# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("NVDA", "AAPL", "NFLX", "MSFT", "TSLA")
prices <- tq_get (x = symbols,
                  from = "2012-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "MSFT" "NFLX" "NVDA" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.25
## 2 MSFT       0.25
## 3 NFLX       0.2 
## 4 NVDA       0.2 
## 5 TSLA       0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 125 × 2
##    date       returns
##    <date>       <dbl>
##  1 2013-01-31  0.0940
##  2 2013-02-28  0.0250
##  3 2013-03-28  0.0203
##  4 2013-04-30  0.113 
##  5 2013-05-31  0.100 
##  6 2013-06-28 -0.0446
##  7 2013-07-31  0.0700
##  8 2013-08-30  0.0920
##  9 2013-09-30  0.0349
## 10 2013-10-31  0.0231
## # ℹ 115 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.02575929
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0759283

6 Simulation function

No need

7 Running multiple simulations

# Create a Vector of 1's as a Starting Point
sims <- 51 
starts <- rep(100, sims) %>% 
    set_names(paste0("sim", 1:sims))

starts 
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##   100   100   100   100   100   100   100   100   100   100   100   100
# Simulate 
set.seed(1234)
monte_carlo_sim_51 <- starts %>% 
   
    # Simulate 
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, N = 240, mean_return = mean_port_return, sd_return = stddev_port_return)) %>% 
    
    # Add Column Month 
    mutate(month = 1:nrow(.)) %>% 
    select(month, everything()) %>% 
    
    # Rearrange Column Names 
    set_names(c("month", names(starts))) %>% 
    
    # Transform to Long Form 
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth") 

monte_carlo_sim_51
## # A tibble: 12,291 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1     100
##  2     1 sim2     100
##  3     1 sim3     100
##  4     1 sim4     100
##  5     1 sim5     100
##  6     1 sim6     100
##  7     1 sim7     100
##  8     1 sim8     100
##  9     1 sim9     100
## 10     1 sim10    100
## # ℹ 12,281 more rows
# Find Quantiles
monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>% 
    ungroup %>% 
    pull(growth) %>% 
    
    quantile(probs = c(0, .25, .5, .75, 1)) %>% 
    round(2)
##        0%       25%       50%       75%      100% 
##   2072.78  14594.42  32967.10  64394.05 181352.27

8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min

# Step 1 Summarize data into max, median, and min of last value 
sim_summary <- monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>% 
    ungroup() %>% 
    
    summarise(max = max(growth),
              median = median(growth), 
              min = min(growth))
sim_summary 
## # A tibble: 1 × 3
##       max median   min
##     <dbl>  <dbl> <dbl>
## 1 181352. 32967. 2073.
# Step 2 Plot 
monte_carlo_sim_51 %>%
   
    # Filter for max, median, and min sim 
    group_by(sim) %>% 
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>% 
    ungroup() %>% 
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    theme(legend.position = "right") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5))

    labs(title = "Simulating Growth of $100 Over 240 Months", subtitle = "Maximum, Median, Minimum")
## $title
## [1] "Simulating Growth of $100 Over 240 Months"
## 
## $subtitle
## [1] "Maximum, Median, Minimum"
## 
## attr(,"class")
## [1] "labels"

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Each of the three simulations have drastically different results. With my $100 investment after 20 years I could expect returns up to 30,000. I’m getting this number from my Median simulation result which I think is the most probable return possible. The best-case scenario I could make up to 180,000 in returns. Then for my worst-case scenario I could make up to only 2,000 in returns. The limitations of this simulation analysis are the big jumps between the numbers. Going from maximum, median, and minimum are all bug jumps when it comes to considering possible return on investments. But either way it still showcases the potential possibilities of an investment after 20 years.