 1102 features and 7 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -81.7006 ymin: -4.215 xmax: -67.4858 ymax: 13.3817
## CRS: NA
## # A tibble: 1,102 × 8
## city country iso2 admin_name capital population population_proper
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Bogotá Colombia CO Bogotá primary 9464000 7963000
## 2 Medellín Colombia CO Antioquia admin 2529403 2529403
## 3 Cali Colombia CO Valle del C… admin 2471474 2471474
## 4 Barranquilla Colombia CO Atlántico admin 1274250 1274250
## 5 Cartagena Colombia CO Bolívar admin 1036412 1036412
## 6 Soacha Colombia CO Cundinamarca minor 995268 995268
## 7 Palermo Colombia CO Huila minor 800000 800000
## 8 Cúcuta Colombia CO Norte de Sa… admin 750000 750000
## 9 Soledad Colombia CO Atlántico minor 698852 342556
## 10 Pereira Colombia CO Risaralda admin 590554 590554
## # ℹ 1,092 more rows
## # ℹ 1 more variable: geometry <POINT>
st_crs(sf.ciudades) <- 4326
st_crs(municipios) <- 4326
## Warning: st_crs<- : replacing crs does not reproject data; use st_transform for
## that
st_transform(municipios, 4326)
## Simple feature collection with 47 features and 3 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: WGS 84
## First 10 features:
## MPIO_CCDGO MPIO_CNMBR AREA
## 1 555 PLANADAS 1754101831
## 2 616 RIOBLANCO 2046233792
## 3 168 CHAPARRAL 2102063236
## 4 622 RONCESVALLES 775849529
## 5 152 CASABIANCA 175296179
## 6 347 HERVEO 322743433
## 7 870 VILLAHERMOSA 278849941
## 8 283 FRESNO 219661479
## 9 443 SAN SEBASTIÃ\u0081N DE MARIQUITA 293343154
## 10 270 FALAN 181322213
## geometry
## 1 POLYGON ((-75.72356 3.31827...
## 2 POLYGON ((-75.83841 3.77412...
## 3 POLYGON ((-75.74412 4.04007...
## 4 POLYGON ((-75.59634 4.27247...
## 5 POLYGON ((-75.07491 5.12314...
## 6 POLYGON ((-75.15427 5.17053...
## 7 POLYGON ((-75.11157 5.06709...
## 8 POLYGON ((-75.00927 5.29282...
## 9 POLYGON ((-74.93615 5.31237...
## 10 POLYGON ((-74.94871 5.17345...
st_transform(sf.ciudades, 4326)
## Simple feature collection with 1102 features and 7 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -81.7006 ymin: -4.215 xmax: -67.4858 ymax: 13.3817
## Geodetic CRS: WGS 84
## # A tibble: 1,102 × 8
## city country iso2 admin_name capital population population_proper
## * <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Bogotá Colombia CO Bogotá primary 9464000 7963000
## 2 Medellín Colombia CO Antioquia admin 2529403 2529403
## 3 Cali Colombia CO Valle del C… admin 2471474 2471474
## 4 Barranquilla Colombia CO Atlántico admin 1274250 1274250
## 5 Cartagena Colombia CO Bolívar admin 1036412 1036412
## 6 Soacha Colombia CO Cundinamarca minor 995268 995268
## 7 Palermo Colombia CO Huila minor 800000 800000
## 8 Cúcuta Colombia CO Norte de Sa… admin 750000 750000
## 9 Soledad Colombia CO Atlántico minor 698852 342556
## 10 Pereira Colombia CO Risaralda admin 590554 590554
## # ℹ 1,092 more rows
## # ℹ 1 more variable: geometry <POINT [°]>
sf.ciudades.unidas <- st_join(sf.ciudades, municipios, join = st_within)
sf.ciudades.unidas
## Simple feature collection with 1102 features and 10 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -81.7006 ymin: -4.215 xmax: -67.4858 ymax: 13.3817
## Geodetic CRS: WGS 84
## # A tibble: 1,102 × 11
## city country iso2 admin_name capital population population_proper
## * <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Bogotá Colombia CO Bogotá primary 9464000 7963000
## 2 Medellín Colombia CO Antioquia admin 2529403 2529403
## 3 Cali Colombia CO Valle del C… admin 2471474 2471474
## 4 Barranquilla Colombia CO Atlántico admin 1274250 1274250
## 5 Cartagena Colombia CO Bolívar admin 1036412 1036412
## 6 Soacha Colombia CO Cundinamarca minor 995268 995268
## 7 Palermo Colombia CO Huila minor 800000 800000
## 8 Cúcuta Colombia CO Norte de Sa… admin 750000 750000
## 9 Soledad Colombia CO Atlántico minor 698852 342556
## 10 Pereira Colombia CO Risaralda admin 590554 590554
## # ℹ 1,092 more rows
## # ℹ 4 more variables: geometry <POINT [°]>, MPIO_CCDGO <chr>, MPIO_CNMBR <chr>,
## # AREA <dbl>
tolima.ciudades = dplyr::filter(sf.ciudades.unidas, admin_name == 'Tolima')
tolima.ciudades
## Simple feature collection with 47 features and 10 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -75.6447 ymin: 3.1964 xmax: -74.5328 ymax: 5.2069
## Geodetic CRS: WGS 84
## # A tibble: 47 × 11
## city country iso2 admin_name capital population population_proper
## * <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 Ibagué Colombia CO Tolima admin 541101 541101
## 2 Espinal Colombia CO Tolima minor 75828 75828
## 3 Chaparral Colombia CO Tolima minor 47397 47397
## 4 Líbano Colombia CO Tolima minor 39665 39665
## 5 Melgar Colombia CO Tolima minor 37224 37224
## 6 Guamo Colombia CO Tolima minor 31350 31350
## 7 Planadas Colombia CO Tolima minor 30117 30117
## 8 Fresno Colombia CO Tolima minor 29794 29794
## 9 Purificación Colombia CO Tolima minor 29777 29777
## 10 Flandes Colombia CO Tolima minor 29478 29478
## # ℹ 37 more rows
## # ℹ 4 more variables: geometry <POINT [°]>, MPIO_CCDGO <chr>, MPIO_CNMBR <chr>,
## # AREA <dbl>
library(tmap)
library(ggplot2)
library(ggrepel)
library(classInt)
library(tidyr)
class(cereales$Cod_Mun)
## [1] "integer"
class(municipios$MPIO_CCDGO)
## [1] "character"
cereales$Cod_Mun = as.character(cereales$Cod_Mun)
class(cereales$Cod_Mun)
## [1] "character"
class(municipios$MPIO_CCDGO)
## [1] "character"
head(cereales)
## Cod_Mun Municipio Gr_cultivo max_prod
## 1 73671 SALDAÑA CEREALES 69069
## 2 73268 ESPINAL CEREALES 67005
## 3 73319 GUAMO CEREALES 60541
## 4 73585 PURIFICACION CEREALES 58251
## 5 73001 IBAGUE CEREALES 55200
## 6 73030 AMBALEMA CEREALES 39830
head(municipios)
## Simple feature collection with 6 features and 3 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -75.04211 ymax: 5.171479
## Geodetic CRS: WGS 84
## MPIO_CCDGO MPIO_CNMBR AREA geometry
## 1 555 PLANADAS 1754101831 POLYGON ((-75.72356 3.31827...
## 2 616 RIOBLANCO 2046233792 POLYGON ((-75.83841 3.77412...
## 3 168 CHAPARRAL 2102063236 POLYGON ((-75.74412 4.04007...
## 4 622 RONCESVALLES 775849529 POLYGON ((-75.59634 4.27247...
## 5 152 CASABIANCA 175296179 POLYGON ((-75.07491 5.12314...
## 6 347 HERVEO 322743433 POLYGON ((-75.15427 5.17053...
municipios$prefijo = "73"
municipios %>% unite(Codigo, c("prefijo","MPIO_CCDGO"), sep = "") -> municipios2
head(municipios2)
## Simple feature collection with 6 features and 3 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -75.04211 ymax: 5.171479
## Geodetic CRS: WGS 84
## Codigo MPIO_CNMBR AREA geometry
## 1 73555 PLANADAS 1754101831 POLYGON ((-75.72356 3.31827...
## 2 73616 RIOBLANCO 2046233792 POLYGON ((-75.83841 3.77412...
## 3 73168 CHAPARRAL 2102063236 POLYGON ((-75.74412 4.04007...
## 4 73622 RONCESVALLES 775849529 POLYGON ((-75.59634 4.27247...
## 5 73152 CASABIANCA 175296179 POLYGON ((-75.07491 5.12314...
## 6 73347 HERVEO 322743433 POLYGON ((-75.15427 5.17053...
municipios_cereales = left_join(municipios2, cereales, by = c("Codigo" = "Cod_Mun"))
municipios_cereales
## Simple feature collection with 47 features and 6 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: WGS 84
## First 10 features:
## Codigo MPIO_CNMBR AREA Municipio Gr_cultivo
## 1 73555 PLANADAS 1754101831 PLANADAS CEREALES
## 2 73616 RIOBLANCO 2046233792 RIOBLANCO CEREALES
## 3 73168 CHAPARRAL 2102063236 CHAPARRAL CEREALES
## 4 73622 RONCESVALLES 775849529 RONCESVALLES CEREALES
## 5 73152 CASABIANCA 175296179 CASABIANCA CEREALES
## 6 73347 HERVEO 322743433 HERVEO CEREALES
## 7 73870 VILLAHERMOSA 278849941 VILLAHERMOSA CEREALES
## 8 73283 FRESNO 219661479 FRESNO CEREALES
## 9 73443 SAN SEBASTIÃ\u0081N DE MARIQUITA 293343154 MARIQUITA CEREALES
## 10 73270 FALAN 181322213 FALAN CEREALES
## max_prod geometry
## 1 1368 POLYGON ((-75.72356 3.31827...
## 2 1120 POLYGON ((-75.83841 3.77412...
## 3 16220 POLYGON ((-75.74412 4.04007...
## 4 274 POLYGON ((-75.59634 4.27247...
## 5 119 POLYGON ((-75.07491 5.12314...
## 6 300 POLYGON ((-75.15427 5.17053...
## 7 240 POLYGON ((-75.11157 5.06709...
## 8 2000 POLYGON ((-75.00927 5.29282...
## 9 2722 POLYGON ((-74.93615 5.31237...
## 10 1260 POLYGON ((-74.94871 5.17345...
facet = "max_prod"
cereales_map =
tm_shape(municipios_cereales) + tm_polygons(facet) + tm_text(text = "Municipio", size = 0.7, fontfamily = "sans") +
tm_shape(tolima.ciudades) + tm_symbols(shape = 2, col = "red", size = 0.20) +
tm_credits("Data source: UPRA (2022)", fontface = "bold") +
tm_layout(main.title = "Produccion cereales en 2022",
main.title.fontface = "bold.italic",
legend.title.fontfamily = "monospace") +
tm_scale_bar(position = c("left", "bottom"))
tmap_mode("view")
## tmap mode set to interactive viewing
cereales_map
## Credits not supported in view mode.
## Symbol shapes other than circles or icons are not supported in view mode.
tuber_plat = read_csv("./Datos/Tolima_tuber_&_plat.csv", show_col_types = FALSE)
tuber_plat
## # A tibble: 47 × 4
## Cod_Mun Municipio Gr_cultivo max_prod
## <dbl> <chr> <chr> <dbl>
## 1 73124 CAJAMARCA TUBERCULOS Y PLATANOS 60000
## 2 73555 PLANADAS TUBERCULOS Y PLATANOS 41700
## 3 73067 ATACO TUBERCULOS Y PLATANOS 25603
## 4 73001 IBAGUE TUBERCULOS Y PLATANOS 20295
## 5 73217 COYAIMA TUBERCULOS Y PLATANOS 18408
## 6 73283 FRESNO TUBERCULOS Y PLATANOS 16881
## 7 73411 LIBANO TUBERCULOS Y PLATANOS 16800
## 8 73624 ROVIRA TUBERCULOS Y PLATANOS 15100
## 9 73504 ORTEGA TUBERCULOS Y PLATANOS 15050
## 10 73854 VALLE DE SAN JUAN TUBERCULOS Y PLATANOS 15000
## # ℹ 37 more rows
class(tuber_plat$Cod_Mun)
## [1] "numeric"
class(municipios$MPIO_CCDGO)
## [1] "character"
tuber_plat$Cod_Mun = as.character(tuber_plat$Cod_Mun)
class(tuber_plat$Cod_Mun)
## [1] "character"
class(municipios$MPIO_CCDGO)
## [1] "character"
head(tuber_plat)
## # A tibble: 6 × 4
## Cod_Mun Municipio Gr_cultivo max_prod
## <chr> <chr> <chr> <dbl>
## 1 73124 CAJAMARCA TUBERCULOS Y PLATANOS 60000
## 2 73555 PLANADAS TUBERCULOS Y PLATANOS 41700
## 3 73067 ATACO TUBERCULOS Y PLATANOS 25603
## 4 73001 IBAGUE TUBERCULOS Y PLATANOS 20295
## 5 73217 COYAIMA TUBERCULOS Y PLATANOS 18408
## 6 73283 FRESNO TUBERCULOS Y PLATANOS 16881
head(municipios)
## Simple feature collection with 6 features and 4 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -75.04211 ymax: 5.171479
## Geodetic CRS: WGS 84
## MPIO_CCDGO MPIO_CNMBR AREA geometry prefijo
## 1 555 PLANADAS 1754101831 POLYGON ((-75.72356 3.31827... 73
## 2 616 RIOBLANCO 2046233792 POLYGON ((-75.83841 3.77412... 73
## 3 168 CHAPARRAL 2102063236 POLYGON ((-75.74412 4.04007... 73
## 4 622 RONCESVALLES 775849529 POLYGON ((-75.59634 4.27247... 73
## 5 152 CASABIANCA 175296179 POLYGON ((-75.07491 5.12314... 73
## 6 347 HERVEO 322743433 POLYGON ((-75.15427 5.17053... 73
municipios$prefi = "73"
municipios%>% unite(Codigo, c("prefi","MPIO_CCDGO"), sep="") -> municipios3
head(municipios3)
## Simple feature collection with 6 features and 4 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -75.04211 ymax: 5.171479
## Geodetic CRS: WGS 84
## Codigo MPIO_CNMBR AREA prefijo geometry
## 1 73555 PLANADAS 1754101831 73 POLYGON ((-75.72356 3.31827...
## 2 73616 RIOBLANCO 2046233792 73 POLYGON ((-75.83841 3.77412...
## 3 73168 CHAPARRAL 2102063236 73 POLYGON ((-75.74412 4.04007...
## 4 73622 RONCESVALLES 775849529 73 POLYGON ((-75.59634 4.27247...
## 5 73152 CASABIANCA 175296179 73 POLYGON ((-75.07491 5.12314...
## 6 73347 HERVEO 322743433 73 POLYGON ((-75.15427 5.17053...
municipios_tuber_plat = left_join(municipios3, tuber_plat, by = c("Codigo" = "Cod_Mun"))
municipios_tuber_plat
## Simple feature collection with 47 features and 7 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -76.10574 ymin: 2.871081 xmax: -74.47482 ymax: 5.319342
## Geodetic CRS: WGS 84
## First 10 features:
## Codigo MPIO_CNMBR AREA prefijo Municipio
## 1 73555 PLANADAS 1754101831 73 PLANADAS
## 2 73616 RIOBLANCO 2046233792 73 RIOBLANCO
## 3 73168 CHAPARRAL 2102063236 73 CHAPARRAL
## 4 73622 RONCESVALLES 775849529 73 RONCESVALLES
## 5 73152 CASABIANCA 175296179 73 CASABIANCA
## 6 73347 HERVEO 322743433 73 HERVEO
## 7 73870 VILLAHERMOSA 278849941 73 VILLAHERMOSA
## 8 73283 FRESNO 219661479 73 FRESNO
## 9 73443 SAN SEBASTIÃ\u0081N DE MARIQUITA 293343154 73 MARIQUITA
## 10 73270 FALAN 181322213 73 FALAN
## Gr_cultivo max_prod geometry
## 1 TUBERCULOS Y PLATANOS 41700 POLYGON ((-75.72356 3.31827...
## 2 TUBERCULOS Y PLATANOS 6400 POLYGON ((-75.83841 3.77412...
## 3 TUBERCULOS Y PLATANOS 4500 POLYGON ((-75.74412 4.04007...
## 4 TUBERCULOS Y PLATANOS 10540 POLYGON ((-75.59634 4.27247...
## 5 TUBERCULOS Y PLATANOS 10250 POLYGON ((-75.07491 5.12314...
## 6 TUBERCULOS Y PLATANOS 8139 POLYGON ((-75.15427 5.17053...
## 7 TUBERCULOS Y PLATANOS 12570 POLYGON ((-75.11157 5.06709...
## 8 TUBERCULOS Y PLATANOS 16881 POLYGON ((-75.00927 5.29282...
## 9 TUBERCULOS Y PLATANOS 5600 POLYGON ((-74.93615 5.31237...
## 10 TUBERCULOS Y PLATANOS 14800 POLYGON ((-74.94871 5.17345...
facet = "max_prod"
tuber_plat_map =
tm_shape(municipios_tuber_plat) + tm_polygons(facet) + tm_text(text = "Municipio", size = 0.7, fontfamily = "sans") +
tm_shape(tolima.ciudades) + tm_symbols(shape = 2, col = "red", size = 0.20) +
tm_credits("Data source: UPRA (2022)", fontface = "bold") +
tm_layout(main.title = "Produccion de tuberculos y platanos en 2022",
main.title.fontface = "bold.italic",
legend.title.fontfamily = "monospace") +
tm_scale_bar(position = c("left", "bottom"))
tmap_mode("view")
## tmap mode set to interactive viewing
tuber_plat_map
## Credits not supported in view mode.
## Symbol shapes other than circles or icons are not supported in view mode.
Lizarazo, I., 2022. Getting started with thematic maps. Disponible en: https://rpubs.com/ials2un/thematic_maps_v2.
sessionInfo()
## R version 4.3.0 (2023-04-21 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 11 x64 (build 22000)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=Spanish_Colombia.utf8 LC_CTYPE=Spanish_Colombia.utf8
## [3] LC_MONETARY=Spanish_Colombia.utf8 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Colombia.utf8
##
## time zone: America/Bogota
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] tidyr_1.3.0 classInt_0.4-9 ggrepel_0.9.3 ggplot2_3.4.2 tmap_3.3-3
## [6] readxl_1.4.2 readr_2.1.4 dplyr_1.1.2 sf_1.0-12
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.3 xfun_0.39 bslib_0.4.2
## [4] raster_3.6-20 htmlwidgets_1.6.2 lattice_0.21-8
## [7] tzdb_0.3.0 leaflet.providers_1.9.0 vctrs_0.6.2
## [10] tools_4.3.0 crosstalk_1.2.0 generics_0.1.3
## [13] parallel_4.3.0 tibble_3.2.1 proxy_0.4-27
## [16] fansi_1.0.4 pkgconfig_2.0.3 KernSmooth_2.23-20
## [19] RColorBrewer_1.1-3 leaflet_2.1.2 lifecycle_1.0.3
## [22] compiler_4.3.0 munsell_0.5.0 terra_1.7-29
## [25] codetools_0.2-19 leafsync_0.1.0 stars_0.6-1
## [28] htmltools_0.5.5 class_7.3-21 sass_0.4.5
## [31] yaml_2.3.7 pillar_1.9.0 crayon_1.5.2
## [34] jquerylib_0.1.4 ellipsis_0.3.2 cachem_1.0.7
## [37] lwgeom_0.2-11 wk_0.7.2 abind_1.4-5
## [40] mime_0.12 tidyselect_1.2.0 digest_0.6.31
## [43] purrr_1.0.1 fastmap_1.1.1 grid_4.3.0
## [46] colorspace_2.1-0 cli_3.6.1 magrittr_2.0.3
## [49] base64enc_0.1-3 dichromat_2.0-0.1 XML_3.99-0.14
## [52] utf8_1.2.3 leafem_0.2.0 e1071_1.7-13
## [55] withr_2.5.0 scales_1.2.1 sp_1.6-0
## [58] bit64_4.0.5 rmarkdown_2.21 bit_4.0.5
## [61] cellranger_1.1.0 png_0.1-8 hms_1.1.3
## [64] evaluate_0.20 knitr_1.42 tmaptools_3.1-1
## [67] viridisLite_0.4.1 markdown_1.6 s2_1.1.3
## [70] rlang_1.1.1 Rcpp_1.0.10 glue_1.6.2
## [73] DBI_1.1.3 rstudioapi_0.14 vroom_1.6.3
## [76] jsonlite_1.8.4 R6_2.5.1 units_0.8-2