TO DO: - add in models with LIWC.max scores for trust in experts and vaxx intentions - re organize this document - double check work again in the prep RMD
Not included here, media exposure asks participants to “Consider each of the media sources below. In general, how much do you get news about COVID-19 from each source?” on a scale from 1 (Not at all) to 3 (Somewhat) to 5 (A great deal).
The first step to creating the average analytic media consumption is multiplying individual analytic thinking scores for each media outlet by participant rated exposure to that outlet, Then taking the sum of each of these products and dividing this sum by the total amount of media a participant is exposed to
fox_index = (fox participant exposure x fox analytic score) (fox_index + cnn_index + msnbc_index + …) / sum of media exposure
symbolic ideology is an average of three items. They ask “How liberal/conservative…” (1) in general, (2) on social issues, and (3) on economic issues. Participants answered on a scale from -3 (Very liberal) to 0 (Moderate) to +3 (Very conservative).
trust in experts is an average of 3-items asking about how much participants trust experts, medicine, economics, public health, and science. The trust response scale ranges from -3 (strongly distrust) to 0 (Neither trust nor distrust) to +3 (Strongly trust)
Media outlet LIWC analytic thinking scores captures the degree to which people use words that suggest formal, logical, and hierarchical thinking patterns.
Participants were asked “would you get a Covid-19 vaccine?” and answered on a scale from -3 (Definitely would not get it) to 0 (Undecided) to +3 (Definitely would get it).
summary(m.intent1 <- lm(vaxxIntentions ~ exp.sum.c * (USvUK + ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = vaxxIntentions ~ exp.sum.c * (USvUK + ideology.c +
## age.c + education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3709 -1.3222 0.4151 1.5270 4.8337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0013334 0.0312150 32.079 < 2e-16 ***
## exp.sum.c 0.0371863 0.0049488 7.514 6.88e-14 ***
## USvUK 0.7564259 0.0623192 12.138 < 2e-16 ***
## ideology.c -0.2338374 0.0198588 -11.775 < 2e-16 ***
## age.c 0.0211358 0.0020119 10.505 < 2e-16 ***
## education.c 0.0596152 0.0112303 5.308 1.16e-07 ***
## exp.sum.c:USvUK -0.0008067 0.0098026 -0.082 0.9344
## exp.sum.c:ideology.c 0.0094591 0.0019394 4.877 1.11e-06 ***
## exp.sum.c:age.c -0.0005223 0.0002228 -2.344 0.0191 *
## exp.sum.c:education.c -0.0026001 0.0010096 -2.575 0.0100 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.948 on 4459 degrees of freedom
## (100 observations deleted due to missingness)
## Multiple R-squared: 0.1245, Adjusted R-squared: 0.1227
## F-statistic: 70.42 on 9 and 4459 DF, p-value: < 2.2e-16
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## [1] -1.51398
## [1] 1.679717
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## [1] -1.963628
## [1] 0.7460446
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
summary(m.intent2 <- lm(vaxxIntentions ~ analytic.max.c * (USvUK + ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = vaxxIntentions ~ analytic.max.c * (USvUK + ideology.c +
## age.c + education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2308 -1.2316 0.4392 1.5653 3.8144
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0499277 0.0329277 31.886 < 2e-16 ***
## analytic.max.c 0.0058345 0.0056311 1.036 0.300209
## USvUK 0.7569826 0.0651917 11.612 < 2e-16 ***
## ideology.c -0.2258536 0.0209117 -10.800 < 2e-16 ***
## age.c 0.0189892 0.0020943 9.067 < 2e-16 ***
## education.c 0.0431561 0.0116315 3.710 0.000210 ***
## analytic.max.c:USvUK -0.0410463 0.0112307 -3.655 0.000261 ***
## analytic.max.c:ideology.c 0.0004638 0.0027138 0.171 0.864314
## analytic.max.c:age.c -0.0006315 0.0002726 -2.316 0.020600 *
## analytic.max.c:education.c -0.0012022 0.0015043 -0.799 0.424240
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.945 on 4091 degrees of freedom
## (468 observations deleted due to missingness)
## Multiple R-squared: 0.08886, Adjusted R-squared: 0.08685
## F-statistic: 44.33 on 9 and 4091 DF, p-value: < 2.2e-16
summary(m.intent3 <- lm(vaxxIntentions ~ AAMC.c * (USvUK + ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = vaxxIntentions ~ AAMC.c * (USvUK + ideology.c +
## age.c + education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2604 -1.2285 0.4271 1.5643 4.3599
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0384686 0.0330778 31.395 < 2e-16 ***
## AAMC.c 0.0167468 0.0076492 2.189 0.028627 *
## USvUK 0.7700580 0.0649488 11.856 < 2e-16 ***
## ideology.c -0.2167702 0.0209511 -10.346 < 2e-16 ***
## age.c 0.0195958 0.0020977 9.342 < 2e-16 ***
## education.c 0.0427614 0.0116636 3.666 0.000249 ***
## AAMC.c:USvUK -0.0754037 0.0149618 -5.040 4.86e-07 ***
## AAMC.c:ideology.c -0.0053693 0.0039380 -1.363 0.172814
## AAMC.c:age.c -0.0008045 0.0003978 -2.023 0.043189 *
## AAMC.c:education.c -0.0024316 0.0024871 -0.978 0.328291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.94 on 4091 degrees of freedom
## (468 observations deleted due to missingness)
## Multiple R-squared: 0.09309, Adjusted R-squared: 0.09109
## F-statistic: 46.66 on 9 and 4091 DF, p-value: < 2.2e-16
tab_model(m.intent1, m.intent2, m.intent3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| vaxxIntentions | vaxxIntentions | vaxxIntentions | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.001 | 0.031 | 0.940 – 1.063 | 32.079 | <0.001 | 4459.000 | 1.050 | 0.033 | 0.985 – 1.114 | 31.886 | <0.001 | 4091.000 | 1.038 | 0.033 | 0.974 – 1.103 | 31.395 | <0.001 | 4091.000 |
| exp sum c | 0.037 | 0.005 | 0.027 – 0.047 | 7.514 | <0.001 | 4459.000 | ||||||||||||
| USvUK | 0.756 | 0.062 | 0.634 – 0.879 | 12.138 | <0.001 | 4459.000 | 0.757 | 0.065 | 0.629 – 0.885 | 11.612 | <0.001 | 4091.000 | 0.770 | 0.065 | 0.643 – 0.897 | 11.856 | <0.001 | 4091.000 |
| ideology c | -0.234 | 0.020 | -0.273 – -0.195 | -11.775 | <0.001 | 4459.000 | -0.226 | 0.021 | -0.267 – -0.185 | -10.800 | <0.001 | 4091.000 | -0.217 | 0.021 | -0.258 – -0.176 | -10.346 | <0.001 | 4091.000 |
| age c | 0.021 | 0.002 | 0.017 – 0.025 | 10.505 | <0.001 | 4459.000 | 0.019 | 0.002 | 0.015 – 0.023 | 9.067 | <0.001 | 4091.000 | 0.020 | 0.002 | 0.015 – 0.024 | 9.342 | <0.001 | 4091.000 |
| education c | 0.060 | 0.011 | 0.038 – 0.082 | 5.308 | <0.001 | 4459.000 | 0.043 | 0.012 | 0.020 – 0.066 | 3.710 | <0.001 | 4091.000 | 0.043 | 0.012 | 0.020 – 0.066 | 3.666 | <0.001 | 4091.000 |
| exp sum c × USvUK | -0.001 | 0.010 | -0.020 – 0.018 | -0.082 | 0.934 | 4459.000 | ||||||||||||
| exp sum c × ideology c | 0.009 | 0.002 | 0.006 – 0.013 | 4.877 | <0.001 | 4459.000 | ||||||||||||
| exp sum c × age c | -0.001 | 0.000 | -0.001 – -0.000 | -2.344 | 0.019 | 4459.000 | ||||||||||||
| exp sum c × education c | -0.003 | 0.001 | -0.005 – -0.001 | -2.575 | 0.010 | 4459.000 | ||||||||||||
| analytic max c | 0.006 | 0.006 | -0.005 – 0.017 | 1.036 | 0.300 | 4091.000 | ||||||||||||
| analytic max c × USvUK | -0.041 | 0.011 | -0.063 – -0.019 | -3.655 | <0.001 | 4091.000 | ||||||||||||
|
analytic max c × ideology c |
0.000 | 0.003 | -0.005 – 0.006 | 0.171 | 0.864 | 4091.000 | ||||||||||||
| analytic max c × age c | -0.001 | 0.000 | -0.001 – -0.000 | -2.316 | 0.021 | 4091.000 | ||||||||||||
|
analytic max c × education c |
-0.001 | 0.002 | -0.004 – 0.002 | -0.799 | 0.424 | 4091.000 | ||||||||||||
| AAMC c | 0.017 | 0.008 | 0.002 – 0.032 | 2.189 | 0.029 | 4091.000 | ||||||||||||
| AAMC c × USvUK | -0.075 | 0.015 | -0.105 – -0.046 | -5.040 | <0.001 | 4091.000 | ||||||||||||
| AAMC c × ideology c | -0.005 | 0.004 | -0.013 – 0.002 | -1.363 | 0.173 | 4091.000 | ||||||||||||
| AAMC c × age c | -0.001 | 0.000 | -0.002 – -0.000 | -2.023 | 0.043 | 4091.000 | ||||||||||||
| AAMC c × education c | -0.002 | 0.002 | -0.007 – 0.002 | -0.978 | 0.328 | 4091.000 | ||||||||||||
| Observations | 4469 | 4101 | 4101 | |||||||||||||||
| R2 / R2 adjusted | 0.124 / 0.123 | 0.089 / 0.087 | 0.093 / 0.091 | |||||||||||||||
summary(m.expert1 <- lm(trustExpert ~ exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = trustExpert ~ exp.sum.c * (USvUK + ideology.c +
## age.c + education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4196 -0.6175 0.2629 0.9390 3.2608
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7131363 0.0217717 78.686 < 2e-16 ***
## exp.sum.c 0.0174254 0.0034517 5.048 4.63e-07 ***
## USvUK 0.5780894 0.0434661 13.300 < 2e-16 ***
## ideology.c -0.1936516 0.0138510 -13.981 < 2e-16 ***
## age.c 0.0093749 0.0014033 6.681 2.67e-11 ***
## education.c 0.0531146 0.0078329 6.781 1.35e-11 ***
## exp.sum.c:USvUK -0.0151759 0.0068371 -2.220 0.0265 *
## exp.sum.c:ideology.c 0.0060783 0.0013527 4.494 7.18e-06 ***
## exp.sum.c:age.c 0.0002504 0.0001554 1.611 0.1072
## exp.sum.c:education.c -0.0002598 0.0007042 -0.369 0.7122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.359 on 4459 degrees of freedom
## (100 observations deleted due to missingness)
## Multiple R-squared: 0.1298, Adjusted R-squared: 0.128
## F-statistic: 73.89 on 9 and 4459 DF, p-value: < 2.2e-16
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## [1] -1.51398
## [1] 1.679717
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## [1] -1.963628
## [1] 0.7460446
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
summary(m.expert2 <- lm(trustExpert ~ analytic.max.c * (USvUK +ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = trustExpert ~ analytic.max.c * (USvUK + ideology.c +
## age.c + education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3571 -0.5518 0.2827 0.9277 2.8098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7538031 0.0226105 77.566 < 2e-16 ***
## analytic.max.c -0.0035568 0.0038667 -0.920 0.35771
## USvUK 0.5393841 0.0447653 12.049 < 2e-16 ***
## ideology.c -0.2060372 0.0143595 -14.348 < 2e-16 ***
## age.c 0.0082072 0.0014381 5.707 1.23e-08 ***
## education.c 0.0459347 0.0079870 5.751 9.51e-09 ***
## analytic.max.c:USvUK -0.0265921 0.0077118 -3.448 0.00057 ***
## analytic.max.c:ideology.c -0.0002878 0.0018635 -0.154 0.87728
## analytic.max.c:age.c 0.0005239 0.0001872 2.798 0.00516 **
## analytic.max.c:education.c 0.0002213 0.0010330 0.214 0.83038
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.335 on 4091 degrees of freedom
## (468 observations deleted due to missingness)
## Multiple R-squared: 0.1055, Adjusted R-squared: 0.1035
## F-statistic: 53.6 on 9 and 4091 DF, p-value: < 2.2e-16
summary(m.expert3 <- lm(trustExpert ~ AAMC.c * (USvUK +ideology.c + age.c + education.c), data = d))
##
## Call:
## lm(formula = trustExpert ~ AAMC.c * (USvUK + ideology.c + age.c +
## education.c), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4103 -0.5759 0.2897 0.9222 2.8223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7452730 0.0227359 76.763 < 2e-16 ***
## AAMC.c 0.0043972 0.0052576 0.836 0.4030
## USvUK 0.5502446 0.0446423 12.326 < 2e-16 ***
## ideology.c -0.1988518 0.0144007 -13.809 < 2e-16 ***
## age.c 0.0085194 0.0014418 5.909 3.73e-09 ***
## education.c 0.0434790 0.0080169 5.423 6.19e-08 ***
## AAMC.c:USvUK -0.0428984 0.0102839 -4.171 3.09e-05 ***
## AAMC.c:ideology.c -0.0044641 0.0027068 -1.649 0.0992 .
## AAMC.c:age.c 0.0005604 0.0002734 2.050 0.0404 *
## AAMC.c:education.c 0.0019831 0.0017095 1.160 0.2461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.333 on 4091 degrees of freedom
## (468 observations deleted due to missingness)
## Multiple R-squared: 0.1079, Adjusted R-squared: 0.1059
## F-statistic: 54.97 on 9 and 4091 DF, p-value: < 2.2e-16
tab_model(m.expert1, m.expert2, m.expert3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| trustExpert | trustExpert | trustExpert | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.7131 | 0.0218 | 1.6705 – 1.7558 | 78.6863 | <0.001 | 4459.0000 | 1.7538 | 0.0226 | 1.7095 – 1.7981 | 77.5658 | <0.001 | 4091.0000 | 1.7453 | 0.0227 | 1.7007 – 1.7898 | 76.7629 | <0.001 | 4091.0000 |
| exp sum c | 0.0174 | 0.0035 | 0.0107 – 0.0242 | 5.0484 | <0.001 | 4459.0000 | ||||||||||||
| USvUK | 0.5781 | 0.0435 | 0.4929 – 0.6633 | 13.2998 | <0.001 | 4459.0000 | 0.5394 | 0.0448 | 0.4516 – 0.6271 | 12.0492 | <0.001 | 4091.0000 | 0.5502 | 0.0446 | 0.4627 – 0.6378 | 12.3256 | <0.001 | 4091.0000 |
| ideology c | -0.1937 | 0.0139 | -0.2208 – -0.1665 | -13.9810 | <0.001 | 4459.0000 | -0.2060 | 0.0144 | -0.2342 – -0.1779 | -14.3485 | <0.001 | 4091.0000 | -0.1989 | 0.0144 | -0.2271 – -0.1706 | -13.8085 | <0.001 | 4091.0000 |
| age c | 0.0094 | 0.0014 | 0.0066 – 0.0121 | 6.6808 | <0.001 | 4459.0000 | 0.0082 | 0.0014 | 0.0054 – 0.0110 | 5.7071 | <0.001 | 4091.0000 | 0.0085 | 0.0014 | 0.0057 – 0.0113 | 5.9087 | <0.001 | 4091.0000 |
| education c | 0.0531 | 0.0078 | 0.0378 – 0.0685 | 6.7810 | <0.001 | 4459.0000 | 0.0459 | 0.0080 | 0.0303 – 0.0616 | 5.7512 | <0.001 | 4091.0000 | 0.0435 | 0.0080 | 0.0278 – 0.0592 | 5.4234 | <0.001 | 4091.0000 |
| exp sum c × USvUK | -0.0152 | 0.0068 | -0.0286 – -0.0018 | -2.2197 | 0.026 | 4459.0000 | ||||||||||||
| exp sum c × ideology c | 0.0061 | 0.0014 | 0.0034 – 0.0087 | 4.4936 | <0.001 | 4459.0000 | ||||||||||||
| exp sum c × age c | 0.0003 | 0.0002 | -0.0001 – 0.0006 | 1.6113 | 0.107 | 4459.0000 | ||||||||||||
| exp sum c × education c | -0.0003 | 0.0007 | -0.0016 – 0.0011 | -0.3689 | 0.712 | 4459.0000 | ||||||||||||
| analytic max c | -0.0036 | 0.0039 | -0.0111 – 0.0040 | -0.9198 | 0.358 | 4091.0000 | ||||||||||||
| analytic max c × USvUK | -0.0266 | 0.0077 | -0.0417 – -0.0115 | -3.4482 | 0.001 | 4091.0000 | ||||||||||||
|
analytic max c × ideology c |
-0.0003 | 0.0019 | -0.0039 – 0.0034 | -0.1544 | 0.877 | 4091.0000 | ||||||||||||
| analytic max c × age c | 0.0005 | 0.0002 | 0.0002 – 0.0009 | 2.7982 | 0.005 | 4091.0000 | ||||||||||||
|
analytic max c × education c |
0.0002 | 0.0010 | -0.0018 – 0.0022 | 0.2142 | 0.830 | 4091.0000 | ||||||||||||
| AAMC c | 0.0044 | 0.0053 | -0.0059 – 0.0147 | 0.8364 | 0.403 | 4091.0000 | ||||||||||||
| AAMC c × USvUK | -0.0429 | 0.0103 | -0.0631 – -0.0227 | -4.1714 | <0.001 | 4091.0000 | ||||||||||||
| AAMC c × ideology c | -0.0045 | 0.0027 | -0.0098 – 0.0008 | -1.6492 | 0.099 | 4091.0000 | ||||||||||||
| AAMC c × age c | 0.0006 | 0.0003 | 0.0000 – 0.0011 | 2.0499 | 0.040 | 4091.0000 | ||||||||||||
| AAMC c × education c | 0.0020 | 0.0017 | -0.0014 – 0.0053 | 1.1601 | 0.246 | 4091.0000 | ||||||||||||
| Observations | 4469 | 4101 | 4101 | |||||||||||||||
| R2 / R2 adjusted | 0.130 / 0.128 | 0.105 / 0.104 | 0.108 / 0.106 | |||||||||||||||
m.intent1 <- lm(vaxxIntentions ~ (AAMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.intent2 <- lm(vaxxIntentions ~ AAMC.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent1, m.intent2,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | vaxxIntentions | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0019 | 0.0330 | 0.9371 – 1.0666 | 30.3377 | <0.001 | 4086.0000 | 1.0405 | 0.0422 | 0.9578 – 1.1232 | 24.6610 | <0.001 | 4081.0000 |
| AAMC c | -0.0139 | 0.0086 | -0.0308 – 0.0030 | -1.6117 | 0.107 | 4086.0000 | -0.0338 | 0.0136 | -0.0604 – -0.0072 | -2.4950 | 0.013 | 4081.0000 |
| exp sum c | 0.0437 | 0.0061 | 0.0318 – 0.0557 | 7.1725 | <0.001 | 4086.0000 | 0.0558 | 0.0101 | 0.0360 – 0.0757 | 5.5148 | <0.001 | 4081.0000 |
| USvUK | 0.7523 | 0.0648 | 0.6252 – 0.8793 | 11.6053 | <0.001 | 4086.0000 | 0.7931 | 0.0836 | 0.6292 – 0.9570 | 9.4855 | <0.001 | 4081.0000 |
| ideology c | -0.2277 | 0.0212 | -0.2692 – -0.1861 | -10.7508 | <0.001 | 4086.0000 | -0.1949 | 0.0236 | -0.2412 – -0.1485 | -8.2469 | <0.001 | 4081.0000 |
| age c | 0.0218 | 0.0021 | 0.0177 – 0.0259 | 10.4332 | <0.001 | 4086.0000 | 0.0229 | 0.0024 | 0.0182 – 0.0275 | 9.6421 | <0.001 | 4081.0000 |
| education c | 0.0529 | 0.0120 | 0.0293 – 0.0765 | 4.3945 | <0.001 | 4086.0000 | 0.0525 | 0.0137 | 0.0258 – 0.0793 | 3.8478 | <0.001 | 4081.0000 |
| AAMC c × USvUK | -0.1001 | 0.0171 | -0.1335 – -0.0667 | -5.8697 | <0.001 | 4086.0000 | -0.1131 | 0.0268 | -0.1655 – -0.0606 | -4.2225 | <0.001 | 4081.0000 |
| AAMC c × ideology c | -0.0142 | 0.0042 | -0.0224 – -0.0059 | -3.3716 | 0.001 | 4086.0000 | -0.0304 | 0.0066 | -0.0433 – -0.0175 | -4.6170 | <0.001 | 4081.0000 |
| AAMC c × age c | -0.0004 | 0.0004 | -0.0012 – 0.0004 | -0.9667 | 0.334 | 4086.0000 | -0.0011 | 0.0007 | -0.0024 – 0.0002 | -1.6620 | 0.097 | 4081.0000 |
| AAMC c × education c | 0.0001 | 0.0027 | -0.0052 – 0.0053 | 0.0196 | 0.984 | 4086.0000 | 0.0006 | 0.0038 | -0.0069 – 0.0080 | 0.1481 | 0.882 | 4081.0000 |
| exp sum c × USvUK | 0.0287 | 0.0122 | 0.0049 – 0.0526 | 2.3643 | 0.018 | 4086.0000 | 0.0510 | 0.0202 | 0.0113 – 0.0906 | 2.5212 | 0.012 | 4081.0000 |
| exp sum c × ideology c | 0.0110 | 0.0022 | 0.0066 – 0.0154 | 4.9309 | <0.001 | 4086.0000 | 0.0168 | 0.0030 | 0.0110 – 0.0226 | 5.6811 | <0.001 | 4081.0000 |
| exp sum c × age c | -0.0004 | 0.0003 | -0.0009 – 0.0001 | -1.6272 | 0.104 | 4086.0000 | -0.0002 | 0.0003 | -0.0008 – 0.0004 | -0.6451 | 0.519 | 4081.0000 |
| exp sum c × education c | -0.0020 | 0.0012 | -0.0044 – 0.0003 | -1.7146 | 0.086 | 4086.0000 | -0.0024 | 0.0017 | -0.0057 – 0.0010 | -1.3885 | 0.165 | 4081.0000 |
| AAMC c × exp sum c | -0.0040 | 0.0026 | -0.0091 – 0.0011 | -1.5405 | 0.124 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × USvUK |
-0.0066 | 0.0052 | -0.0167 – 0.0036 | -1.2712 | 0.204 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × ideology c |
-0.0021 | 0.0007 | -0.0035 – -0.0007 | -3.0018 | 0.003 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × age c |
-0.0001 | 0.0001 | -0.0002 – 0.0001 | -1.2478 | 0.212 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × education c |
0.0001 | 0.0004 | -0.0007 – 0.0010 | 0.2895 | 0.772 | 4081.0000 | ||||||
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.117 / 0.114 | 0.120 / 0.116 | ||||||||||
m.trust1 <- lm(trustExpert ~ (AAMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust2 <- lm(trustExpert ~ AAMC.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.trust1, m.trust2,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| trustExpert | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.7353 | 0.0228 | 1.6906 – 1.7800 | 76.1080 | <0.001 | 4086.0000 | 1.7764 | 0.0291 | 1.7193 – 1.8334 | 61.0242 | <0.001 | 4081.0000 |
| AAMC c | -0.0081 | 0.0060 | -0.0197 – 0.0036 | -1.3528 | 0.176 | 4086.0000 | -0.0287 | 0.0094 | -0.0471 – -0.0104 | -3.0718 | 0.002 | 4081.0000 |
| exp sum c | 0.0182 | 0.0042 | 0.0100 – 0.0265 | 4.3348 | <0.001 | 4086.0000 | 0.0295 | 0.0070 | 0.0158 – 0.0432 | 4.2192 | <0.001 | 4081.0000 |
| USvUK | 0.5374 | 0.0448 | 0.4496 – 0.6251 | 12.0067 | <0.001 | 4086.0000 | 0.5397 | 0.0577 | 0.4266 – 0.6528 | 9.3567 | <0.001 | 4081.0000 |
| ideology c | -0.2049 | 0.0146 | -0.2336 – -0.1763 | -14.0158 | <0.001 | 4086.0000 | -0.1868 | 0.0163 | -0.2188 – -0.1549 | -11.4612 | <0.001 | 4081.0000 |
| age c | 0.0095 | 0.0014 | 0.0066 – 0.0123 | 6.5578 | <0.001 | 4086.0000 | 0.0103 | 0.0016 | 0.0071 – 0.0135 | 6.3011 | <0.001 | 4081.0000 |
| education c | 0.0451 | 0.0083 | 0.0288 – 0.0614 | 5.4256 | <0.001 | 4086.0000 | 0.0448 | 0.0094 | 0.0264 – 0.0633 | 4.7600 | <0.001 | 4081.0000 |
| AAMC c × USvUK | -0.0475 | 0.0118 | -0.0706 – -0.0244 | -4.0346 | <0.001 | 4086.0000 | -0.0444 | 0.0185 | -0.0806 – -0.0081 | -2.4015 | 0.016 | 4081.0000 |
| AAMC c × ideology c | -0.0110 | 0.0029 | -0.0167 – -0.0053 | -3.7863 | <0.001 | 4086.0000 | -0.0209 | 0.0045 | -0.0298 – -0.0120 | -4.6057 | <0.001 | 4081.0000 |
| AAMC c × age c | 0.0005 | 0.0003 | -0.0000 – 0.0011 | 1.8346 | 0.067 | 4086.0000 | -0.0001 | 0.0005 | -0.0010 – 0.0008 | -0.2456 | 0.806 | 4081.0000 |
| AAMC c × education c | 0.0023 | 0.0018 | -0.0013 – 0.0059 | 1.2548 | 0.210 | 4086.0000 | 0.0028 | 0.0026 | -0.0023 – 0.0080 | 1.0836 | 0.279 | 4081.0000 |
| exp sum c × USvUK | 0.0029 | 0.0084 | -0.0136 – 0.0193 | 0.3414 | 0.733 | 4086.0000 | 0.0135 | 0.0139 | -0.0139 – 0.0408 | 0.9652 | 0.334 | 4081.0000 |
| exp sum c × ideology c | 0.0090 | 0.0015 | 0.0059 – 0.0120 | 5.8063 | <0.001 | 4086.0000 | 0.0115 | 0.0020 | 0.0075 – 0.0155 | 5.6472 | <0.001 | 4081.0000 |
| exp sum c × age c | 0.0002 | 0.0002 | -0.0001 – 0.0006 | 1.1773 | 0.239 | 4086.0000 | 0.0004 | 0.0002 | -0.0000 – 0.0008 | 1.8358 | 0.066 | 4081.0000 |
| exp sum c × education c | -0.0001 | 0.0008 | -0.0017 – 0.0015 | -0.0920 | 0.927 | 4086.0000 | -0.0004 | 0.0012 | -0.0027 – 0.0019 | -0.3386 | 0.735 | 4081.0000 |
| AAMC c × exp sum c | -0.0039 | 0.0018 | -0.0074 – -0.0004 | -2.1907 | 0.029 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × USvUK |
-0.0027 | 0.0036 | -0.0097 – 0.0043 | -0.7669 | 0.443 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × ideology c |
-0.0010 | 0.0005 | -0.0019 – -0.0000 | -2.0231 | 0.043 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × age c |
-0.0001 | 0.0001 | -0.0002 – 0.0000 | -1.8652 | 0.062 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × education c |
0.0001 | 0.0003 | -0.0005 – 0.0007 | 0.3868 | 0.699 | 4081.0000 | ||||||
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.124 / 0.121 | 0.128 / 0.124 | ||||||||||
m.intent1 <- lm(vaxxIntentions ~ (analytic.max.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.intent2 <- lm(vaxxIntentions ~ analytic.max.c * exp.sum.c * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent1, m.intent2,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | vaxxIntentions | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0176 | 0.0329 | 0.9531 – 1.0821 | 30.9295 | <0.001 | 4086.0000 | 1.0120 | 0.0340 | 0.9452 – 1.0788 | 29.7217 | <0.001 | 4081.0000 |
| analytic max c | -0.0063 | 0.0058 | -0.0177 – 0.0051 | -1.0828 | 0.279 | 4086.0000 | -0.0083 | 0.0059 | -0.0199 – 0.0033 | -1.4037 | 0.160 | 4081.0000 |
| exp sum c | 0.0360 | 0.0055 | 0.0252 – 0.0468 | 6.5388 | <0.001 | 4086.0000 | 0.0330 | 0.0059 | 0.0214 – 0.0446 | 5.5708 | <0.001 | 4081.0000 |
| USvUK | 0.7589 | 0.0650 | 0.6314 – 0.8864 | 11.6692 | <0.001 | 4086.0000 | 0.7081 | 0.0674 | 0.5761 – 0.8402 | 10.5107 | <0.001 | 4081.0000 |
| ideology c | -0.2258 | 0.0212 | -0.2673 – -0.1843 | -10.6626 | <0.001 | 4086.0000 | -0.2147 | 0.0219 | -0.2577 – -0.1717 | -9.7835 | <0.001 | 4081.0000 |
| age c | 0.0216 | 0.0021 | 0.0175 – 0.0257 | 10.3507 | <0.001 | 4086.0000 | 0.0214 | 0.0022 | 0.0172 – 0.0257 | 9.9295 | <0.001 | 4081.0000 |
| education c | 0.0522 | 0.0120 | 0.0286 – 0.0758 | 4.3360 | <0.001 | 4086.0000 | 0.0538 | 0.0124 | 0.0295 – 0.0781 | 4.3415 | <0.001 | 4081.0000 |
| analytic max c × USvUK | -0.0464 | 0.0116 | -0.0691 – -0.0236 | -3.9925 | <0.001 | 4086.0000 | -0.0427 | 0.0117 | -0.0657 – -0.0197 | -3.6447 | <0.001 | 4081.0000 |
|
analytic max c × ideology c |
-0.0048 | 0.0028 | -0.0103 – 0.0007 | -1.7140 | 0.087 | 4086.0000 | -0.0072 | 0.0030 | -0.0131 – -0.0014 | -2.4180 | 0.016 | 4081.0000 |
| analytic max c × age c | -0.0005 | 0.0003 | -0.0011 – 0.0000 | -1.9394 | 0.053 | 4086.0000 | -0.0006 | 0.0003 | -0.0012 – 0.0000 | -1.9126 | 0.056 | 4081.0000 |
|
analytic max c × education c |
0.0004 | 0.0016 | -0.0027 – 0.0034 | 0.2413 | 0.809 | 4086.0000 | 0.0003 | 0.0016 | -0.0028 – 0.0034 | 0.1945 | 0.846 | 4081.0000 |
| exp sum c × USvUK | 0.0091 | 0.0109 | -0.0123 – 0.0305 | 0.8368 | 0.403 | 4086.0000 | -0.0001 | 0.0117 | -0.0231 – 0.0228 | -0.0110 | 0.991 | 4081.0000 |
| exp sum c × ideology c | 0.0097 | 0.0021 | 0.0055 – 0.0139 | 4.5323 | <0.001 | 4086.0000 | 0.0106 | 0.0023 | 0.0060 – 0.0151 | 4.5659 | <0.001 | 4081.0000 |
| exp sum c × age c | -0.0004 | 0.0002 | -0.0009 – 0.0001 | -1.5896 | 0.112 | 4086.0000 | -0.0004 | 0.0003 | -0.0009 – 0.0001 | -1.6892 | 0.091 | 4081.0000 |
| exp sum c × education c | -0.0021 | 0.0011 | -0.0043 – 0.0002 | -1.8003 | 0.072 | 4086.0000 | -0.0018 | 0.0012 | -0.0043 – 0.0006 | -1.4710 | 0.141 | 4081.0000 |
|
analytic max c × exp sum c |
0.0015 | 0.0011 | -0.0006 – 0.0037 | 1.4123 | 0.158 | 4081.0000 | ||||||
|
(analytic max c × exp sum c) × USvUK |
0.0050 | 0.0021 | 0.0008 – 0.0091 | 2.3134 | 0.021 | 4081.0000 | ||||||
|
(analytic max c × exp sum c) × ideology c |
-0.0005 | 0.0003 | -0.0012 – 0.0002 | -1.4862 | 0.137 | 4081.0000 | ||||||
|
(analytic max c × exp sum c) × age c |
0.0000 | 0.0000 | -0.0001 – 0.0001 | 0.2728 | 0.785 | 4081.0000 | ||||||
|
(analytic max c × exp sum c) × education c |
-0.0001 | 0.0002 | -0.0004 – 0.0003 | -0.4346 | 0.664 | 4081.0000 | ||||||
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.113 / 0.110 | 0.116 / 0.111 | ||||||||||
tab_model(m.trust1, m.trust2,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| trustExpert | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.7353 | 0.0228 | 1.6906 – 1.7800 | 76.1080 | <0.001 | 4086.0000 | 1.7764 | 0.0291 | 1.7193 – 1.8334 | 61.0242 | <0.001 | 4081.0000 |
| AAMC c | -0.0081 | 0.0060 | -0.0197 – 0.0036 | -1.3528 | 0.176 | 4086.0000 | -0.0287 | 0.0094 | -0.0471 – -0.0104 | -3.0718 | 0.002 | 4081.0000 |
| exp sum c | 0.0182 | 0.0042 | 0.0100 – 0.0265 | 4.3348 | <0.001 | 4086.0000 | 0.0295 | 0.0070 | 0.0158 – 0.0432 | 4.2192 | <0.001 | 4081.0000 |
| USvUK | 0.5374 | 0.0448 | 0.4496 – 0.6251 | 12.0067 | <0.001 | 4086.0000 | 0.5397 | 0.0577 | 0.4266 – 0.6528 | 9.3567 | <0.001 | 4081.0000 |
| ideology c | -0.2049 | 0.0146 | -0.2336 – -0.1763 | -14.0158 | <0.001 | 4086.0000 | -0.1868 | 0.0163 | -0.2188 – -0.1549 | -11.4612 | <0.001 | 4081.0000 |
| age c | 0.0095 | 0.0014 | 0.0066 – 0.0123 | 6.5578 | <0.001 | 4086.0000 | 0.0103 | 0.0016 | 0.0071 – 0.0135 | 6.3011 | <0.001 | 4081.0000 |
| education c | 0.0451 | 0.0083 | 0.0288 – 0.0614 | 5.4256 | <0.001 | 4086.0000 | 0.0448 | 0.0094 | 0.0264 – 0.0633 | 4.7600 | <0.001 | 4081.0000 |
| AAMC c × USvUK | -0.0475 | 0.0118 | -0.0706 – -0.0244 | -4.0346 | <0.001 | 4086.0000 | -0.0444 | 0.0185 | -0.0806 – -0.0081 | -2.4015 | 0.016 | 4081.0000 |
| AAMC c × ideology c | -0.0110 | 0.0029 | -0.0167 – -0.0053 | -3.7863 | <0.001 | 4086.0000 | -0.0209 | 0.0045 | -0.0298 – -0.0120 | -4.6057 | <0.001 | 4081.0000 |
| AAMC c × age c | 0.0005 | 0.0003 | -0.0000 – 0.0011 | 1.8346 | 0.067 | 4086.0000 | -0.0001 | 0.0005 | -0.0010 – 0.0008 | -0.2456 | 0.806 | 4081.0000 |
| AAMC c × education c | 0.0023 | 0.0018 | -0.0013 – 0.0059 | 1.2548 | 0.210 | 4086.0000 | 0.0028 | 0.0026 | -0.0023 – 0.0080 | 1.0836 | 0.279 | 4081.0000 |
| exp sum c × USvUK | 0.0029 | 0.0084 | -0.0136 – 0.0193 | 0.3414 | 0.733 | 4086.0000 | 0.0135 | 0.0139 | -0.0139 – 0.0408 | 0.9652 | 0.334 | 4081.0000 |
| exp sum c × ideology c | 0.0090 | 0.0015 | 0.0059 – 0.0120 | 5.8063 | <0.001 | 4086.0000 | 0.0115 | 0.0020 | 0.0075 – 0.0155 | 5.6472 | <0.001 | 4081.0000 |
| exp sum c × age c | 0.0002 | 0.0002 | -0.0001 – 0.0006 | 1.1773 | 0.239 | 4086.0000 | 0.0004 | 0.0002 | -0.0000 – 0.0008 | 1.8358 | 0.066 | 4081.0000 |
| exp sum c × education c | -0.0001 | 0.0008 | -0.0017 – 0.0015 | -0.0920 | 0.927 | 4086.0000 | -0.0004 | 0.0012 | -0.0027 – 0.0019 | -0.3386 | 0.735 | 4081.0000 |
| AAMC c × exp sum c | -0.0039 | 0.0018 | -0.0074 – -0.0004 | -2.1907 | 0.029 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × USvUK |
-0.0027 | 0.0036 | -0.0097 – 0.0043 | -0.7669 | 0.443 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × ideology c |
-0.0010 | 0.0005 | -0.0019 – -0.0000 | -2.0231 | 0.043 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × age c |
-0.0001 | 0.0001 | -0.0002 – 0.0000 | -1.8652 | 0.062 | 4081.0000 | ||||||
|
(AAMC c × exp sum c) × education c |
0.0001 | 0.0003 | -0.0005 – 0.0007 | 0.3868 | 0.699 | 4081.0000 | ||||||
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.124 / 0.121 | 0.128 / 0.124 | ||||||||||
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
m.intent <- lm(vaxxIntentions ~ (AAFMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (AAFMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0459 | 0.0327 | 0.9819 – 1.1100 | 32.0042 | <0.001 | 4091.0000 | 1.7434 | 0.0224 | 1.6994 – 1.7873 | 77.7829 | <0.001 | 4091.0000 |
| AAFMC c | -0.9809 | 0.3017 | -1.5725 – -0.3893 | -3.2508 | 0.001 | 4091.0000 | -0.5805 | 0.2069 | -0.9863 – -0.1748 | -2.8053 | 0.005 | 4091.0000 |
| USvUK | 0.7663 | 0.0651 | 0.6386 – 0.8939 | 11.7692 | <0.001 | 4091.0000 | 0.5521 | 0.0447 | 0.4646 – 0.6397 | 12.3650 | <0.001 | 4091.0000 |
| ideology c | -0.2393 | 0.0204 | -0.2794 – -0.1993 | -11.7174 | <0.001 | 4091.0000 | -0.2131 | 0.0140 | -0.2405 – -0.1856 | -15.2107 | <0.001 | 4091.0000 |
| age c | 0.0185 | 0.0021 | 0.0143 – 0.0226 | 8.7206 | <0.001 | 4091.0000 | 0.0078 | 0.0015 | 0.0050 – 0.0107 | 5.3880 | <0.001 | 4091.0000 |
| education c | 0.0406 | 0.0117 | 0.0176 – 0.0636 | 3.4648 | 0.001 | 4091.0000 | 0.0432 | 0.0080 | 0.0274 – 0.0589 | 5.3707 | <0.001 | 4091.0000 |
| AAFMC c × USvUK | -1.6357 | 0.6019 | -2.8158 – -0.4557 | -2.7177 | 0.007 | 4091.0000 | -1.1347 | 0.4128 | -1.9440 – -0.3255 | -2.7491 | 0.006 | 4091.0000 |
| AAFMC c × ideology c | 0.0753 | 0.0520 | -0.0267 – 0.1772 | 1.4472 | 0.148 | 4091.0000 | 0.0742 | 0.0357 | 0.0043 – 0.1441 | 2.0807 | 0.038 | 4091.0000 |
| AAFMC c × age c | 0.0106 | 0.0053 | 0.0001 – 0.0210 | 1.9872 | 0.047 | 4091.0000 | 0.0000 | 0.0036 | -0.0071 – 0.0072 | 0.0120 | 0.990 | 4091.0000 |
| AAFMC c × education c | 0.0357 | 0.0314 | -0.0259 – 0.0973 | 1.1374 | 0.255 | 4091.0000 | -0.0254 | 0.0215 | -0.0676 – 0.0168 | -1.1791 | 0.238 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.084 / 0.082 | 0.103 / 0.101 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (AAFMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0210 | 0.0327 | 0.9569 – 1.0850 | 31.2681 | <0.001 | 4086.0000 | 1.7447 | 0.0225 | 1.7005 – 1.7888 | 77.5231 | <0.001 | 4086.0000 |
| AAFMC c | -1.2203 | 0.3051 | -1.8184 – -0.6222 | -4.0000 | <0.001 | 4086.0000 | -0.6335 | 0.2103 | -1.0458 – -0.2213 | -3.0129 | 0.003 | 4086.0000 |
| exp sum c | 0.0372 | 0.0054 | 0.0266 – 0.0478 | 6.9096 | <0.001 | 4086.0000 | 0.0150 | 0.0037 | 0.0077 – 0.0223 | 4.0471 | <0.001 | 4086.0000 |
| USvUK | 0.7555 | 0.0650 | 0.6281 – 0.8829 | 11.6236 | <0.001 | 4086.0000 | 0.5379 | 0.0448 | 0.4501 – 0.6257 | 12.0070 | <0.001 | 4086.0000 |
| ideology c | -0.2212 | 0.0207 | -0.2618 – -0.1806 | -10.6802 | <0.001 | 4086.0000 | -0.2004 | 0.0143 | -0.2284 – -0.1724 | -14.0399 | <0.001 | 4086.0000 |
| age c | 0.0212 | 0.0021 | 0.0170 – 0.0253 | 10.0350 | <0.001 | 4086.0000 | 0.0089 | 0.0015 | 0.0061 – 0.0118 | 6.1453 | <0.001 | 4086.0000 |
| education c | 0.0504 | 0.0121 | 0.0266 – 0.0741 | 4.1569 | <0.001 | 4086.0000 | 0.0446 | 0.0084 | 0.0282 – 0.0610 | 5.3393 | <0.001 | 4086.0000 |
| AAFMC c × USvUK | -2.4397 | 0.6086 | -3.6329 – -1.2466 | -4.0088 | <0.001 | 4086.0000 | -1.4147 | 0.4195 | -2.2371 – -0.5923 | -3.3727 | 0.001 | 4086.0000 |
| AAFMC c × ideology c | 0.1314 | 0.0521 | 0.0292 – 0.2335 | 2.5209 | 0.012 | 4086.0000 | 0.1140 | 0.0359 | 0.0436 – 0.1844 | 3.1745 | 0.002 | 4086.0000 |
| AAFMC c × age c | 0.0083 | 0.0053 | -0.0021 – 0.0188 | 1.5600 | 0.119 | 4086.0000 | 0.0006 | 0.0037 | -0.0066 – 0.0078 | 0.1562 | 0.876 | 4086.0000 |
| AAFMC c × education c | 0.0037 | 0.0320 | -0.0591 – 0.0664 | 0.1148 | 0.909 | 4086.0000 | -0.0339 | 0.0221 | -0.0772 – 0.0093 | -1.5377 | 0.124 | 4086.0000 |
| exp sum c × USvUK | 0.0058 | 0.0107 | -0.0151 – 0.0267 | 0.5457 | 0.585 | 4086.0000 | -0.0090 | 0.0074 | -0.0234 – 0.0054 | -1.2215 | 0.222 | 4086.0000 |
| exp sum c × ideology c | 0.0100 | 0.0021 | 0.0060 – 0.0141 | 4.8502 | <0.001 | 4086.0000 | 0.0081 | 0.0014 | 0.0053 – 0.0109 | 5.6736 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0005 | 0.0002 | -0.0009 – 0.0000 | -1.8646 | 0.062 | 4086.0000 | 0.0003 | 0.0002 | -0.0000 – 0.0006 | 1.8597 | 0.063 | 4086.0000 |
| exp sum c × education c | -0.0020 | 0.0011 | -0.0042 – 0.0003 | -1.7305 | 0.084 | 4086.0000 | -0.0000 | 0.0008 | -0.0015 – 0.0015 | -0.0237 | 0.981 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.114 / 0.111 | 0.123 / 0.120 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (AAUTHMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (AAUTHMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0546 | 0.0326 | 0.9908 – 1.1185 | 32.3877 | <0.001 | 4091.0000 | 1.7487 | 0.0223 | 1.7050 – 1.7924 | 78.4130 | <0.001 | 4091.0000 |
| AAUTHMC c | 0.0183 | 0.0087 | 0.0012 – 0.0355 | 2.0969 | 0.036 | 4091.0000 | -0.0005 | 0.0060 | -0.0122 – 0.0112 | -0.0839 | 0.933 | 4091.0000 |
| USvUK | 0.7458 | 0.0655 | 0.6173 – 0.8743 | 11.3784 | <0.001 | 4091.0000 | 0.5473 | 0.0449 | 0.4593 – 0.6353 | 12.1930 | <0.001 | 4091.0000 |
| ideology c | -0.2529 | 0.0204 | -0.2929 – -0.2129 | -12.3954 | <0.001 | 4091.0000 | -0.2163 | 0.0140 | -0.2437 – -0.1889 | -15.4753 | <0.001 | 4091.0000 |
| age c | 0.0182 | 0.0021 | 0.0141 – 0.0224 | 8.5473 | <0.001 | 4091.0000 | 0.0072 | 0.0015 | 0.0043 – 0.0101 | 4.9335 | <0.001 | 4091.0000 |
| education c | 0.0445 | 0.0117 | 0.0216 – 0.0675 | 3.8001 | <0.001 | 4091.0000 | 0.0486 | 0.0080 | 0.0329 – 0.0643 | 6.0540 | <0.001 | 4091.0000 |
| AAUTHMC c × USvUK | 0.0064 | 0.0176 | -0.0282 – 0.0410 | 0.3640 | 0.716 | 4091.0000 | 0.0361 | 0.0121 | 0.0124 – 0.0597 | 2.9844 | 0.003 | 4091.0000 |
| AAUTHMC c × ideology c | -0.0020 | 0.0056 | -0.0131 – 0.0090 | -0.3570 | 0.721 | 4091.0000 | -0.0006 | 0.0039 | -0.0082 – 0.0069 | -0.1668 | 0.868 | 4091.0000 |
| AAUTHMC c × age c | -0.0002 | 0.0006 | -0.0014 – 0.0010 | -0.3875 | 0.698 | 4091.0000 | -0.0002 | 0.0004 | -0.0010 – 0.0006 | -0.4712 | 0.638 | 4091.0000 |
| AAUTHMC c × education c | -0.0053 | 0.0036 | -0.0122 – 0.0017 | -1.4841 | 0.138 | 4091.0000 | -0.0019 | 0.0024 | -0.0067 – 0.0029 | -0.7774 | 0.437 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.081 / 0.079 | 0.103 / 0.101 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (AAUTHMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0243 | 0.0326 | 0.9602 – 1.0883 | 31.3725 | <0.001 | 4086.0000 | 1.7484 | 0.0225 | 1.7042 – 1.7925 | 77.7105 | <0.001 | 4086.0000 |
| AAUTHMC c | 0.0316 | 0.0096 | 0.0129 – 0.0504 | 3.3092 | 0.001 | 4086.0000 | 0.0023 | 0.0066 | -0.0107 – 0.0152 | 0.3429 | 0.732 | 4086.0000 |
| exp sum c | 0.0455 | 0.0061 | 0.0334 – 0.0575 | 7.4079 | <0.001 | 4086.0000 | 0.0188 | 0.0042 | 0.0105 – 0.0271 | 4.4445 | <0.001 | 4086.0000 |
| USvUK | 0.7282 | 0.0656 | 0.5995 – 0.8568 | 11.0993 | <0.001 | 4086.0000 | 0.5280 | 0.0452 | 0.4394 – 0.6166 | 11.6793 | <0.001 | 4086.0000 |
| ideology c | -0.2393 | 0.0208 | -0.2800 – -0.1985 | -11.5116 | <0.001 | 4086.0000 | -0.2036 | 0.0143 | -0.2317 – -0.1755 | -14.2138 | <0.001 | 4086.0000 |
| age c | 0.0210 | 0.0021 | 0.0168 – 0.0251 | 9.8902 | <0.001 | 4086.0000 | 0.0083 | 0.0015 | 0.0055 – 0.0112 | 5.6956 | <0.001 | 4086.0000 |
| education c | 0.0567 | 0.0121 | 0.0329 – 0.0805 | 4.6687 | <0.001 | 4086.0000 | 0.0494 | 0.0084 | 0.0330 – 0.0658 | 5.9019 | <0.001 | 4086.0000 |
| AAUTHMC c × USvUK | 0.0630 | 0.0193 | 0.0253 – 0.1008 | 3.2721 | 0.001 | 4086.0000 | 0.0559 | 0.0133 | 0.0298 – 0.0819 | 4.2087 | <0.001 | 4086.0000 |
| AAUTHMC c × ideology c | 0.0018 | 0.0056 | -0.0091 – 0.0128 | 0.3295 | 0.742 | 4086.0000 | 0.0014 | 0.0038 | -0.0061 – 0.0089 | 0.3603 | 0.719 | 4086.0000 |
| AAUTHMC c × age c | -0.0004 | 0.0006 | -0.0016 – 0.0008 | -0.6531 | 0.514 | 4086.0000 | -0.0002 | 0.0004 | -0.0010 – 0.0006 | -0.4429 | 0.658 | 4086.0000 |
| AAUTHMC c × education c | -0.0029 | 0.0035 | -0.0098 – 0.0040 | -0.8337 | 0.404 | 4086.0000 | -0.0009 | 0.0024 | -0.0056 – 0.0039 | -0.3656 | 0.715 | 4086.0000 |
| exp sum c × USvUK | 0.0253 | 0.0123 | 0.0013 – 0.0494 | 2.0663 | 0.039 | 4086.0000 | -0.0003 | 0.0085 | -0.0168 – 0.0163 | -0.0320 | 0.974 | 4086.0000 |
| exp sum c × ideology c | 0.0093 | 0.0020 | 0.0053 – 0.0133 | 4.5848 | <0.001 | 4086.0000 | 0.0071 | 0.0014 | 0.0044 – 0.0099 | 5.0696 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0005 | 0.0002 | -0.0010 – -0.0000 | -2.1519 | 0.031 | 4086.0000 | 0.0003 | 0.0002 | -0.0000 – 0.0006 | 1.9298 | 0.054 | 4086.0000 |
| exp sum c × education c | -0.0021 | 0.0011 | -0.0042 – 0.0001 | -1.8989 | 0.058 | 4086.0000 | 0.0001 | 0.0008 | -0.0013 – 0.0016 | 0.1869 | 0.852 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.112 / 0.109 | 0.122 / 0.119 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ACLMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ACLMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0471 | 0.0329 | 0.9826 – 1.1116 | 31.8398 | <0.001 | 4091.0000 | 1.7432 | 0.0226 | 1.6989 – 1.7875 | 77.1492 | <0.001 | 4091.0000 |
| ACLMC c | -0.0215 | 0.0159 | -0.0528 – 0.0098 | -1.3484 | 0.178 | 4091.0000 | 0.0160 | 0.0110 | -0.0055 – 0.0375 | 1.4596 | 0.144 | 4091.0000 |
| USvUK | 0.7595 | 0.0649 | 0.6324 – 0.8867 | 11.7092 | <0.001 | 4091.0000 | 0.5498 | 0.0446 | 0.4624 – 0.6372 | 12.3361 | <0.001 | 4091.0000 |
| ideology c | -0.2451 | 0.0202 | -0.2848 – -0.2054 | -12.1052 | <0.001 | 4091.0000 | -0.2196 | 0.0139 | -0.2469 – -0.1924 | -15.7867 | <0.001 | 4091.0000 |
| age c | 0.0200 | 0.0021 | 0.0158 – 0.0242 | 9.3476 | <0.001 | 4091.0000 | 0.0078 | 0.0015 | 0.0049 – 0.0106 | 5.2650 | <0.001 | 4091.0000 |
| education c | 0.0433 | 0.0118 | 0.0203 – 0.0664 | 3.6856 | <0.001 | 4091.0000 | 0.0455 | 0.0081 | 0.0297 – 0.0613 | 5.6306 | <0.001 | 4091.0000 |
| ACLMC c × USvUK | 0.1261 | 0.0313 | 0.0648 – 0.1875 | 4.0290 | <0.001 | 4091.0000 | 0.0357 | 0.0215 | -0.0064 – 0.0779 | 1.6612 | 0.097 | 4091.0000 |
| ACLMC c × ideology c | 0.0170 | 0.0099 | -0.0025 – 0.0364 | 1.7116 | 0.087 | 4091.0000 | 0.0091 | 0.0068 | -0.0043 – 0.0225 | 1.3353 | 0.182 | 4091.0000 |
| ACLMC c × age c | 0.0011 | 0.0010 | -0.0009 – 0.0032 | 1.0780 | 0.281 | 4091.0000 | 0.0002 | 0.0007 | -0.0012 – 0.0016 | 0.2369 | 0.813 | 4091.0000 |
| ACLMC c × education c | 0.0098 | 0.0060 | -0.0019 – 0.0215 | 1.6396 | 0.101 | 4091.0000 | -0.0042 | 0.0041 | -0.0123 – 0.0038 | -1.0299 | 0.303 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.086 / 0.084 | 0.102 / 0.100 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ACLMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0178 | 0.0328 | 0.9535 – 1.0822 | 31.0058 | <0.001 | 4086.0000 | 1.7384 | 0.0226 | 1.6940 – 1.7828 | 76.8135 | <0.001 | 4086.0000 |
| ACLMC c | 0.0471 | 0.0178 | 0.0122 – 0.0821 | 2.6462 | 0.008 | 4086.0000 | 0.0464 | 0.0123 | 0.0223 – 0.0705 | 3.7799 | <0.001 | 4086.0000 |
| exp sum c | 0.0459 | 0.0061 | 0.0339 – 0.0579 | 7.4918 | <0.001 | 4086.0000 | 0.0203 | 0.0042 | 0.0120 – 0.0286 | 4.8102 | <0.001 | 4086.0000 |
| USvUK | 0.7255 | 0.0649 | 0.5983 – 0.8528 | 11.1800 | <0.001 | 4086.0000 | 0.5294 | 0.0447 | 0.4417 – 0.6171 | 11.8320 | <0.001 | 4086.0000 |
| ideology c | -0.2400 | 0.0205 | -0.2803 – -0.1998 | -11.6832 | <0.001 | 4086.0000 | -0.2106 | 0.0142 | -0.2383 – -0.1828 | -14.8649 | <0.001 | 4086.0000 |
| age c | 0.0222 | 0.0021 | 0.0180 – 0.0263 | 10.3918 | <0.001 | 4086.0000 | 0.0085 | 0.0015 | 0.0056 – 0.0114 | 5.7783 | <0.001 | 4086.0000 |
| education c | 0.0550 | 0.0121 | 0.0313 – 0.0788 | 4.5456 | <0.001 | 4086.0000 | 0.0495 | 0.0083 | 0.0331 – 0.0658 | 5.9260 | <0.001 | 4086.0000 |
| ACLMC c × USvUK | 0.1561 | 0.0354 | 0.0867 – 0.2254 | 4.4140 | <0.001 | 4086.0000 | 0.0273 | 0.0244 | -0.0205 – 0.0751 | 1.1195 | 0.263 | 4086.0000 |
| ACLMC c × ideology c | 0.0421 | 0.0104 | 0.0217 – 0.0625 | 4.0443 | <0.001 | 4086.0000 | 0.0268 | 0.0072 | 0.0127 – 0.0408 | 3.7346 | <0.001 | 4086.0000 |
| ACLMC c × age c | 0.0001 | 0.0011 | -0.0020 – 0.0023 | 0.1326 | 0.894 | 4086.0000 | 0.0005 | 0.0007 | -0.0010 – 0.0020 | 0.6695 | 0.503 | 4086.0000 |
| ACLMC c × education c | 0.0025 | 0.0064 | -0.0100 – 0.0150 | 0.3961 | 0.692 | 4086.0000 | -0.0072 | 0.0044 | -0.0158 – 0.0014 | -1.6322 | 0.103 | 4086.0000 |
| exp sum c × USvUK | 0.0269 | 0.0122 | 0.0029 – 0.0508 | 2.1977 | 0.028 | 4086.0000 | -0.0015 | 0.0084 | -0.0180 – 0.0150 | -0.1778 | 0.859 | 4086.0000 |
| exp sum c × ideology c | 0.0122 | 0.0022 | 0.0080 – 0.0165 | 5.6514 | <0.001 | 4086.0000 | 0.0094 | 0.0015 | 0.0065 – 0.0123 | 6.3114 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0005 | 0.0003 | -0.0010 – 0.0000 | -1.8833 | 0.060 | 4086.0000 | 0.0004 | 0.0002 | 0.0001 – 0.0007 | 2.3203 | 0.020 | 4086.0000 |
| exp sum c × education c | -0.0019 | 0.0012 | -0.0042 – 0.0004 | -1.6293 | 0.103 | 4086.0000 | -0.0004 | 0.0008 | -0.0020 – 0.0012 | -0.5041 | 0.614 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.116 / 0.113 | 0.125 / 0.122 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (APEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (APEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0401 | 0.0331 | 0.9751 – 1.1051 | 31.3883 | <0.001 | 4091.0000 | 1.7374 | 0.0228 | 1.6928 – 1.7821 | 76.3356 | <0.001 | 4091.0000 |
| APEMC c | -0.7178 | 0.3280 | -1.3610 – -0.0747 | -2.1884 | 0.029 | 4091.0000 | -0.2874 | 0.2253 | -0.7291 – 0.1544 | -1.2755 | 0.202 | 4091.0000 |
| USvUK | 0.7730 | 0.0652 | 0.6452 – 0.9009 | 11.8525 | <0.001 | 4091.0000 | 0.5554 | 0.0448 | 0.4676 – 0.6432 | 12.3982 | <0.001 | 4091.0000 |
| ideology c | -0.2344 | 0.0207 | -0.2749 – -0.1939 | -11.3417 | <0.001 | 4091.0000 | -0.2122 | 0.0142 | -0.2401 – -0.1844 | -14.9495 | <0.001 | 4091.0000 |
| age c | 0.0197 | 0.0021 | 0.0155 – 0.0239 | 9.2640 | <0.001 | 4091.0000 | 0.0083 | 0.0015 | 0.0055 – 0.0112 | 5.7052 | <0.001 | 4091.0000 |
| education c | 0.0400 | 0.0118 | 0.0169 – 0.0630 | 3.3935 | 0.001 | 4091.0000 | 0.0428 | 0.0081 | 0.0270 – 0.0587 | 5.2937 | <0.001 | 4091.0000 |
| APEMC c × USvUK | 0.3714 | 0.6480 | -0.8991 – 1.6419 | 0.5731 | 0.567 | 4091.0000 | 0.0226 | 0.4451 | -0.8501 – 0.8952 | 0.0507 | 0.960 | 4091.0000 |
| APEMC c × ideology c | 0.2383 | 0.1138 | 0.0152 – 0.4613 | 2.0941 | 0.036 | 4091.0000 | 0.1911 | 0.0781 | 0.0379 – 0.3443 | 2.4453 | 0.015 | 4091.0000 |
| APEMC c × age c | 0.0220 | 0.0123 | -0.0021 – 0.0461 | 1.7920 | 0.073 | 4091.0000 | -0.0009 | 0.0084 | -0.0174 – 0.0156 | -0.1067 | 0.915 | 4091.0000 |
| APEMC c × education c | 0.1139 | 0.0716 | -0.0265 – 0.2542 | 1.5908 | 0.112 | 4091.0000 | -0.0447 | 0.0492 | -0.1411 – 0.0517 | -0.9098 | 0.363 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.086 / 0.084 | 0.103 / 0.101 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (APEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0091 | 0.0331 | 0.9442 – 1.0741 | 30.4817 | <0.001 | 4086.0000 | 1.7331 | 0.0228 | 1.6884 – 1.7778 | 75.9787 | <0.001 | 4086.0000 |
| APEMC c | -0.2075 | 0.3295 | -0.8536 – 0.4386 | -0.6297 | 0.529 | 4086.0000 | -0.0486 | 0.2271 | -0.4937 – 0.3966 | -0.2139 | 0.831 | 4086.0000 |
| exp sum c | 0.0324 | 0.0053 | 0.0219 – 0.0429 | 6.0641 | <0.001 | 4086.0000 | 0.0128 | 0.0037 | 0.0055 – 0.0200 | 3.4670 | 0.001 | 4086.0000 |
| USvUK | 0.7685 | 0.0652 | 0.6407 – 0.8963 | 11.7905 | <0.001 | 4086.0000 | 0.5490 | 0.0449 | 0.4610 – 0.6371 | 12.2254 | <0.001 | 4086.0000 |
| ideology c | -0.2303 | 0.0209 | -0.2712 – -0.1894 | -11.0339 | <0.001 | 4086.0000 | -0.2065 | 0.0144 | -0.2347 – -0.1783 | -14.3603 | <0.001 | 4086.0000 |
| age c | 0.0217 | 0.0021 | 0.0175 – 0.0258 | 10.2220 | <0.001 | 4086.0000 | 0.0090 | 0.0015 | 0.0061 – 0.0119 | 6.1482 | <0.001 | 4086.0000 |
| education c | 0.0530 | 0.0122 | 0.0291 – 0.0769 | 4.3463 | <0.001 | 4086.0000 | 0.0467 | 0.0084 | 0.0303 – 0.0632 | 5.5618 | <0.001 | 4086.0000 |
| APEMC c × USvUK | 0.1892 | 0.6513 | -1.0878 – 1.4661 | 0.2904 | 0.772 | 4086.0000 | -0.2232 | 0.4488 | -1.1030 – 0.6566 | -0.4974 | 0.619 | 4086.0000 |
| APEMC c × ideology c | 0.4686 | 0.1173 | 0.2386 – 0.6986 | 3.9947 | <0.001 | 4086.0000 | 0.3515 | 0.0808 | 0.1931 – 0.5100 | 4.3495 | <0.001 | 4086.0000 |
| APEMC c × age c | 0.0182 | 0.0128 | -0.0068 – 0.0432 | 1.4266 | 0.154 | 4086.0000 | 0.0049 | 0.0088 | -0.0123 – 0.0222 | 0.5630 | 0.573 | 4086.0000 |
| APEMC c × education c | 0.0035 | 0.0758 | -0.1451 – 0.1521 | 0.0463 | 0.963 | 4086.0000 | -0.0869 | 0.0522 | -0.1893 – 0.0155 | -1.6641 | 0.096 | 4086.0000 |
| exp sum c × USvUK | -0.0025 | 0.0106 | -0.0233 – 0.0184 | -0.2314 | 0.817 | 4086.0000 | -0.0146 | 0.0073 | -0.0290 – -0.0003 | -1.9963 | 0.046 | 4086.0000 |
| exp sum c × ideology c | 0.0115 | 0.0021 | 0.0074 – 0.0157 | 5.4216 | <0.001 | 4086.0000 | 0.0092 | 0.0015 | 0.0063 – 0.0121 | 6.2626 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0004 | 0.0002 | -0.0009 – 0.0001 | -1.5971 | 0.110 | 4086.0000 | 0.0004 | 0.0002 | 0.0000 – 0.0007 | 2.0913 | 0.037 | 4086.0000 |
| exp sum c × education c | -0.0021 | 0.0012 | -0.0044 – 0.0002 | -1.7859 | 0.074 | 4086.0000 | -0.0003 | 0.0008 | -0.0018 – 0.0013 | -0.3326 | 0.739 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.113 / 0.110 | 0.123 / 0.120 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ANEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ANEMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0518 | 0.0325 | 0.9882 – 1.1154 | 32.4061 | <0.001 | 4091.0000 | 1.7484 | 0.0222 | 1.7048 – 1.7920 | 78.6068 | <0.001 | 4091.0000 |
| ANEMC c | -0.9364 | 0.3723 | -1.6664 – -0.2065 | -2.5151 | 0.012 | 4091.0000 | -0.5826 | 0.2551 | -1.0828 – -0.0824 | -2.2834 | 0.022 | 4091.0000 |
| USvUK | 0.7555 | 0.0649 | 0.6282 – 0.8828 | 11.6349 | <0.001 | 4091.0000 | 0.5479 | 0.0445 | 0.4607 – 0.6352 | 12.3139 | <0.001 | 4091.0000 |
| ideology c | -0.2495 | 0.0202 | -0.2892 – -0.2099 | -12.3339 | <0.001 | 4091.0000 | -0.2183 | 0.0139 | -0.2455 – -0.1912 | -15.7490 | <0.001 | 4091.0000 |
| age c | 0.0180 | 0.0021 | 0.0138 – 0.0221 | 8.5240 | <0.001 | 4091.0000 | 0.0078 | 0.0014 | 0.0049 – 0.0106 | 5.3694 | <0.001 | 4091.0000 |
| education c | 0.0437 | 0.0116 | 0.0209 – 0.0665 | 3.7521 | <0.001 | 4091.0000 | 0.0457 | 0.0080 | 0.0300 – 0.0613 | 5.7230 | <0.001 | 4091.0000 |
| ANEMC c × USvUK | -1.8541 | 0.7442 | -3.3132 – -0.3950 | -2.4913 | 0.013 | 4091.0000 | -1.3001 | 0.5100 | -2.3000 – -0.3002 | -2.5492 | 0.011 | 4091.0000 |
| ANEMC c × ideology c | 0.0579 | 0.0765 | -0.0922 – 0.2079 | 0.7562 | 0.450 | 4091.0000 | 0.0758 | 0.0524 | -0.0270 – 0.1787 | 1.4462 | 0.148 | 4091.0000 |
| ANEMC c × age c | 0.0099 | 0.0075 | -0.0047 – 0.0245 | 1.3277 | 0.184 | 4091.0000 | -0.0012 | 0.0051 | -0.0112 – 0.0088 | -0.2352 | 0.814 | 4091.0000 |
| ANEMC c × education c | 0.0363 | 0.0454 | -0.0527 – 0.1252 | 0.7996 | 0.424 | 4091.0000 | -0.0325 | 0.0311 | -0.0935 – 0.0284 | -1.0470 | 0.295 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.082 / 0.080 | 0.102 / 0.100 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ANEMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0250 | 0.0325 | 0.9614 – 1.0887 | 31.5578 | <0.001 | 4086.0000 | 1.7503 | 0.0224 | 1.7064 – 1.7942 | 78.1199 | <0.001 | 4086.0000 |
| ANEMC c | -1.8176 | 0.4092 | -2.6198 – -1.0154 | -4.4422 | <0.001 | 4086.0000 | -0.8443 | 0.2822 | -1.3977 – -0.2910 | -2.9916 | 0.003 | 4086.0000 |
| exp sum c | 0.0436 | 0.0058 | 0.0322 – 0.0549 | 7.5172 | <0.001 | 4086.0000 | 0.0175 | 0.0040 | 0.0097 – 0.0254 | 4.3868 | <0.001 | 4086.0000 |
| USvUK | 0.7374 | 0.0648 | 0.6103 – 0.8646 | 11.3722 | <0.001 | 4086.0000 | 0.5281 | 0.0447 | 0.4404 – 0.6158 | 11.8068 | <0.001 | 4086.0000 |
| ideology c | -0.2323 | 0.0205 | -0.2725 – -0.1920 | -11.3119 | <0.001 | 4086.0000 | -0.2057 | 0.0142 | -0.2335 – -0.1780 | -14.5275 | <0.001 | 4086.0000 |
| age c | 0.0212 | 0.0021 | 0.0171 – 0.0253 | 10.0920 | <0.001 | 4086.0000 | 0.0091 | 0.0014 | 0.0062 – 0.0119 | 6.2696 | <0.001 | 4086.0000 |
| education c | 0.0540 | 0.0120 | 0.0304 – 0.0777 | 4.4880 | <0.001 | 4086.0000 | 0.0462 | 0.0083 | 0.0299 – 0.0625 | 5.5587 | <0.001 | 4086.0000 |
| ANEMC c × USvUK | -3.8447 | 0.8171 | -5.4467 – -2.2427 | -4.7051 | <0.001 | 4086.0000 | -1.9368 | 0.5636 | -3.0418 – -0.8317 | -3.4362 | 0.001 | 4086.0000 |
| ANEMC c × ideology c | 0.0771 | 0.0755 | -0.0710 – 0.2252 | 1.0202 | 0.308 | 4086.0000 | 0.0862 | 0.0521 | -0.0159 – 0.1884 | 1.6547 | 0.098 | 4086.0000 |
| ANEMC c × age c | 0.0076 | 0.0074 | -0.0068 – 0.0221 | 1.0347 | 0.301 | 4086.0000 | -0.0017 | 0.0051 | -0.0117 – 0.0082 | -0.3394 | 0.734 | 4086.0000 |
| ANEMC c × education c | 0.0078 | 0.0451 | -0.0806 – 0.0962 | 0.1727 | 0.863 | 4086.0000 | -0.0370 | 0.0311 | -0.0980 – 0.0239 | -1.1908 | 0.234 | 4086.0000 |
| exp sum c × USvUK | 0.0198 | 0.0115 | -0.0028 – 0.0424 | 1.7192 | 0.086 | 4086.0000 | -0.0021 | 0.0079 | -0.0176 – 0.0135 | -0.2595 | 0.795 | 4086.0000 |
| exp sum c × ideology c | 0.0093 | 0.0020 | 0.0054 – 0.0133 | 4.5840 | <0.001 | 4086.0000 | 0.0075 | 0.0014 | 0.0047 – 0.0102 | 5.3000 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0005 | 0.0002 | -0.0010 – -0.0000 | -2.0656 | 0.039 | 4086.0000 | 0.0003 | 0.0002 | -0.0000 – 0.0006 | 1.8039 | 0.071 | 4086.0000 |
| exp sum c × education c | -0.0020 | 0.0011 | -0.0042 – 0.0001 | -1.8332 | 0.067 | 4086.0000 | 0.0001 | 0.0008 | -0.0014 – 0.0016 | 0.1753 | 0.861 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.113 / 0.110 | 0.122 / 0.119 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ATRMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ATRMC.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0528 | 0.0334 | 0.9873 – 1.1183 | 31.5080 | <0.001 | 4091.0000 | 1.7479 | 0.0229 | 1.7029 – 1.7928 | 76.2296 | <0.001 | 4091.0000 |
| ATRMC c | 2.0129 | 0.5832 | 0.8695 – 3.1563 | 3.4513 | 0.001 | 4091.0000 | 0.9032 | 0.4002 | 0.1185 – 1.6878 | 2.2567 | 0.024 | 4091.0000 |
| USvUK | 0.7594 | 0.0650 | 0.6319 – 0.8869 | 11.6771 | <0.001 | 4091.0000 | 0.5367 | 0.0446 | 0.4492 – 0.6242 | 12.0259 | <0.001 | 4091.0000 |
| ideology c | -0.2353 | 0.0208 | -0.2760 – -0.1946 | -11.3273 | <0.001 | 4091.0000 | -0.2084 | 0.0143 | -0.2363 – -0.1804 | -14.6172 | <0.001 | 4091.0000 |
| age c | 0.0189 | 0.0021 | 0.0148 – 0.0230 | 9.0109 | <0.001 | 4091.0000 | 0.0082 | 0.0014 | 0.0053 – 0.0110 | 5.6645 | <0.001 | 4091.0000 |
| education c | 0.0430 | 0.0116 | 0.0202 – 0.0659 | 3.6998 | <0.001 | 4091.0000 | 0.0453 | 0.0080 | 0.0296 – 0.0609 | 5.6718 | <0.001 | 4091.0000 |
| ATRMC c × USvUK | -2.8900 | 1.1829 | -5.2092 – -0.5708 | -2.4431 | 0.015 | 4091.0000 | -1.0300 | 0.8118 | -2.6215 – 0.5615 | -1.2689 | 0.205 | 4091.0000 |
| ATRMC c × ideology c | 0.1135 | 0.3902 | -0.6516 – 0.8785 | 0.2908 | 0.771 | 4091.0000 | -0.0182 | 0.2678 | -0.5432 – 0.5068 | -0.0680 | 0.946 | 4091.0000 |
| ATRMC c × age c | -0.0889 | 0.0395 | -0.1663 – -0.0115 | -2.2517 | 0.024 | 4091.0000 | 0.0374 | 0.0271 | -0.0157 – 0.0906 | 1.3810 | 0.167 | 4091.0000 |
| ATRMC c × education c | -0.0486 | 0.2337 | -0.5067 – 0.4095 | -0.2080 | 0.835 | 4091.0000 | 0.2732 | 0.1603 | -0.0412 – 0.5875 | 1.7036 | 0.089 | 4091.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.085 / 0.083 | 0.103 / 0.101 | ||||||||||
m.intent <- lm(vaxxIntentions ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
m.trust <- lm(trustExpert ~ (ATRMC.c + exp.sum.c) * (USvUK +ideology.c + age.c + education.c), data = d)
tab_model(m.intent, m.trust,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 4)
| vaxxIntentions | trustExpert | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df | Est | SE | CI | t | p | df |
| (Intercept) | 1.0197 | 0.0334 | 0.9542 – 1.0852 | 30.5413 | <0.001 | 4086.0000 | 1.7428 | 0.0230 | 1.6977 – 1.7879 | 75.7335 | <0.001 | 4086.0000 |
| ATRMC c | 0.7848 | 0.5890 | -0.3701 – 1.9396 | 1.3323 | 0.183 | 4086.0000 | 0.2761 | 0.4060 | -0.5198 – 1.0721 | 0.6801 | 0.496 | 4086.0000 |
| exp sum c | 0.0319 | 0.0053 | 0.0214 – 0.0424 | 5.9754 | <0.001 | 4086.0000 | 0.0117 | 0.0037 | 0.0044 – 0.0189 | 3.1672 | 0.002 | 4086.0000 |
| USvUK | 0.7404 | 0.0652 | 0.6125 – 0.8682 | 11.3556 | <0.001 | 4086.0000 | 0.5196 | 0.0449 | 0.4315 – 0.6077 | 11.5620 | <0.001 | 4086.0000 |
| ideology c | -0.2314 | 0.0211 | -0.2728 – -0.1900 | -10.9643 | <0.001 | 4086.0000 | -0.2048 | 0.0145 | -0.2334 – -0.1763 | -14.0813 | <0.001 | 4086.0000 |
| age c | 0.0215 | 0.0021 | 0.0174 – 0.0256 | 10.2527 | <0.001 | 4086.0000 | 0.0092 | 0.0014 | 0.0063 – 0.0120 | 6.3602 | <0.001 | 4086.0000 |
| education c | 0.0538 | 0.0121 | 0.0300 – 0.0776 | 4.4338 | <0.001 | 4086.0000 | 0.0462 | 0.0084 | 0.0298 – 0.0626 | 5.5194 | <0.001 | 4086.0000 |
| ATRMC c × USvUK | -1.8435 | 1.1944 | -4.1851 – 0.4982 | -1.5435 | 0.123 | 4086.0000 | -0.2479 | 0.8232 | -1.8618 – 1.3661 | -0.3011 | 0.763 | 4086.0000 |
| ATRMC c × ideology c | -0.5850 | 0.4019 | -1.3729 – 0.2029 | -1.4558 | 0.146 | 4086.0000 | -0.5175 | 0.2770 | -1.0605 – 0.0256 | -1.8682 | 0.062 | 4086.0000 |
| ATRMC c × age c | -0.0618 | 0.0401 | -0.1404 – 0.0168 | -1.5418 | 0.123 | 4086.0000 | 0.0358 | 0.0276 | -0.0184 – 0.0900 | 1.2963 | 0.195 | 4086.0000 |
| ATRMC c × education c | 0.0850 | 0.2399 | -0.3853 – 0.5552 | 0.3543 | 0.723 | 4086.0000 | 0.2554 | 0.1653 | -0.0687 – 0.5795 | 1.5448 | 0.122 | 4086.0000 |
| exp sum c × USvUK | -0.0000 | 0.0106 | -0.0208 – 0.0208 | -0.0024 | 0.998 | 4086.0000 | -0.0128 | 0.0073 | -0.0271 – 0.0016 | -1.7434 | 0.081 | 4086.0000 |
| exp sum c × ideology c | 0.0097 | 0.0021 | 0.0055 – 0.0139 | 4.5363 | <0.001 | 4086.0000 | 0.0079 | 0.0015 | 0.0050 – 0.0107 | 5.3294 | <0.001 | 4086.0000 |
| exp sum c × age c | -0.0004 | 0.0002 | -0.0009 – 0.0000 | -1.7899 | 0.074 | 4086.0000 | 0.0002 | 0.0002 | -0.0001 – 0.0006 | 1.4818 | 0.138 | 4086.0000 |
| exp sum c × education c | -0.0021 | 0.0011 | -0.0044 – 0.0001 | -1.8919 | 0.059 | 4086.0000 | -0.0000 | 0.0008 | -0.0015 – 0.0015 | -0.0179 | 0.986 | 4086.0000 |
| Observations | 4101 | 4101 | ||||||||||
| R2 / R2 adjusted | 0.110 / 0.107 | 0.119 / 0.116 | ||||||||||