# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("TSLA", "GOOG","MSFT", "AAPL")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2023-04-30")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "GOOG" "MSFT" "TSLA"
# weights
weights <- c(0.30, 0.30, 0.20, 0.20)
weights
## [1] 0.3 0.3 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL        0.3
## 2 GOOG        0.3
## 3 MSFT        0.2
## 4 TSLA        0.2

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 124 × 2
##    date         returns
##    <date>         <dbl>
##  1 2013-01-31 -0.000977
##  2 2013-02-28 -0.000782
##  3 2013-03-28  0.0208  
##  4 2013-04-30  0.111   
##  5 2013-05-31  0.154   
##  6 2013-06-28 -0.0180  
##  7 2013-07-31  0.0706  
##  8 2013-08-30  0.0670  
##  9 2013-09-30  0.0298  
## 10 2013-10-31  0.0508  
## # … with 114 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.0212265
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.06903783

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>% 
    set_names(paste0("sims", 1:sims))

starts
##  sims1  sims2  sims3  sims4  sims5  sims6  sims7  sims8  sims9 sims10 sims11 
##    100    100    100    100    100    100    100    100    100    100    100 
## sims12 sims13 sims14 sims15 sims16 sims17 sims18 sims19 sims20 sims21 sims22 
##    100    100    100    100    100    100    100    100    100    100    100 
## sims23 sims24 sims25 sims26 sims27 sims28 sims29 sims30 sims31 sims32 sims33 
##    100    100    100    100    100    100    100    100    100    100    100 
## sims34 sims35 sims36 sims37 sims38 sims39 sims40 sims41 sims42 sims43 sims44 
##    100    100    100    100    100    100    100    100    100    100    100 
## sims45 sims46 sims47 sims48 sims49 sims50 sims51 
##    100    100    100    100    100    100    100
# Simulate
# For reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>% 
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 240, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>% 
    
    # Add column month
    mutate(month = 1:nrow(.)) %>% 
    select(month, everything()) %>% 
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>% 
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 12,291 × 3
##    month sim    growth
##    <int> <chr>   <dbl>
##  1     1 sims1     100
##  2     1 sims2     100
##  3     1 sims3     100
##  4     1 sims4     100
##  5     1 sims5     100
##  6     1 sims6     100
##  7     1 sims7     100
##  8     1 sims8     100
##  9     1 sims9     100
## 10     1 sims10    100
## # … with 12,281 more rows
# Find quantiles
monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>% 
    ungroup() %>%
    pull(growth) %>% 
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>% 
    round(2)
##       0%      25%      50%      75%     100% 
##   988.04  5859.61 12302.15 22761.59 58582.99

Visualizing Simulations with ggplot

# Step 1: Summarize data into max, median, and min of the last value
sim_summary <- monte_carlo_sim_51 %>% 
    
    group_by(sim) %>% 
    summarise(growth = last(growth)) %>% 
    ungroup() %>% 
    
    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth)) 

sim_summary
## # A tibble: 1 × 3
##      max median   min
##    <dbl>  <dbl> <dbl>
## 1 58583. 12302.  988.
# Step 2 Plot
monte_carlo_sim_51 %>% 
    
    # Filter for max, median, and min sim
    group_by(sim) %>% 
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>% 
    ungroup() %>% 
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) + 
    geom_line() + 
    
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5)) + 
    
    labs(title = "Simulating growth of $100 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Based upon the results, the median growth expectation is $12,302 after 20 years. The best case scenerio and max growth was $58,583 and worst case min of $988. Given the near 11 year growth of these four technology stocks, the numbers are not surprising with all four seeing rapid growth over this time period. Limitations for this simulation would be that the Monte Carlo simulation assumes only the normal distributions of returns, but the distribution of returns is negatively skewed, making this simulation too optimistic. This is true especially considering the data used for the simulation. If the data came during a bullish period you would see more optimism compared to a bearish period, where you would see a more pessimistic outcome.