# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../00_scripts/simulate_accumlation.R")
Revise the code below.
symbols <- c("HMC", "WMT", "TGT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2023-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "HMC" "TGT" "WMT"
# weights
weights <- c(0.3,0.3,0.4)
weights
## [1] 0.3 0.3 0.4
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 HMC 0.3
## 2 TGT 0.3
## 3 WMT 0.4
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 120 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0222
## 2 2013-02-28 0.0168
## 3 2013-03-28 0.0578
## 4 2013-04-30 0.0375
## 5 2013-05-31 -0.0344
## 6 2013-06-28 -0.00560
## 7 2013-07-31 0.0275
## 8 2013-08-30 -0.0673
## 9 2013-09-30 0.0277
## 10 2013-10-31 0.0326
## # … with 110 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005506112
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.04768257
No need
# Create a Vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
# Simulate
# For Reproducible research
set.seed(1234)
monte_carlo_sim_51 <- starts %>%
#Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 100
## 2 1 sim2 100
## 3 1 sim3 100
## 4 1 sim4 100
## 5 1 sim5 100
## 6 1 sim6 100
## 7 1 sim7 100
## 8 1 sim8 100
## 9 1 sim9 100
## 10 1 sim10 100
## # … with 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0,0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 58.96 110.21 174.21 252.67 682.09
Line Plot of Simulations with Max, Median, and Min
# Step 1 summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 682. 174. 59.0
# Step 2 Plot
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months",
subtitle = "Max, Median, and Minimum Simulation")
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 10 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
After 10 years with my $100 investment, I would expect my portfolio to only grow to around $200. The best-case scenario would put my investment over $600 and my worst-case scenario would cut my investment in half, to around $50. This investment is very volatile and would be a risky investment. If I was able to push my investment start data back even further, I would be able to have a better understanding of the market.