6.1.1 Main effect plots
business_percep_plot_list <- list(plot_cooker(gjg_long, condition, SLike, "I like company"),
plot_cooker(gjg_long, condition, STrust, "I trust company"),
plot_cooker(gjg_long, condition, SGen, "I think company is genuine"),
plot_cooker(gjg_long, condition, SComp, "I think company is competent"),
plot_cooker(gjg_long, condition, SFriend, "I think company is friendly"),
plot_cooker(gjg_long, condition, OLike, "Others like company"),
plot_cooker(gjg_long, condition, OTrust, "Others trust company"),
plot_cooker(gjg_long, condition, OGen, "Others think company is genuine"),
plot_cooker(gjg_long, condition, OComp, "Others think company is competent"),
plot_cooker(gjg_long, condition, OFriend, "Others think company is friendly"),
plot_cooker(gjg_long, condition, Ent, "Entativity"),
plot_cooker(gjg_long, condition, surprise, "Surprise"))
business_percep_plot_arranged <- ggarrange(plotlist = business_percep_plot_list, ncol = 4, nrow = 3)
business_percep_plot_arranged
### Mixed Effects Models
mod_SLike <- lmer(SLike ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SLike ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1509.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.3151 -0.6595 0.1242 0.6659 2.6237
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.63163 0.7947
## social_issue (Intercept) 0.03135 0.1771
## Residual 2.24943 1.4998
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.936e+00 1.930e-01 2.185e+01 20.396 1.03e-15
## conditionConservative \n Signal 2.044e-03 2.143e-01 2.881e+02 0.010 0.992395
## conditionLiberal \n Control 8.229e-01 2.143e-01 2.881e+02 3.840 0.000151
## conditionLiberal \n Signal 6.559e-01 2.143e-01 2.881e+02 3.061 0.002416
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control ***
## conditionLiberal \n Signal **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.555
## cndtnLbrlCn -0.555 0.500
## cndtnLbrlSg -0.555 0.500 0.500
mod_STrust <- lmer(STrust ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_STrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: STrust ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1438.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4565 -0.4933 0.1181 0.5509 2.9990
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 1.16533 1.0795
## social_issue (Intercept) 0.04616 0.2148
## Residual 1.60000 1.2649
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.7634 0.1994 18.7678 18.873 1.16e-13
## conditionConservative \n Signal -0.2065 0.1807 288.0624 -1.142 0.254265
## conditionLiberal \n Control 0.6079 0.1807 288.0624 3.364 0.000873
## conditionLiberal \n Signal 0.3817 0.1807 288.0624 2.112 0.035562
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control ***
## conditionLiberal \n Signal *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.453
## cndtnLbrlCn -0.453 0.500
## cndtnLbrlSg -0.453 0.500 0.500
mod_SGen <- lmer(SGen ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SGen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SGen ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1407.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.89795 -0.58311 0.03022 0.58382 2.22289
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 1.2247 1.1067
## social_issue (Intercept) 0.0826 0.2874
## Residual 1.4411 1.2005
## Number of obs: 391, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.2553 0.2188 11.4222 14.881 7.85e-09
## conditionConservative \n Signal 0.2390 0.1721 287.4335 1.389 0.166
## conditionLiberal \n Control 0.9446 0.1715 287.1673 5.507 8.11e-08
## conditionLiberal \n Signal 1.2455 0.1715 287.1668 7.261 3.61e-12
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control ***
## conditionLiberal \n Signal ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.391
## cndtnLbrlCn -0.392 0.498
## cndtnLbrlSg -0.392 0.498 0.500
mod_SComp <- lmer(SComp ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SComp ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1404.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8444 -0.4457 0.1281 0.5639 2.1917
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.8875 0.9421
## social_issue (Intercept) 0.0559 0.2364
## Residual 1.5272 1.2358
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.3825 0.1965 13.7549 22.301 3.40e-12
## conditionConservative \n Signal 0.1873 0.1766 288.0521 1.061 0.289646
## conditionLiberal \n Control 0.8153 0.1766 288.0521 4.618 5.86e-06
## conditionLiberal \n Signal 0.6715 0.1766 288.0521 3.803 0.000175
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control ***
## conditionLiberal \n Signal ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.449
## cndtnLbrlCn -0.449 0.500
## cndtnLbrlSg -0.449 0.500 0.500
mod_SFriend <- lmer(SFriend ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_SFriend)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: SFriend ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1429.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2105 -0.4273 0.0976 0.6207 2.2974
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.68256 0.8262
## social_issue (Intercept) 0.02245 0.1498
## Residual 1.74445 1.3208
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.3749 0.1743 26.0712 25.099 <2e-16
## conditionConservative \n Signal -0.3046 0.1887 288.1052 -1.614 0.1076
## conditionLiberal \n Control 0.4536 0.1887 288.1052 2.404 0.0169
## conditionLiberal \n Signal 0.4433 0.1887 288.1052 2.349 0.0195
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control *
## conditionLiberal \n Signal *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.541
## cndtnLbrlCn -0.541 0.500
## cndtnLbrlSg -0.541 0.500 0.500
mod_OLike <- lmer(OLike ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OLike)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OLike ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1199.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4504 -0.4101 0.1346 0.5700 1.9824
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.29855 0.54639
## social_issue (Intercept) 0.00805 0.08972
## Residual 1.00655 1.00327
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.26381 0.12382 31.68515 42.512 <2e-16
## conditionConservative \n Signal -0.01803 0.14334 288.13308 -0.126 0.900
## conditionLiberal \n Control 0.15410 0.14334 288.13308 1.075 0.283
## conditionLiberal \n Signal 0.14545 0.14334 288.13308 1.015 0.311
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control
## conditionLiberal \n Signal
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.579
## cndtnLbrlCn -0.579 0.500
## cndtnLbrlSg -0.579 0.500 0.500
mod_OTrust <- lmer(OTrust ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OTrust)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OTrust ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1219.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5183 -0.5177 0.1079 0.5855 2.0254
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.5177 0.7195
## social_issue (Intercept) 0.0000 0.0000
## Residual 0.9742 0.9870
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.8673 0.1234 285.0412 39.450 <2e-16
## conditionConservative \n Signal -0.1531 0.1410 291.0000 -1.086 0.2786
## conditionLiberal \n Control 0.2245 0.1410 291.0000 1.592 0.1124
## conditionLiberal \n Signal 0.2959 0.1410 291.0000 2.099 0.0367
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control
## conditionLiberal \n Signal *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.571
## cndtnLbrlCn -0.571 0.500
## cndtnLbrlSg -0.571 0.500 0.500
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
mod_OGen <- lmer(OGen ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OGen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OGen ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1379.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4677 -0.5773 0.0490 0.5850 2.4646
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.48881 0.6992
## social_issue (Intercept) 0.06916 0.2630
## Residual 1.57842 1.2564
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.6947 0.1959 9.6595 18.858 6.07e-09
## conditionConservative \n Signal 0.2200 0.1795 288.0452 1.226 0.221
## conditionLiberal \n Control 0.7608 0.1795 288.0452 4.238 3.04e-05
## conditionLiberal \n Signal 1.0159 0.1795 288.0452 5.659 3.67e-08
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control ***
## conditionLiberal \n Signal ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.458
## cndtnLbrlCn -0.458 0.500
## cndtnLbrlSg -0.458 0.500 0.500
mod_OComp <- lmer(OComp ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OComp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OComp ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1238.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0168 -0.4091 0.1198 0.5921 2.1091
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.537174 0.73292
## social_issue (Intercept) 0.001051 0.03242
## Residual 1.024492 1.01217
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.01001 0.12727 74.22598 39.364 <2e-16
## conditionConservative \n Signal -0.09136 0.14460 288.21533 -0.632 0.5280
## conditionLiberal \n Control 0.24502 0.14460 288.21533 1.694 0.0913
## conditionLiberal \n Signal 0.12264 0.14460 288.21533 0.848 0.3970
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control .
## conditionLiberal \n Signal
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.568
## cndtnLbrlCn -0.568 0.500
## cndtnLbrlSg -0.568 0.500 0.500
mod_OFriend <- lmer(OFriend ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_OFriend)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OFriend ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1179.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8927 -0.5155 0.1760 0.5806 2.7747
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.4583 0.6770
## social_issue (Intercept) 0.0000 0.0000
## Residual 0.8805 0.9383
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.81633 0.11688 287.07060 41.208 <2e-16
## conditionConservative \n Signal 0.08163 0.13405 291.00000 0.609 0.5430
## conditionLiberal \n Control 0.32653 0.13405 291.00000 2.436 0.0155
## conditionLiberal \n Signal 0.29592 0.13405 291.00000 2.208 0.0281
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control *
## conditionLiberal \n Signal *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.573
## cndtnLbrlCn -0.573 0.500
## cndtnLbrlSg -0.573 0.500 0.500
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
mod_Ent <- lmer(Ent ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_Ent)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ent ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1166.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.32328 -0.61847 -0.01501 0.58522 2.74723
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.268052 0.51774
## social_issue (Intercept) 0.003939 0.06276
## Residual 0.929073 0.96388
## Number of obs: 392, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.2457 0.1149 42.4499 28.249 <2e-16
## conditionConservative \n Signal -0.1025 0.1377 288.1670 -0.745 0.4571
## conditionLiberal \n Control -0.2565 0.1377 288.1670 -1.863 0.0635
## conditionLiberal \n Signal -0.1239 0.1377 288.1670 -0.900 0.3691
##
## (Intercept) ***
## conditionConservative \n Signal
## conditionLiberal \n Control .
## conditionLiberal \n Signal
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.599
## cndtnLbrlCn -0.599 0.500
## cndtnLbrlSg -0.599 0.500 0.500
mod_surprise <- lmer(surprise ~ condition + (1 | PID) + (1 | social_issue), data = gjg_long)
summary(mod_surprise)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: surprise ~ condition + (1 | PID) + (1 | social_issue)
## Data: gjg_long
##
## REML criterion at convergence: 1495.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.14437 -0.66930 -0.02707 0.62969 2.23094
##
## Random effects:
## Groups Name Variance Std.Dev.
## PID (Intercept) 0.73459 0.8571
## social_issue (Intercept) 0.05225 0.2286
## Residual 2.12328 1.4571
## Number of obs: 391, groups: PID, 98; social_issue, 4
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.4948 0.2055 15.3377 17.006 2.28e-11
## conditionConservative \n Signal 1.1011 0.2088 287.7398 5.273 2.64e-07
## conditionLiberal \n Control -0.8151 0.2082 287.3030 -3.915 0.000113
## conditionLiberal \n Signal -0.3408 0.2082 287.3023 -1.637 0.102730
##
## (Intercept) ***
## conditionConservative \n Signal ***
## conditionLiberal \n Control ***
## conditionLiberal \n Signal
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtCS cndtLC
## cndtnCnsrvS -0.505
## cndtnLbrlCn -0.507 0.498
## cndtnLbrlSg -0.507 0.498 0.500
6.1.2 Social Issue Facet