TO DO: - add in models with LIWC.max scores for trust in experts and vaxx intentions - re organize this document - double check work again in the prep RMD

0. import data sets

~~ DESCRIPTIVE STATS ~~

1. demographics

a. sample size

b. age

c. gender

d. party identity

e. education

2. variables of interest

a. media exposure

Not included here, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about COVID-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).

b. average analytical media consumption (AAMC)

The first step to creating the average analytic media consumption is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the sum of each of these products and dividing this sum by the total amount of media a participant is exposed to

fox_index = (fox participant exposure x fox analytic score) (fox_index + cnn_index + msnbc_index + …) / sum of media exposure

c. symbolic ideology

symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).

d. trust in experts

trust in experts is an average of 3-items asking about how much participants trust experts, medicine, economics, public health, and science. The trust response scale ranges from -3 (strongly distrust) to 0 (Neither trust nor distrust) to +3 (Strongly trust)

3. LIWC media measures

a. Analytical thinking scales

Media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns.

i. US

iii. UK

iv. pairwise correlation for LIWC variables

- US

- UK

- both countries

4. outcome measures

Participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).

5. pairwise correlation table for IVs, DVs, and covariates

a. US

b. UK

~~ ANALYSES ~~

6. Analyses for Study 1 US + UK (July-August)

a. vaxx intentions models

i. vaxxIntent ~ exp.sum * (ideology + country + age + edu)

summary(m.intent1 <- lm(vaxxIntentions ~ exp.sum.c * (USvUK + ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = vaxxIntentions ~ exp.sum.c * (USvUK + ideology.c + 
##     age.c + education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3709 -1.3222  0.4151  1.5270  4.8337 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1.0013334  0.0312150  32.079  < 2e-16 ***
## exp.sum.c              0.0371863  0.0049488   7.514 6.88e-14 ***
## USvUK                  0.7564259  0.0623192  12.138  < 2e-16 ***
## ideology.c            -0.2338374  0.0198588 -11.775  < 2e-16 ***
## age.c                  0.0211358  0.0020119  10.505  < 2e-16 ***
## education.c            0.0596152  0.0112303   5.308 1.16e-07 ***
## exp.sum.c:USvUK       -0.0008067  0.0098026  -0.082   0.9344    
## exp.sum.c:ideology.c   0.0094591  0.0019394   4.877 1.11e-06 ***
## exp.sum.c:age.c       -0.0005223  0.0002228  -2.344   0.0191 *  
## exp.sum.c:education.c -0.0026001  0.0010096  -2.575   0.0100 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.948 on 4459 degrees of freedom
##   (100 observations deleted due to missingness)
## Multiple R-squared:  0.1245, Adjusted R-squared:  0.1227 
## F-statistic: 70.42 on 9 and 4459 DF,  p-value: < 2.2e-16

- plot exp.sum * ideology

- across country

## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

- US plot

## [1] -1.51398
## [1] 1.679717
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

- UK plot

## [1] -1.963628
## [1] 0.7460446
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

ii. vaxxIntent ~ analytic.max * (ideology + country + age + edu)

summary(m.intent2 <- lm(vaxxIntentions ~ analytic.max.c * (USvUK + ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = vaxxIntentions ~ analytic.max.c * (USvUK + ideology.c + 
##     age.c + education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2308 -1.2316  0.4392  1.5653  3.8144 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 1.0499277  0.0329277  31.886  < 2e-16 ***
## analytic.max.c              0.0058345  0.0056311   1.036 0.300209    
## USvUK                       0.7569826  0.0651917  11.612  < 2e-16 ***
## ideology.c                 -0.2258536  0.0209117 -10.800  < 2e-16 ***
## age.c                       0.0189892  0.0020943   9.067  < 2e-16 ***
## education.c                 0.0431561  0.0116315   3.710 0.000210 ***
## analytic.max.c:USvUK       -0.0410463  0.0112307  -3.655 0.000261 ***
## analytic.max.c:ideology.c   0.0004638  0.0027138   0.171 0.864314    
## analytic.max.c:age.c       -0.0006315  0.0002726  -2.316 0.020600 *  
## analytic.max.c:education.c -0.0012022  0.0015043  -0.799 0.424240    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.945 on 4091 degrees of freedom
##   (468 observations deleted due to missingness)
## Multiple R-squared:  0.08886,    Adjusted R-squared:  0.08685 
## F-statistic: 44.33 on 9 and 4091 DF,  p-value: < 2.2e-16

iii. vaxxIntent ~ AAMC * (ideology + country + age + edu)

summary(m.intent3 <- lm(vaxxIntentions ~ AAMC.c * (USvUK + ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = vaxxIntentions ~ AAMC.c * (USvUK + ideology.c + 
##     age.c + education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2604 -1.2285  0.4271  1.5643  4.3599 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.0384686  0.0330778  31.395  < 2e-16 ***
## AAMC.c              0.0167468  0.0076492   2.189 0.028627 *  
## USvUK               0.7700580  0.0649488  11.856  < 2e-16 ***
## ideology.c         -0.2167702  0.0209511 -10.346  < 2e-16 ***
## age.c               0.0195958  0.0020977   9.342  < 2e-16 ***
## education.c         0.0427614  0.0116636   3.666 0.000249 ***
## AAMC.c:USvUK       -0.0754037  0.0149618  -5.040 4.86e-07 ***
## AAMC.c:ideology.c  -0.0053693  0.0039380  -1.363 0.172814    
## AAMC.c:age.c       -0.0008045  0.0003978  -2.023 0.043189 *  
## AAMC.c:education.c -0.0024316  0.0024871  -0.978 0.328291    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.94 on 4091 degrees of freedom
##   (468 observations deleted due to missingness)
## Multiple R-squared:  0.09309,    Adjusted R-squared:  0.09109 
## F-statistic: 46.66 on 9 and 4091 DF,  p-value: < 2.2e-16

iv. comparing exposure sum, analytic max, and AAMC models

tab_model(m.intent1, m.intent2, m.intent3,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 3)
  vaxxIntentions vaxxIntentions vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df Est SE CI t p df
(Intercept) 1.001 0.031 0.940 – 1.063 32.079 <0.001 4459.000 1.050 0.033 0.985 – 1.114 31.886 <0.001 4091.000 1.038 0.033 0.974 – 1.103 31.395 <0.001 4091.000
exp sum c 0.037 0.005 0.027 – 0.047 7.514 <0.001 4459.000
USvUK 0.756 0.062 0.634 – 0.879 12.138 <0.001 4459.000 0.757 0.065 0.629 – 0.885 11.612 <0.001 4091.000 0.770 0.065 0.643 – 0.897 11.856 <0.001 4091.000
ideology c -0.234 0.020 -0.273 – -0.195 -11.775 <0.001 4459.000 -0.226 0.021 -0.267 – -0.185 -10.800 <0.001 4091.000 -0.217 0.021 -0.258 – -0.176 -10.346 <0.001 4091.000
age c 0.021 0.002 0.017 – 0.025 10.505 <0.001 4459.000 0.019 0.002 0.015 – 0.023 9.067 <0.001 4091.000 0.020 0.002 0.015 – 0.024 9.342 <0.001 4091.000
education c 0.060 0.011 0.038 – 0.082 5.308 <0.001 4459.000 0.043 0.012 0.020 – 0.066 3.710 <0.001 4091.000 0.043 0.012 0.020 – 0.066 3.666 <0.001 4091.000
exp sum c × USvUK -0.001 0.010 -0.020 – 0.018 -0.082 0.934 4459.000
exp sum c × ideology c 0.009 0.002 0.006 – 0.013 4.877 <0.001 4459.000
exp sum c × age c -0.001 0.000 -0.001 – -0.000 -2.344 0.019 4459.000
exp sum c × education c -0.003 0.001 -0.005 – -0.001 -2.575 0.010 4459.000
analytic max c 0.006 0.006 -0.005 – 0.017 1.036 0.300 4091.000
analytic max c × USvUK -0.041 0.011 -0.063 – -0.019 -3.655 <0.001 4091.000
analytic max c × ideology
c
0.000 0.003 -0.005 – 0.006 0.171 0.864 4091.000
analytic max c × age c -0.001 0.000 -0.001 – -0.000 -2.316 0.021 4091.000
analytic max c ×
education c
-0.001 0.002 -0.004 – 0.002 -0.799 0.424 4091.000
AAMC c 0.017 0.008 0.002 – 0.032 2.189 0.029 4091.000
AAMC c × USvUK -0.075 0.015 -0.105 – -0.046 -5.040 <0.001 4091.000
AAMC c × ideology c -0.005 0.004 -0.013 – 0.002 -1.363 0.173 4091.000
AAMC c × age c -0.001 0.000 -0.002 – -0.000 -2.023 0.043 4091.000
AAMC c × education c -0.002 0.002 -0.007 – 0.002 -0.978 0.328 4091.000
Observations 4469 4101 4101
R2 / R2 adjusted 0.124 / 0.123 0.089 / 0.087 0.093 / 0.091

b. trust in expert models

i. trustExpert ~ exp.sum * (ideology + country + age + edu)

summary(m.expert1 <- lm(trustExpert ~ exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = trustExpert ~ exp.sum.c * (USvUK + ideology.c + 
##     age.c + education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4196 -0.6175  0.2629  0.9390  3.2608 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            1.7131363  0.0217717  78.686  < 2e-16 ***
## exp.sum.c              0.0174254  0.0034517   5.048 4.63e-07 ***
## USvUK                  0.5780894  0.0434661  13.300  < 2e-16 ***
## ideology.c            -0.1936516  0.0138510 -13.981  < 2e-16 ***
## age.c                  0.0093749  0.0014033   6.681 2.67e-11 ***
## education.c            0.0531146  0.0078329   6.781 1.35e-11 ***
## exp.sum.c:USvUK       -0.0151759  0.0068371  -2.220   0.0265 *  
## exp.sum.c:ideology.c   0.0060783  0.0013527   4.494 7.18e-06 ***
## exp.sum.c:age.c        0.0002504  0.0001554   1.611   0.1072    
## exp.sum.c:education.c -0.0002598  0.0007042  -0.369   0.7122    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.359 on 4459 degrees of freedom
##   (100 observations deleted due to missingness)
## Multiple R-squared:  0.1298, Adjusted R-squared:  0.128 
## F-statistic: 73.89 on 9 and 4459 DF,  p-value: < 2.2e-16

- plot exp.sum * ideology

- across country

## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

- US plot

## [1] -1.51398
## [1] 1.679717
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

- UK plot

## [1] -1.963628
## [1] 0.7460446
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.

ii. trustExpert ~ analytic.max * (ideology + country + age + edu)

summary(m.expert2 <- lm(trustExpert ~ analytic.max.c * (USvUK +ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = trustExpert ~ analytic.max.c * (USvUK + ideology.c + 
##     age.c + education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3571 -0.5518  0.2827  0.9277  2.8098 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 1.7538031  0.0226105  77.566  < 2e-16 ***
## analytic.max.c             -0.0035568  0.0038667  -0.920  0.35771    
## USvUK                       0.5393841  0.0447653  12.049  < 2e-16 ***
## ideology.c                 -0.2060372  0.0143595 -14.348  < 2e-16 ***
## age.c                       0.0082072  0.0014381   5.707 1.23e-08 ***
## education.c                 0.0459347  0.0079870   5.751 9.51e-09 ***
## analytic.max.c:USvUK       -0.0265921  0.0077118  -3.448  0.00057 ***
## analytic.max.c:ideology.c  -0.0002878  0.0018635  -0.154  0.87728    
## analytic.max.c:age.c        0.0005239  0.0001872   2.798  0.00516 ** 
## analytic.max.c:education.c  0.0002213  0.0010330   0.214  0.83038    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.335 on 4091 degrees of freedom
##   (468 observations deleted due to missingness)
## Multiple R-squared:  0.1055, Adjusted R-squared:  0.1035 
## F-statistic:  53.6 on 9 and 4091 DF,  p-value: < 2.2e-16

iii. trustExpert ~ AAMC * (ideology + country + age + edu)

summary(m.expert3 <- lm(trustExpert ~ AAMC.c * (USvUK +ideology.c + age.c + education.c), data = d))
## 
## Call:
## lm(formula = trustExpert ~ AAMC.c * (USvUK + ideology.c + age.c + 
##     education.c), data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4103 -0.5759  0.2897  0.9222  2.8223 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.7452730  0.0227359  76.763  < 2e-16 ***
## AAMC.c              0.0043972  0.0052576   0.836   0.4030    
## USvUK               0.5502446  0.0446423  12.326  < 2e-16 ***
## ideology.c         -0.1988518  0.0144007 -13.809  < 2e-16 ***
## age.c               0.0085194  0.0014418   5.909 3.73e-09 ***
## education.c         0.0434790  0.0080169   5.423 6.19e-08 ***
## AAMC.c:USvUK       -0.0428984  0.0102839  -4.171 3.09e-05 ***
## AAMC.c:ideology.c  -0.0044641  0.0027068  -1.649   0.0992 .  
## AAMC.c:age.c        0.0005604  0.0002734   2.050   0.0404 *  
## AAMC.c:education.c  0.0019831  0.0017095   1.160   0.2461    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.333 on 4091 degrees of freedom
##   (468 observations deleted due to missingness)
## Multiple R-squared:  0.1079, Adjusted R-squared:  0.1059 
## F-statistic: 54.97 on 9 and 4091 DF,  p-value: < 2.2e-16

iv. comparing exposure sum, analytic max, and AAMC models

tab_model(m.expert1, m.expert2, m.expert3,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  trustExpert trustExpert trustExpert
Predictors Est SE CI t p df Est SE CI t p df Est SE CI t p df
(Intercept) 1.7131 0.0218 1.6705 – 1.7558 78.6863 <0.001 4459.0000 1.7538 0.0226 1.7095 – 1.7981 77.5658 <0.001 4091.0000 1.7453 0.0227 1.7007 – 1.7898 76.7629 <0.001 4091.0000
exp sum c 0.0174 0.0035 0.0107 – 0.0242 5.0484 <0.001 4459.0000
USvUK 0.5781 0.0435 0.4929 – 0.6633 13.2998 <0.001 4459.0000 0.5394 0.0448 0.4516 – 0.6271 12.0492 <0.001 4091.0000 0.5502 0.0446 0.4627 – 0.6378 12.3256 <0.001 4091.0000
ideology c -0.1937 0.0139 -0.2208 – -0.1665 -13.9810 <0.001 4459.0000 -0.2060 0.0144 -0.2342 – -0.1779 -14.3485 <0.001 4091.0000 -0.1989 0.0144 -0.2271 – -0.1706 -13.8085 <0.001 4091.0000
age c 0.0094 0.0014 0.0066 – 0.0121 6.6808 <0.001 4459.0000 0.0082 0.0014 0.0054 – 0.0110 5.7071 <0.001 4091.0000 0.0085 0.0014 0.0057 – 0.0113 5.9087 <0.001 4091.0000
education c 0.0531 0.0078 0.0378 – 0.0685 6.7810 <0.001 4459.0000 0.0459 0.0080 0.0303 – 0.0616 5.7512 <0.001 4091.0000 0.0435 0.0080 0.0278 – 0.0592 5.4234 <0.001 4091.0000
exp sum c × USvUK -0.0152 0.0068 -0.0286 – -0.0018 -2.2197 0.026 4459.0000
exp sum c × ideology c 0.0061 0.0014 0.0034 – 0.0087 4.4936 <0.001 4459.0000
exp sum c × age c 0.0003 0.0002 -0.0001 – 0.0006 1.6113 0.107 4459.0000
exp sum c × education c -0.0003 0.0007 -0.0016 – 0.0011 -0.3689 0.712 4459.0000
analytic max c -0.0036 0.0039 -0.0111 – 0.0040 -0.9198 0.358 4091.0000
analytic max c × USvUK -0.0266 0.0077 -0.0417 – -0.0115 -3.4482 0.001 4091.0000
analytic max c × ideology
c
-0.0003 0.0019 -0.0039 – 0.0034 -0.1544 0.877 4091.0000
analytic max c × age c 0.0005 0.0002 0.0002 – 0.0009 2.7982 0.005 4091.0000
analytic max c ×
education c
0.0002 0.0010 -0.0018 – 0.0022 0.2142 0.830 4091.0000
AAMC c 0.0044 0.0053 -0.0059 – 0.0147 0.8364 0.403 4091.0000
AAMC c × USvUK -0.0429 0.0103 -0.0631 – -0.0227 -4.1714 <0.001 4091.0000
AAMC c × ideology c -0.0045 0.0027 -0.0098 – 0.0008 -1.6492 0.099 4091.0000
AAMC c × age c 0.0006 0.0003 0.0000 – 0.0011 2.0499 0.040 4091.0000
AAMC c × education c 0.0020 0.0017 -0.0014 – 0.0053 1.1601 0.246 4091.0000
Observations 4469 4101 4101
R2 / R2 adjusted 0.130 / 0.128 0.105 / 0.104 0.108 / 0.106

c. AAMC +/* exp.sum models

i. vaxx intentions

m.intent1 <- lm(vaxxIntentions ~ (AAMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.intent2 <- lm(vaxxIntentions ~ AAMC.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)

tab_model(m.intent1, m.intent2,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0019 0.0330 0.9371 – 1.0666 30.3377 <0.001 4086.0000 1.0405 0.0422 0.9578 – 1.1232 24.6610 <0.001 4081.0000
AAMC c -0.0139 0.0086 -0.0308 – 0.0030 -1.6117 0.107 4086.0000 -0.0338 0.0136 -0.0604 – -0.0072 -2.4950 0.013 4081.0000
exp sum c 0.0437 0.0061 0.0318 – 0.0557 7.1725 <0.001 4086.0000 0.0558 0.0101 0.0360 – 0.0757 5.5148 <0.001 4081.0000
USvUK 0.7523 0.0648 0.6252 – 0.8793 11.6053 <0.001 4086.0000 0.7931 0.0836 0.6292 – 0.9570 9.4855 <0.001 4081.0000
ideology c -0.2277 0.0212 -0.2692 – -0.1861 -10.7508 <0.001 4086.0000 -0.1949 0.0236 -0.2412 – -0.1485 -8.2469 <0.001 4081.0000
age c 0.0218 0.0021 0.0177 – 0.0259 10.4332 <0.001 4086.0000 0.0229 0.0024 0.0182 – 0.0275 9.6421 <0.001 4081.0000
education c 0.0529 0.0120 0.0293 – 0.0765 4.3945 <0.001 4086.0000 0.0525 0.0137 0.0258 – 0.0793 3.8478 <0.001 4081.0000
AAMC c × USvUK -0.1001 0.0171 -0.1335 – -0.0667 -5.8697 <0.001 4086.0000 -0.1131 0.0268 -0.1655 – -0.0606 -4.2225 <0.001 4081.0000
AAMC c × ideology c -0.0142 0.0042 -0.0224 – -0.0059 -3.3716 0.001 4086.0000 -0.0304 0.0066 -0.0433 – -0.0175 -4.6170 <0.001 4081.0000
AAMC c × age c -0.0004 0.0004 -0.0012 – 0.0004 -0.9667 0.334 4086.0000 -0.0011 0.0007 -0.0024 – 0.0002 -1.6620 0.097 4081.0000
AAMC c × education c 0.0001 0.0027 -0.0052 – 0.0053 0.0196 0.984 4086.0000 0.0006 0.0038 -0.0069 – 0.0080 0.1481 0.882 4081.0000
exp sum c × USvUK 0.0287 0.0122 0.0049 – 0.0526 2.3643 0.018 4086.0000 0.0510 0.0202 0.0113 – 0.0906 2.5212 0.012 4081.0000
exp sum c × ideology c 0.0110 0.0022 0.0066 – 0.0154 4.9309 <0.001 4086.0000 0.0168 0.0030 0.0110 – 0.0226 5.6811 <0.001 4081.0000
exp sum c × age c -0.0004 0.0003 -0.0009 – 0.0001 -1.6272 0.104 4086.0000 -0.0002 0.0003 -0.0008 – 0.0004 -0.6451 0.519 4081.0000
exp sum c × education c -0.0020 0.0012 -0.0044 – 0.0003 -1.7146 0.086 4086.0000 -0.0024 0.0017 -0.0057 – 0.0010 -1.3885 0.165 4081.0000
AAMC c × exp sum c -0.0040 0.0026 -0.0091 – 0.0011 -1.5405 0.124 4081.0000
(AAMC c × exp sum c) ×
USvUK
-0.0066 0.0052 -0.0167 – 0.0036 -1.2712 0.204 4081.0000
(AAMC c × exp sum c) ×
ideology c
-0.0021 0.0007 -0.0035 – -0.0007 -3.0018 0.003 4081.0000
(AAMC c × exp sum c) ×
age c
-0.0001 0.0001 -0.0002 – 0.0001 -1.2478 0.212 4081.0000
(AAMC c × exp sum c) ×
education c
0.0001 0.0004 -0.0007 – 0.0010 0.2895 0.772 4081.0000
Observations 4101 4101
R2 / R2 adjusted 0.117 / 0.114 0.120 / 0.116

ii. trust in experts

m.trust1 <- lm(trustExpert ~ (AAMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust2 <- lm(trustExpert ~ AAMC.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)

tab_model(m.trust1, m.trust2,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  trustExpert trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.7353 0.0228 1.6906 – 1.7800 76.1080 <0.001 4086.0000 1.7764 0.0291 1.7193 – 1.8334 61.0242 <0.001 4081.0000
AAMC c -0.0081 0.0060 -0.0197 – 0.0036 -1.3528 0.176 4086.0000 -0.0287 0.0094 -0.0471 – -0.0104 -3.0718 0.002 4081.0000
exp sum c 0.0182 0.0042 0.0100 – 0.0265 4.3348 <0.001 4086.0000 0.0295 0.0070 0.0158 – 0.0432 4.2192 <0.001 4081.0000
USvUK 0.5374 0.0448 0.4496 – 0.6251 12.0067 <0.001 4086.0000 0.5397 0.0577 0.4266 – 0.6528 9.3567 <0.001 4081.0000
ideology c -0.2049 0.0146 -0.2336 – -0.1763 -14.0158 <0.001 4086.0000 -0.1868 0.0163 -0.2188 – -0.1549 -11.4612 <0.001 4081.0000
age c 0.0095 0.0014 0.0066 – 0.0123 6.5578 <0.001 4086.0000 0.0103 0.0016 0.0071 – 0.0135 6.3011 <0.001 4081.0000
education c 0.0451 0.0083 0.0288 – 0.0614 5.4256 <0.001 4086.0000 0.0448 0.0094 0.0264 – 0.0633 4.7600 <0.001 4081.0000
AAMC c × USvUK -0.0475 0.0118 -0.0706 – -0.0244 -4.0346 <0.001 4086.0000 -0.0444 0.0185 -0.0806 – -0.0081 -2.4015 0.016 4081.0000
AAMC c × ideology c -0.0110 0.0029 -0.0167 – -0.0053 -3.7863 <0.001 4086.0000 -0.0209 0.0045 -0.0298 – -0.0120 -4.6057 <0.001 4081.0000
AAMC c × age c 0.0005 0.0003 -0.0000 – 0.0011 1.8346 0.067 4086.0000 -0.0001 0.0005 -0.0010 – 0.0008 -0.2456 0.806 4081.0000
AAMC c × education c 0.0023 0.0018 -0.0013 – 0.0059 1.2548 0.210 4086.0000 0.0028 0.0026 -0.0023 – 0.0080 1.0836 0.279 4081.0000
exp sum c × USvUK 0.0029 0.0084 -0.0136 – 0.0193 0.3414 0.733 4086.0000 0.0135 0.0139 -0.0139 – 0.0408 0.9652 0.334 4081.0000
exp sum c × ideology c 0.0090 0.0015 0.0059 – 0.0120 5.8063 <0.001 4086.0000 0.0115 0.0020 0.0075 – 0.0155 5.6472 <0.001 4081.0000
exp sum c × age c 0.0002 0.0002 -0.0001 – 0.0006 1.1773 0.239 4086.0000 0.0004 0.0002 -0.0000 – 0.0008 1.8358 0.066 4081.0000
exp sum c × education c -0.0001 0.0008 -0.0017 – 0.0015 -0.0920 0.927 4086.0000 -0.0004 0.0012 -0.0027 – 0.0019 -0.3386 0.735 4081.0000
AAMC c × exp sum c -0.0039 0.0018 -0.0074 – -0.0004 -2.1907 0.029 4081.0000
(AAMC c × exp sum c) ×
USvUK
-0.0027 0.0036 -0.0097 – 0.0043 -0.7669 0.443 4081.0000
(AAMC c × exp sum c) ×
ideology c
-0.0010 0.0005 -0.0019 – -0.0000 -2.0231 0.043 4081.0000
(AAMC c × exp sum c) ×
age c
-0.0001 0.0001 -0.0002 – 0.0000 -1.8652 0.062 4081.0000
(AAMC c × exp sum c) ×
education c
0.0001 0.0003 -0.0005 – 0.0007 0.3868 0.699 4081.0000
Observations 4101 4101
R2 / R2 adjusted 0.124 / 0.121 0.128 / 0.124

d. analytic.max */+ exp.sum

m.intent1 <- lm(vaxxIntentions ~ (analytic.max.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.intent2 <- lm(vaxxIntentions ~ analytic.max.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)

tab_model(m.intent1, m.intent2,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions vaxxIntentions
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0176 0.0329 0.9531 – 1.0821 30.9295 <0.001 4086.0000 1.0120 0.0340 0.9452 – 1.0788 29.7217 <0.001 4081.0000
analytic max c -0.0063 0.0058 -0.0177 – 0.0051 -1.0828 0.279 4086.0000 -0.0083 0.0059 -0.0199 – 0.0033 -1.4037 0.160 4081.0000
exp sum c 0.0360 0.0055 0.0252 – 0.0468 6.5388 <0.001 4086.0000 0.0330 0.0059 0.0214 – 0.0446 5.5708 <0.001 4081.0000
USvUK 0.7589 0.0650 0.6314 – 0.8864 11.6692 <0.001 4086.0000 0.7081 0.0674 0.5761 – 0.8402 10.5107 <0.001 4081.0000
ideology c -0.2258 0.0212 -0.2673 – -0.1843 -10.6626 <0.001 4086.0000 -0.2147 0.0219 -0.2577 – -0.1717 -9.7835 <0.001 4081.0000
age c 0.0216 0.0021 0.0175 – 0.0257 10.3507 <0.001 4086.0000 0.0214 0.0022 0.0172 – 0.0257 9.9295 <0.001 4081.0000
education c 0.0522 0.0120 0.0286 – 0.0758 4.3360 <0.001 4086.0000 0.0538 0.0124 0.0295 – 0.0781 4.3415 <0.001 4081.0000
analytic max c × USvUK -0.0464 0.0116 -0.0691 – -0.0236 -3.9925 <0.001 4086.0000 -0.0427 0.0117 -0.0657 – -0.0197 -3.6447 <0.001 4081.0000
analytic max c × ideology
c
-0.0048 0.0028 -0.0103 – 0.0007 -1.7140 0.087 4086.0000 -0.0072 0.0030 -0.0131 – -0.0014 -2.4180 0.016 4081.0000
analytic max c × age c -0.0005 0.0003 -0.0011 – 0.0000 -1.9394 0.053 4086.0000 -0.0006 0.0003 -0.0012 – 0.0000 -1.9126 0.056 4081.0000
analytic max c ×
education c
0.0004 0.0016 -0.0027 – 0.0034 0.2413 0.809 4086.0000 0.0003 0.0016 -0.0028 – 0.0034 0.1945 0.846 4081.0000
exp sum c × USvUK 0.0091 0.0109 -0.0123 – 0.0305 0.8368 0.403 4086.0000 -0.0001 0.0117 -0.0231 – 0.0228 -0.0110 0.991 4081.0000
exp sum c × ideology c 0.0097 0.0021 0.0055 – 0.0139 4.5323 <0.001 4086.0000 0.0106 0.0023 0.0060 – 0.0151 4.5659 <0.001 4081.0000
exp sum c × age c -0.0004 0.0002 -0.0009 – 0.0001 -1.5896 0.112 4086.0000 -0.0004 0.0003 -0.0009 – 0.0001 -1.6892 0.091 4081.0000
exp sum c × education c -0.0021 0.0011 -0.0043 – 0.0002 -1.8003 0.072 4086.0000 -0.0018 0.0012 -0.0043 – 0.0006 -1.4710 0.141 4081.0000
analytic max c × exp sum
c
0.0015 0.0011 -0.0006 – 0.0037 1.4123 0.158 4081.0000
(analytic max c × exp sum
c) × USvUK
0.0050 0.0021 0.0008 – 0.0091 2.3134 0.021 4081.0000
(analytic max c × exp sum
c) × ideology c
-0.0005 0.0003 -0.0012 – 0.0002 -1.4862 0.137 4081.0000
(analytic max c × exp sum
c) × age c
0.0000 0.0000 -0.0001 – 0.0001 0.2728 0.785 4081.0000
(analytic max c × exp sum
c) × education c
-0.0001 0.0002 -0.0004 – 0.0003 -0.4346 0.664 4081.0000
Observations 4101 4101
R2 / R2 adjusted 0.113 / 0.110 0.116 / 0.111
tab_model(m.trust1, m.trust2,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  trustExpert trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.7353 0.0228 1.6906 – 1.7800 76.1080 <0.001 4086.0000 1.7764 0.0291 1.7193 – 1.8334 61.0242 <0.001 4081.0000
AAMC c -0.0081 0.0060 -0.0197 – 0.0036 -1.3528 0.176 4086.0000 -0.0287 0.0094 -0.0471 – -0.0104 -3.0718 0.002 4081.0000
exp sum c 0.0182 0.0042 0.0100 – 0.0265 4.3348 <0.001 4086.0000 0.0295 0.0070 0.0158 – 0.0432 4.2192 <0.001 4081.0000
USvUK 0.5374 0.0448 0.4496 – 0.6251 12.0067 <0.001 4086.0000 0.5397 0.0577 0.4266 – 0.6528 9.3567 <0.001 4081.0000
ideology c -0.2049 0.0146 -0.2336 – -0.1763 -14.0158 <0.001 4086.0000 -0.1868 0.0163 -0.2188 – -0.1549 -11.4612 <0.001 4081.0000
age c 0.0095 0.0014 0.0066 – 0.0123 6.5578 <0.001 4086.0000 0.0103 0.0016 0.0071 – 0.0135 6.3011 <0.001 4081.0000
education c 0.0451 0.0083 0.0288 – 0.0614 5.4256 <0.001 4086.0000 0.0448 0.0094 0.0264 – 0.0633 4.7600 <0.001 4081.0000
AAMC c × USvUK -0.0475 0.0118 -0.0706 – -0.0244 -4.0346 <0.001 4086.0000 -0.0444 0.0185 -0.0806 – -0.0081 -2.4015 0.016 4081.0000
AAMC c × ideology c -0.0110 0.0029 -0.0167 – -0.0053 -3.7863 <0.001 4086.0000 -0.0209 0.0045 -0.0298 – -0.0120 -4.6057 <0.001 4081.0000
AAMC c × age c 0.0005 0.0003 -0.0000 – 0.0011 1.8346 0.067 4086.0000 -0.0001 0.0005 -0.0010 – 0.0008 -0.2456 0.806 4081.0000
AAMC c × education c 0.0023 0.0018 -0.0013 – 0.0059 1.2548 0.210 4086.0000 0.0028 0.0026 -0.0023 – 0.0080 1.0836 0.279 4081.0000
exp sum c × USvUK 0.0029 0.0084 -0.0136 – 0.0193 0.3414 0.733 4086.0000 0.0135 0.0139 -0.0139 – 0.0408 0.9652 0.334 4081.0000
exp sum c × ideology c 0.0090 0.0015 0.0059 – 0.0120 5.8063 <0.001 4086.0000 0.0115 0.0020 0.0075 – 0.0155 5.6472 <0.001 4081.0000
exp sum c × age c 0.0002 0.0002 -0.0001 – 0.0006 1.1773 0.239 4086.0000 0.0004 0.0002 -0.0000 – 0.0008 1.8358 0.066 4081.0000
exp sum c × education c -0.0001 0.0008 -0.0017 – 0.0015 -0.0920 0.927 4086.0000 -0.0004 0.0012 -0.0027 – 0.0019 -0.3386 0.735 4081.0000
AAMC c × exp sum c -0.0039 0.0018 -0.0074 – -0.0004 -2.1907 0.029 4081.0000
(AAMC c × exp sum c) ×
USvUK
-0.0027 0.0036 -0.0097 – 0.0043 -0.7669 0.443 4081.0000
(AAMC c × exp sum c) ×
ideology c
-0.0010 0.0005 -0.0019 – -0.0000 -2.0231 0.043 4081.0000
(AAMC c × exp sum c) ×
age c
-0.0001 0.0001 -0.0002 – 0.0000 -1.8652 0.062 4081.0000
(AAMC c × exp sum c) ×
education c
0.0001 0.0003 -0.0005 – 0.0007 0.3868 0.699 4081.0000
Observations 4101 4101
R2 / R2 adjusted 0.124 / 0.121 0.128 / 0.124
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.

7. robustness checks

- affect

a. vaxxIntentions ~ AAFMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (AAFMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ AAFMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (AAFMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0459 0.0327 0.9819 – 1.1100 32.0042 <0.001 4091.0000 1.7434 0.0224 1.6994 – 1.7873 77.7829 <0.001 4091.0000
AAFMC c -0.9809 0.3017 -1.5725 – -0.3893 -3.2508 0.001 4091.0000 -0.5805 0.2069 -0.9863 – -0.1748 -2.8053 0.005 4091.0000
USvUK 0.7663 0.0651 0.6386 – 0.8939 11.7692 <0.001 4091.0000 0.5521 0.0447 0.4646 – 0.6397 12.3650 <0.001 4091.0000
ideology c -0.2393 0.0204 -0.2794 – -0.1993 -11.7174 <0.001 4091.0000 -0.2131 0.0140 -0.2405 – -0.1856 -15.2107 <0.001 4091.0000
age c 0.0185 0.0021 0.0143 – 0.0226 8.7206 <0.001 4091.0000 0.0078 0.0015 0.0050 – 0.0107 5.3880 <0.001 4091.0000
education c 0.0406 0.0117 0.0176 – 0.0636 3.4648 0.001 4091.0000 0.0432 0.0080 0.0274 – 0.0589 5.3707 <0.001 4091.0000
AAFMC c × USvUK -1.6357 0.6019 -2.8158 – -0.4557 -2.7177 0.007 4091.0000 -1.1347 0.4128 -1.9440 – -0.3255 -2.7491 0.006 4091.0000
AAFMC c × ideology c 0.0753 0.0520 -0.0267 – 0.1772 1.4472 0.148 4091.0000 0.0742 0.0357 0.0043 – 0.1441 2.0807 0.038 4091.0000
AAFMC c × age c 0.0106 0.0053 0.0001 – 0.0210 1.9872 0.047 4091.0000 0.0000 0.0036 -0.0071 – 0.0072 0.0120 0.990 4091.0000
AAFMC c × education c 0.0357 0.0314 -0.0259 – 0.0973 1.1374 0.255 4091.0000 -0.0254 0.0215 -0.0676 – 0.0168 -1.1791 0.238 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.084 / 0.082 0.103 / 0.101

c. vaxxIntentions ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0210 0.0327 0.9569 – 1.0850 31.2681 <0.001 4086.0000 1.7447 0.0225 1.7005 – 1.7888 77.5231 <0.001 4086.0000
AAFMC c -1.2203 0.3051 -1.8184 – -0.6222 -4.0000 <0.001 4086.0000 -0.6335 0.2103 -1.0458 – -0.2213 -3.0129 0.003 4086.0000
exp sum c 0.0372 0.0054 0.0266 – 0.0478 6.9096 <0.001 4086.0000 0.0150 0.0037 0.0077 – 0.0223 4.0471 <0.001 4086.0000
USvUK 0.7555 0.0650 0.6281 – 0.8829 11.6236 <0.001 4086.0000 0.5379 0.0448 0.4501 – 0.6257 12.0070 <0.001 4086.0000
ideology c -0.2212 0.0207 -0.2618 – -0.1806 -10.6802 <0.001 4086.0000 -0.2004 0.0143 -0.2284 – -0.1724 -14.0399 <0.001 4086.0000
age c 0.0212 0.0021 0.0170 – 0.0253 10.0350 <0.001 4086.0000 0.0089 0.0015 0.0061 – 0.0118 6.1453 <0.001 4086.0000
education c 0.0504 0.0121 0.0266 – 0.0741 4.1569 <0.001 4086.0000 0.0446 0.0084 0.0282 – 0.0610 5.3393 <0.001 4086.0000
AAFMC c × USvUK -2.4397 0.6086 -3.6329 – -1.2466 -4.0088 <0.001 4086.0000 -1.4147 0.4195 -2.2371 – -0.5923 -3.3727 0.001 4086.0000
AAFMC c × ideology c 0.1314 0.0521 0.0292 – 0.2335 2.5209 0.012 4086.0000 0.1140 0.0359 0.0436 – 0.1844 3.1745 0.002 4086.0000
AAFMC c × age c 0.0083 0.0053 -0.0021 – 0.0188 1.5600 0.119 4086.0000 0.0006 0.0037 -0.0066 – 0.0078 0.1562 0.876 4086.0000
AAFMC c × education c 0.0037 0.0320 -0.0591 – 0.0664 0.1148 0.909 4086.0000 -0.0339 0.0221 -0.0772 – 0.0093 -1.5377 0.124 4086.0000
exp sum c × USvUK 0.0058 0.0107 -0.0151 – 0.0267 0.5457 0.585 4086.0000 -0.0090 0.0074 -0.0234 – 0.0054 -1.2215 0.222 4086.0000
exp sum c × ideology c 0.0100 0.0021 0.0060 – 0.0141 4.8502 <0.001 4086.0000 0.0081 0.0014 0.0053 – 0.0109 5.6736 <0.001 4086.0000
exp sum c × age c -0.0005 0.0002 -0.0009 – 0.0000 -1.8646 0.062 4086.0000 0.0003 0.0002 -0.0000 – 0.0006 1.8597 0.063 4086.0000
exp sum c × education c -0.0020 0.0011 -0.0042 – 0.0003 -1.7305 0.084 4086.0000 -0.0000 0.0008 -0.0015 – 0.0015 -0.0237 0.981 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.114 / 0.111 0.123 / 0.120

- authenticity

a. vaxxIntentions ~ AAUTHMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (AAUTHMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ AAUTHMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (AAUTHMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0546 0.0326 0.9908 – 1.1185 32.3877 <0.001 4091.0000 1.7487 0.0223 1.7050 – 1.7924 78.4130 <0.001 4091.0000
AAUTHMC c 0.0183 0.0087 0.0012 – 0.0355 2.0969 0.036 4091.0000 -0.0005 0.0060 -0.0122 – 0.0112 -0.0839 0.933 4091.0000
USvUK 0.7458 0.0655 0.6173 – 0.8743 11.3784 <0.001 4091.0000 0.5473 0.0449 0.4593 – 0.6353 12.1930 <0.001 4091.0000
ideology c -0.2529 0.0204 -0.2929 – -0.2129 -12.3954 <0.001 4091.0000 -0.2163 0.0140 -0.2437 – -0.1889 -15.4753 <0.001 4091.0000
age c 0.0182 0.0021 0.0141 – 0.0224 8.5473 <0.001 4091.0000 0.0072 0.0015 0.0043 – 0.0101 4.9335 <0.001 4091.0000
education c 0.0445 0.0117 0.0216 – 0.0675 3.8001 <0.001 4091.0000 0.0486 0.0080 0.0329 – 0.0643 6.0540 <0.001 4091.0000
AAUTHMC c × USvUK 0.0064 0.0176 -0.0282 – 0.0410 0.3640 0.716 4091.0000 0.0361 0.0121 0.0124 – 0.0597 2.9844 0.003 4091.0000
AAUTHMC c × ideology c -0.0020 0.0056 -0.0131 – 0.0090 -0.3570 0.721 4091.0000 -0.0006 0.0039 -0.0082 – 0.0069 -0.1668 0.868 4091.0000
AAUTHMC c × age c -0.0002 0.0006 -0.0014 – 0.0010 -0.3875 0.698 4091.0000 -0.0002 0.0004 -0.0010 – 0.0006 -0.4712 0.638 4091.0000
AAUTHMC c × education c -0.0053 0.0036 -0.0122 – 0.0017 -1.4841 0.138 4091.0000 -0.0019 0.0024 -0.0067 – 0.0029 -0.7774 0.437 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.081 / 0.079 0.103 / 0.101

c. vaxxIntentions ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0243 0.0326 0.9602 – 1.0883 31.3725 <0.001 4086.0000 1.7484 0.0225 1.7042 – 1.7925 77.7105 <0.001 4086.0000
AAUTHMC c 0.0316 0.0096 0.0129 – 0.0504 3.3092 0.001 4086.0000 0.0023 0.0066 -0.0107 – 0.0152 0.3429 0.732 4086.0000
exp sum c 0.0455 0.0061 0.0334 – 0.0575 7.4079 <0.001 4086.0000 0.0188 0.0042 0.0105 – 0.0271 4.4445 <0.001 4086.0000
USvUK 0.7282 0.0656 0.5995 – 0.8568 11.0993 <0.001 4086.0000 0.5280 0.0452 0.4394 – 0.6166 11.6793 <0.001 4086.0000
ideology c -0.2393 0.0208 -0.2800 – -0.1985 -11.5116 <0.001 4086.0000 -0.2036 0.0143 -0.2317 – -0.1755 -14.2138 <0.001 4086.0000
age c 0.0210 0.0021 0.0168 – 0.0251 9.8902 <0.001 4086.0000 0.0083 0.0015 0.0055 – 0.0112 5.6956 <0.001 4086.0000
education c 0.0567 0.0121 0.0329 – 0.0805 4.6687 <0.001 4086.0000 0.0494 0.0084 0.0330 – 0.0658 5.9019 <0.001 4086.0000
AAUTHMC c × USvUK 0.0630 0.0193 0.0253 – 0.1008 3.2721 0.001 4086.0000 0.0559 0.0133 0.0298 – 0.0819 4.2087 <0.001 4086.0000
AAUTHMC c × ideology c 0.0018 0.0056 -0.0091 – 0.0128 0.3295 0.742 4086.0000 0.0014 0.0038 -0.0061 – 0.0089 0.3603 0.719 4086.0000
AAUTHMC c × age c -0.0004 0.0006 -0.0016 – 0.0008 -0.6531 0.514 4086.0000 -0.0002 0.0004 -0.0010 – 0.0006 -0.4429 0.658 4086.0000
AAUTHMC c × education c -0.0029 0.0035 -0.0098 – 0.0040 -0.8337 0.404 4086.0000 -0.0009 0.0024 -0.0056 – 0.0039 -0.3656 0.715 4086.0000
exp sum c × USvUK 0.0253 0.0123 0.0013 – 0.0494 2.0663 0.039 4086.0000 -0.0003 0.0085 -0.0168 – 0.0163 -0.0320 0.974 4086.0000
exp sum c × ideology c 0.0093 0.0020 0.0053 – 0.0133 4.5848 <0.001 4086.0000 0.0071 0.0014 0.0044 – 0.0099 5.0696 <0.001 4086.0000
exp sum c × age c -0.0005 0.0002 -0.0010 – -0.0000 -2.1519 0.031 4086.0000 0.0003 0.0002 -0.0000 – 0.0006 1.9298 0.054 4086.0000
exp sum c × education c -0.0021 0.0011 -0.0042 – 0.0001 -1.8989 0.058 4086.0000 0.0001 0.0008 -0.0013 – 0.0016 0.1869 0.852 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.112 / 0.109 0.122 / 0.119

- clout

a. vaxxIntentions ~ ACLMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ACLMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ ACLMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ACLMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0471 0.0329 0.9826 – 1.1116 31.8398 <0.001 4091.0000 1.7432 0.0226 1.6989 – 1.7875 77.1492 <0.001 4091.0000
ACLMC c -0.0215 0.0159 -0.0528 – 0.0098 -1.3484 0.178 4091.0000 0.0160 0.0110 -0.0055 – 0.0375 1.4596 0.144 4091.0000
USvUK 0.7595 0.0649 0.6324 – 0.8867 11.7092 <0.001 4091.0000 0.5498 0.0446 0.4624 – 0.6372 12.3361 <0.001 4091.0000
ideology c -0.2451 0.0202 -0.2848 – -0.2054 -12.1052 <0.001 4091.0000 -0.2196 0.0139 -0.2469 – -0.1924 -15.7867 <0.001 4091.0000
age c 0.0200 0.0021 0.0158 – 0.0242 9.3476 <0.001 4091.0000 0.0078 0.0015 0.0049 – 0.0106 5.2650 <0.001 4091.0000
education c 0.0433 0.0118 0.0203 – 0.0664 3.6856 <0.001 4091.0000 0.0455 0.0081 0.0297 – 0.0613 5.6306 <0.001 4091.0000
ACLMC c × USvUK 0.1261 0.0313 0.0648 – 0.1875 4.0290 <0.001 4091.0000 0.0357 0.0215 -0.0064 – 0.0779 1.6612 0.097 4091.0000
ACLMC c × ideology c 0.0170 0.0099 -0.0025 – 0.0364 1.7116 0.087 4091.0000 0.0091 0.0068 -0.0043 – 0.0225 1.3353 0.182 4091.0000
ACLMC c × age c 0.0011 0.0010 -0.0009 – 0.0032 1.0780 0.281 4091.0000 0.0002 0.0007 -0.0012 – 0.0016 0.2369 0.813 4091.0000
ACLMC c × education c 0.0098 0.0060 -0.0019 – 0.0215 1.6396 0.101 4091.0000 -0.0042 0.0041 -0.0123 – 0.0038 -1.0299 0.303 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.086 / 0.084 0.102 / 0.100

c. vaxxIntentions ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0178 0.0328 0.9535 – 1.0822 31.0058 <0.001 4086.0000 1.7384 0.0226 1.6940 – 1.7828 76.8135 <0.001 4086.0000
ACLMC c 0.0471 0.0178 0.0122 – 0.0821 2.6462 0.008 4086.0000 0.0464 0.0123 0.0223 – 0.0705 3.7799 <0.001 4086.0000
exp sum c 0.0459 0.0061 0.0339 – 0.0579 7.4918 <0.001 4086.0000 0.0203 0.0042 0.0120 – 0.0286 4.8102 <0.001 4086.0000
USvUK 0.7255 0.0649 0.5983 – 0.8528 11.1800 <0.001 4086.0000 0.5294 0.0447 0.4417 – 0.6171 11.8320 <0.001 4086.0000
ideology c -0.2400 0.0205 -0.2803 – -0.1998 -11.6832 <0.001 4086.0000 -0.2106 0.0142 -0.2383 – -0.1828 -14.8649 <0.001 4086.0000
age c 0.0222 0.0021 0.0180 – 0.0263 10.3918 <0.001 4086.0000 0.0085 0.0015 0.0056 – 0.0114 5.7783 <0.001 4086.0000
education c 0.0550 0.0121 0.0313 – 0.0788 4.5456 <0.001 4086.0000 0.0495 0.0083 0.0331 – 0.0658 5.9260 <0.001 4086.0000
ACLMC c × USvUK 0.1561 0.0354 0.0867 – 0.2254 4.4140 <0.001 4086.0000 0.0273 0.0244 -0.0205 – 0.0751 1.1195 0.263 4086.0000
ACLMC c × ideology c 0.0421 0.0104 0.0217 – 0.0625 4.0443 <0.001 4086.0000 0.0268 0.0072 0.0127 – 0.0408 3.7346 <0.001 4086.0000
ACLMC c × age c 0.0001 0.0011 -0.0020 – 0.0023 0.1326 0.894 4086.0000 0.0005 0.0007 -0.0010 – 0.0020 0.6695 0.503 4086.0000
ACLMC c × education c 0.0025 0.0064 -0.0100 – 0.0150 0.3961 0.692 4086.0000 -0.0072 0.0044 -0.0158 – 0.0014 -1.6322 0.103 4086.0000
exp sum c × USvUK 0.0269 0.0122 0.0029 – 0.0508 2.1977 0.028 4086.0000 -0.0015 0.0084 -0.0180 – 0.0150 -0.1778 0.859 4086.0000
exp sum c × ideology c 0.0122 0.0022 0.0080 – 0.0165 5.6514 <0.001 4086.0000 0.0094 0.0015 0.0065 – 0.0123 6.3114 <0.001 4086.0000
exp sum c × age c -0.0005 0.0003 -0.0010 – 0.0000 -1.8833 0.060 4086.0000 0.0004 0.0002 0.0001 – 0.0007 2.3203 0.020 4086.0000
exp sum c × education c -0.0019 0.0012 -0.0042 – 0.0004 -1.6293 0.103 4086.0000 -0.0004 0.0008 -0.0020 – 0.0012 -0.5041 0.614 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.116 / 0.113 0.125 / 0.122

- positive emotion

a. vaxxIntentions ~ APEMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (APEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ APEMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (APEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0401 0.0331 0.9751 – 1.1051 31.3883 <0.001 4091.0000 1.7374 0.0228 1.6928 – 1.7821 76.3356 <0.001 4091.0000
APEMC c -0.7178 0.3280 -1.3610 – -0.0747 -2.1884 0.029 4091.0000 -0.2874 0.2253 -0.7291 – 0.1544 -1.2755 0.202 4091.0000
USvUK 0.7730 0.0652 0.6452 – 0.9009 11.8525 <0.001 4091.0000 0.5554 0.0448 0.4676 – 0.6432 12.3982 <0.001 4091.0000
ideology c -0.2344 0.0207 -0.2749 – -0.1939 -11.3417 <0.001 4091.0000 -0.2122 0.0142 -0.2401 – -0.1844 -14.9495 <0.001 4091.0000
age c 0.0197 0.0021 0.0155 – 0.0239 9.2640 <0.001 4091.0000 0.0083 0.0015 0.0055 – 0.0112 5.7052 <0.001 4091.0000
education c 0.0400 0.0118 0.0169 – 0.0630 3.3935 0.001 4091.0000 0.0428 0.0081 0.0270 – 0.0587 5.2937 <0.001 4091.0000
APEMC c × USvUK 0.3714 0.6480 -0.8991 – 1.6419 0.5731 0.567 4091.0000 0.0226 0.4451 -0.8501 – 0.8952 0.0507 0.960 4091.0000
APEMC c × ideology c 0.2383 0.1138 0.0152 – 0.4613 2.0941 0.036 4091.0000 0.1911 0.0781 0.0379 – 0.3443 2.4453 0.015 4091.0000
APEMC c × age c 0.0220 0.0123 -0.0021 – 0.0461 1.7920 0.073 4091.0000 -0.0009 0.0084 -0.0174 – 0.0156 -0.1067 0.915 4091.0000
APEMC c × education c 0.1139 0.0716 -0.0265 – 0.2542 1.5908 0.112 4091.0000 -0.0447 0.0492 -0.1411 – 0.0517 -0.9098 0.363 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.086 / 0.084 0.103 / 0.101

c. vaxxIntentions ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0091 0.0331 0.9442 – 1.0741 30.4817 <0.001 4086.0000 1.7331 0.0228 1.6884 – 1.7778 75.9787 <0.001 4086.0000
APEMC c -0.2075 0.3295 -0.8536 – 0.4386 -0.6297 0.529 4086.0000 -0.0486 0.2271 -0.4937 – 0.3966 -0.2139 0.831 4086.0000
exp sum c 0.0324 0.0053 0.0219 – 0.0429 6.0641 <0.001 4086.0000 0.0128 0.0037 0.0055 – 0.0200 3.4670 0.001 4086.0000
USvUK 0.7685 0.0652 0.6407 – 0.8963 11.7905 <0.001 4086.0000 0.5490 0.0449 0.4610 – 0.6371 12.2254 <0.001 4086.0000
ideology c -0.2303 0.0209 -0.2712 – -0.1894 -11.0339 <0.001 4086.0000 -0.2065 0.0144 -0.2347 – -0.1783 -14.3603 <0.001 4086.0000
age c 0.0217 0.0021 0.0175 – 0.0258 10.2220 <0.001 4086.0000 0.0090 0.0015 0.0061 – 0.0119 6.1482 <0.001 4086.0000
education c 0.0530 0.0122 0.0291 – 0.0769 4.3463 <0.001 4086.0000 0.0467 0.0084 0.0303 – 0.0632 5.5618 <0.001 4086.0000
APEMC c × USvUK 0.1892 0.6513 -1.0878 – 1.4661 0.2904 0.772 4086.0000 -0.2232 0.4488 -1.1030 – 0.6566 -0.4974 0.619 4086.0000
APEMC c × ideology c 0.4686 0.1173 0.2386 – 0.6986 3.9947 <0.001 4086.0000 0.3515 0.0808 0.1931 – 0.5100 4.3495 <0.001 4086.0000
APEMC c × age c 0.0182 0.0128 -0.0068 – 0.0432 1.4266 0.154 4086.0000 0.0049 0.0088 -0.0123 – 0.0222 0.5630 0.573 4086.0000
APEMC c × education c 0.0035 0.0758 -0.1451 – 0.1521 0.0463 0.963 4086.0000 -0.0869 0.0522 -0.1893 – 0.0155 -1.6641 0.096 4086.0000
exp sum c × USvUK -0.0025 0.0106 -0.0233 – 0.0184 -0.2314 0.817 4086.0000 -0.0146 0.0073 -0.0290 – -0.0003 -1.9963 0.046 4086.0000
exp sum c × ideology c 0.0115 0.0021 0.0074 – 0.0157 5.4216 <0.001 4086.0000 0.0092 0.0015 0.0063 – 0.0121 6.2626 <0.001 4086.0000
exp sum c × age c -0.0004 0.0002 -0.0009 – 0.0001 -1.5971 0.110 4086.0000 0.0004 0.0002 0.0000 – 0.0007 2.0913 0.037 4086.0000
exp sum c × education c -0.0021 0.0012 -0.0044 – 0.0002 -1.7859 0.074 4086.0000 -0.0003 0.0008 -0.0018 – 0.0013 -0.3326 0.739 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.113 / 0.110 0.123 / 0.120

- negative emotion

a. vaxxIntentions ~ ANEMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ANEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ ANEMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ANEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0518 0.0325 0.9882 – 1.1154 32.4061 <0.001 4091.0000 1.7484 0.0222 1.7048 – 1.7920 78.6068 <0.001 4091.0000
ANEMC c -0.9364 0.3723 -1.6664 – -0.2065 -2.5151 0.012 4091.0000 -0.5826 0.2551 -1.0828 – -0.0824 -2.2834 0.022 4091.0000
USvUK 0.7555 0.0649 0.6282 – 0.8828 11.6349 <0.001 4091.0000 0.5479 0.0445 0.4607 – 0.6352 12.3139 <0.001 4091.0000
ideology c -0.2495 0.0202 -0.2892 – -0.2099 -12.3339 <0.001 4091.0000 -0.2183 0.0139 -0.2455 – -0.1912 -15.7490 <0.001 4091.0000
age c 0.0180 0.0021 0.0138 – 0.0221 8.5240 <0.001 4091.0000 0.0078 0.0014 0.0049 – 0.0106 5.3694 <0.001 4091.0000
education c 0.0437 0.0116 0.0209 – 0.0665 3.7521 <0.001 4091.0000 0.0457 0.0080 0.0300 – 0.0613 5.7230 <0.001 4091.0000
ANEMC c × USvUK -1.8541 0.7442 -3.3132 – -0.3950 -2.4913 0.013 4091.0000 -1.3001 0.5100 -2.3000 – -0.3002 -2.5492 0.011 4091.0000
ANEMC c × ideology c 0.0579 0.0765 -0.0922 – 0.2079 0.7562 0.450 4091.0000 0.0758 0.0524 -0.0270 – 0.1787 1.4462 0.148 4091.0000
ANEMC c × age c 0.0099 0.0075 -0.0047 – 0.0245 1.3277 0.184 4091.0000 -0.0012 0.0051 -0.0112 – 0.0088 -0.2352 0.814 4091.0000
ANEMC c × education c 0.0363 0.0454 -0.0527 – 0.1252 0.7996 0.424 4091.0000 -0.0325 0.0311 -0.0935 – 0.0284 -1.0470 0.295 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.082 / 0.080 0.102 / 0.100

c. vaxxIntentions ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0250 0.0325 0.9614 – 1.0887 31.5578 <0.001 4086.0000 1.7503 0.0224 1.7064 – 1.7942 78.1199 <0.001 4086.0000
ANEMC c -1.8176 0.4092 -2.6198 – -1.0154 -4.4422 <0.001 4086.0000 -0.8443 0.2822 -1.3977 – -0.2910 -2.9916 0.003 4086.0000
exp sum c 0.0436 0.0058 0.0322 – 0.0549 7.5172 <0.001 4086.0000 0.0175 0.0040 0.0097 – 0.0254 4.3868 <0.001 4086.0000
USvUK 0.7374 0.0648 0.6103 – 0.8646 11.3722 <0.001 4086.0000 0.5281 0.0447 0.4404 – 0.6158 11.8068 <0.001 4086.0000
ideology c -0.2323 0.0205 -0.2725 – -0.1920 -11.3119 <0.001 4086.0000 -0.2057 0.0142 -0.2335 – -0.1780 -14.5275 <0.001 4086.0000
age c 0.0212 0.0021 0.0171 – 0.0253 10.0920 <0.001 4086.0000 0.0091 0.0014 0.0062 – 0.0119 6.2696 <0.001 4086.0000
education c 0.0540 0.0120 0.0304 – 0.0777 4.4880 <0.001 4086.0000 0.0462 0.0083 0.0299 – 0.0625 5.5587 <0.001 4086.0000
ANEMC c × USvUK -3.8447 0.8171 -5.4467 – -2.2427 -4.7051 <0.001 4086.0000 -1.9368 0.5636 -3.0418 – -0.8317 -3.4362 0.001 4086.0000
ANEMC c × ideology c 0.0771 0.0755 -0.0710 – 0.2252 1.0202 0.308 4086.0000 0.0862 0.0521 -0.0159 – 0.1884 1.6547 0.098 4086.0000
ANEMC c × age c 0.0076 0.0074 -0.0068 – 0.0221 1.0347 0.301 4086.0000 -0.0017 0.0051 -0.0117 – 0.0082 -0.3394 0.734 4086.0000
ANEMC c × education c 0.0078 0.0451 -0.0806 – 0.0962 0.1727 0.863 4086.0000 -0.0370 0.0311 -0.0980 – 0.0239 -1.1908 0.234 4086.0000
exp sum c × USvUK 0.0198 0.0115 -0.0028 – 0.0424 1.7192 0.086 4086.0000 -0.0021 0.0079 -0.0176 – 0.0135 -0.2595 0.795 4086.0000
exp sum c × ideology c 0.0093 0.0020 0.0054 – 0.0133 4.5840 <0.001 4086.0000 0.0075 0.0014 0.0047 – 0.0102 5.3000 <0.001 4086.0000
exp sum c × age c -0.0005 0.0002 -0.0010 – -0.0000 -2.0656 0.039 4086.0000 0.0003 0.0002 -0.0000 – 0.0006 1.8039 0.071 4086.0000
exp sum c × education c -0.0020 0.0011 -0.0042 – 0.0001 -1.8332 0.067 4086.0000 0.0001 0.0008 -0.0014 – 0.0016 0.1753 0.861 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.113 / 0.110 0.122 / 0.119

- threat

a. vaxxIntentions ~ ATRMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ATRMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)

b. trustExpert ~ ATRMC.c * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ATRMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0528 0.0334 0.9873 – 1.1183 31.5080 <0.001 4091.0000 1.7479 0.0229 1.7029 – 1.7928 76.2296 <0.001 4091.0000
ATRMC c 2.0129 0.5832 0.8695 – 3.1563 3.4513 0.001 4091.0000 0.9032 0.4002 0.1185 – 1.6878 2.2567 0.024 4091.0000
USvUK 0.7594 0.0650 0.6319 – 0.8869 11.6771 <0.001 4091.0000 0.5367 0.0446 0.4492 – 0.6242 12.0259 <0.001 4091.0000
ideology c -0.2353 0.0208 -0.2760 – -0.1946 -11.3273 <0.001 4091.0000 -0.2084 0.0143 -0.2363 – -0.1804 -14.6172 <0.001 4091.0000
age c 0.0189 0.0021 0.0148 – 0.0230 9.0109 <0.001 4091.0000 0.0082 0.0014 0.0053 – 0.0110 5.6645 <0.001 4091.0000
education c 0.0430 0.0116 0.0202 – 0.0659 3.6998 <0.001 4091.0000 0.0453 0.0080 0.0296 – 0.0609 5.6718 <0.001 4091.0000
ATRMC c × USvUK -2.8900 1.1829 -5.2092 – -0.5708 -2.4431 0.015 4091.0000 -1.0300 0.8118 -2.6215 – 0.5615 -1.2689 0.205 4091.0000
ATRMC c × ideology c 0.1135 0.3902 -0.6516 – 0.8785 0.2908 0.771 4091.0000 -0.0182 0.2678 -0.5432 – 0.5068 -0.0680 0.946 4091.0000
ATRMC c × age c -0.0889 0.0395 -0.1663 – -0.0115 -2.2517 0.024 4091.0000 0.0374 0.0271 -0.0157 – 0.0906 1.3810 0.167 4091.0000
ATRMC c × education c -0.0486 0.2337 -0.5067 – 0.4095 -0.2080 0.835 4091.0000 0.2732 0.1603 -0.0412 – 0.5875 1.7036 0.089 4091.0000
Observations 4101 4101
R2 / R2 adjusted 0.085 / 0.083 0.103 / 0.101

c. vaxxIntentions ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.intent <- lm(vaxxIntentions ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

d. trustExpert ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)

m.trust <- lm(trustExpert ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
          show.df = T, 
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "Est",
          digits = 4)
  vaxxIntentions trustExpert
Predictors Est SE CI t p df Est SE CI t p df
(Intercept) 1.0197 0.0334 0.9542 – 1.0852 30.5413 <0.001 4086.0000 1.7428 0.0230 1.6977 – 1.7879 75.7335 <0.001 4086.0000
ATRMC c 0.7848 0.5890 -0.3701 – 1.9396 1.3323 0.183 4086.0000 0.2761 0.4060 -0.5198 – 1.0721 0.6801 0.496 4086.0000
exp sum c 0.0319 0.0053 0.0214 – 0.0424 5.9754 <0.001 4086.0000 0.0117 0.0037 0.0044 – 0.0189 3.1672 0.002 4086.0000
USvUK 0.7404 0.0652 0.6125 – 0.8682 11.3556 <0.001 4086.0000 0.5196 0.0449 0.4315 – 0.6077 11.5620 <0.001 4086.0000
ideology c -0.2314 0.0211 -0.2728 – -0.1900 -10.9643 <0.001 4086.0000 -0.2048 0.0145 -0.2334 – -0.1763 -14.0813 <0.001 4086.0000
age c 0.0215 0.0021 0.0174 – 0.0256 10.2527 <0.001 4086.0000 0.0092 0.0014 0.0063 – 0.0120 6.3602 <0.001 4086.0000
education c 0.0538 0.0121 0.0300 – 0.0776 4.4338 <0.001 4086.0000 0.0462 0.0084 0.0298 – 0.0626 5.5194 <0.001 4086.0000
ATRMC c × USvUK -1.8435 1.1944 -4.1851 – 0.4982 -1.5435 0.123 4086.0000 -0.2479 0.8232 -1.8618 – 1.3661 -0.3011 0.763 4086.0000
ATRMC c × ideology c -0.5850 0.4019 -1.3729 – 0.2029 -1.4558 0.146 4086.0000 -0.5175 0.2770 -1.0605 – 0.0256 -1.8682 0.062 4086.0000
ATRMC c × age c -0.0618 0.0401 -0.1404 – 0.0168 -1.5418 0.123 4086.0000 0.0358 0.0276 -0.0184 – 0.0900 1.2963 0.195 4086.0000
ATRMC c × education c 0.0850 0.2399 -0.3853 – 0.5552 0.3543 0.723 4086.0000 0.2554 0.1653 -0.0687 – 0.5795 1.5448 0.122 4086.0000
exp sum c × USvUK -0.0000 0.0106 -0.0208 – 0.0208 -0.0024 0.998 4086.0000 -0.0128 0.0073 -0.0271 – 0.0016 -1.7434 0.081 4086.0000
exp sum c × ideology c 0.0097 0.0021 0.0055 – 0.0139 4.5363 <0.001 4086.0000 0.0079 0.0015 0.0050 – 0.0107 5.3294 <0.001 4086.0000
exp sum c × age c -0.0004 0.0002 -0.0009 – 0.0000 -1.7899 0.074 4086.0000 0.0002 0.0002 -0.0001 – 0.0006 1.4818 0.138 4086.0000
exp sum c × education c -0.0021 0.0011 -0.0044 – 0.0001 -1.8919 0.059 4086.0000 -0.0000 0.0008 -0.0015 – 0.0015 -0.0179 0.986 4086.0000
Observations 4101 4101
R2 / R2 adjusted 0.110 / 0.107 0.119 / 0.116