The seeds were sterilized in 50% bleach for 10 min, then rinsed 5 times with dionized water, and incubated at 4 °C overnight. Then seeds were germinated in ¼ MS control with vitamins plate for 4 days in growth chamber. At d5, the seedlings were transferred to either 100 mM salt or control plates, and started being scanned for 5 total consecutive days (starting from d5 to d9). The growth chamber condition was 26 °C and 19 h light /5 h dark cycle, with 60% humidity (Chamber #35).The root tracing was done using ImageJ SamrtRoot plugin by Trent Donaldson. Shoot and root fresh weight were measured after 10 d at salt.
getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20230109_RSA_M248M058LA1511_F1_100mM_Salt_Trent"
setwd("C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20230109_RSA_M248M058LA1511_F1_100mM_Salt_Trent")
list.files(pattern = ".csv")
## [1] "202305_RSA_F1_growth_factors.csv" "d5-F1.csv"
## [3] "d6-F1.csv" "d7-F1.csv"
## [5] "d8-F1.csv" "d9-F1.csv"
my_data_d5 <- read.csv("d5-F1.csv")
my_data_d6 <- read.csv("d6-F1.csv")
my_data_d7 <- read.csv("d7-F1.csv")
my_data_d8 <- read.csv("d8-F1.csv")
my_data_d9 <- read.csv("d9-F1.csv")
head(my_data_d5)
head(my_data_d6)
head(my_data_d7)
head(my_data_d8)
head(my_data_d9)
Adding the day
my_data_d5$day <- 5
my_data_d6$day <- 6
my_data_d7$day <- 7
my_data_d8$day <- 8
my_data_d9$day <- 9
head(my_data_d8)
head(my_data_d5)
fuse days together
all_data <- rbind(my_data_d5, my_data_d6)
all_data <- rbind(all_data, my_data_d7)
all_data <- rbind(all_data, my_data_d8)
all_data <- rbind(all_data, my_data_d9)
all_data
unique(all_data$day)
## [1] 5 6 7 8 9
Main_root <- subset(all_data, all_data$root_order == 0)
Main_root
Let’s navigate the columns in the fused file
colnames(Main_root)
## [1] "image" "root_name" "root"
## [4] "length" "vector_length" "surface"
## [7] "volume" "direction" "diameter"
## [10] "root_order" "root_ontology" "parent_name"
## [13] "parent" "insertion_position" "insertion_angle"
## [16] "n_child" "child_density" "first_child"
## [19] "insertion_first_child" "last_child" "insertion_last_child"
## [22] "day"
MR_data_2 <- Main_root[,c(1:4,10,16,17,19:22)]
MR_data_2
Lateral_root <- subset(all_data, all_data$root_order != 0)
Lateral_root
unique(Lateral_root$root_order)
## [1] 1
MR_data_3 <- subset(MR_data_2, MR_data_2$n_child >0)
Because we also have secondary LR in there - we should remove them from calculations of LR
temporary <- subset(Lateral_root, Lateral_root$parent == MR_data_3$root[1])
temporary
temporary <- subset(temporary, temporary$day == MR_data_3$day[3])
temporary
dim(temporary)
## [1] 2 22
dim(temporary)[1]
## [1] 2
dim(temporary)[2]
## [1] 22
total_LRL <- sum(temporary$length)
LR_number <- dim(temporary)[1]
total_LRL
## [1] 3.808891
LR_number
## [1] 2
MR_data_3$LRL <- 0
MR_data_3$LRno <- 0
MR_data_3
MR_data_3$LRL[1] <- total_LRL
MR_data_3$LRno[1] <- LR_number
MR_data_3
MR_data_noChild <- subset(MR_data_2, MR_data_2$n_child == 0)
MR_data_noChild
length(MR_data_3$root)
## [1] 315
for(i in 2:315){
temporary <- subset(Lateral_root, Lateral_root$parent == MR_data_3$root[i])
temporary <- subset(temporary, temporary$day == MR_data_3$day[i])
total_LRL <- sum(temporary$length)
LR_number <- dim(temporary)[1]
MR_data_3$LRL[i] <- total_LRL
MR_data_3$LRno[i] <- LR_number
}
MR_data_3$check <- MR_data_3$n_child - MR_data_3$LRno
MR_data_3
unique(MR_data_3$check)
## [1] 0 -6 -17 -7 -21
#let's remove check column from Child:
MR_data_Child2 <- MR_data_3[,1:13]
MR_data_Child2
MR_data_noChild
MR_data_noChild$LRL <- 0
MR_data_noChild$LRno <- 0
MR_all <- rbind(MR_data_Child2, MR_data_noChild)
MR_all
?strsplit()
## starting httpd help server ... done
MR_all$root_name[1]
## [1] " pl10-c-m248"
text <- strsplit(x = MR_all$root_name[1], split = "-")
text
## [[1]]
## [1] " pl10" "c" "m248"
plate <- text[[1]][1]
plate <- gsub(" ", "", plate)
plate
## [1] "pl10"
cond <- text[[1]][2]
cond
## [1] "c"
genotype <- text[[1]][3]
genotype
## [1] "m248"
dim(MR_all)
## [1] 387 13
for(i in 1:387){
text <- strsplit(x = MR_all$root_name[i], split = "-")
plate <- text[[1]][1]
cond <- text[[1]][2]
genotype <- text[[1]][3]
MR_all$genotype[i] <- genotype
MR_all$condition[i] <- cond
MR_all$plate[i] <- plate
}
MR_all
MR_all$TRS <- MR_all$length + MR_all$LRL
MR_all$aLRL <- MR_all$LRL/ MR_all$LRno
MR_all$MRpLRL <- MR_all$length / MR_all$LRL
MR_all
length(unique(MR_all$root_name))
## [1] 80
unique(MR_all$day)
## [1] 5 6 7 8 9
MR_all$day <- as.numeric(as.character(MR_all$day))
unique(MR_all$day)
## [1] 5 6 7 8 9
length(unique(MR_all$root_name))
## [1] 80
dim(MR_all)
## [1] 387 19
387/80
## [1] 4.8375
#it looks suspicious….
unique(MR_all$root_name)
## [1] " pl10-c-m248" " pl9-c-m248" " pl8-c-m248" " pl1-c-m248"
## [5] " pl10-s-m248" " pl7-s-m248" " pl3-s-m248" " pl2-s-m248"
## [9] " pl9-s-la1511" " pl6-c-la1511" " pl5-s-f1" " pl5-s-m058"
## [13] " pl4-s-m058" " pl8-c-m058" " pl3-c-m058" " pl6-s-m058"
## [17] " pl7-c-m248" " pl6-c-m248" " pl5-c-m248" " pl4-c-m248"
## [21] " pl3-c-m248" " pl2-c-m248" " pl9-s-m248" " pl8-s-m248"
## [25] " pl5-s-m248" " pl4-s-m248" " pl1-s-m248" " pl10-s-la1511"
## [29] " pl8-s-la1511" " pl7-s-la1511" " pl6-s-la1511" " pl5-s-la1511"
## [33] " pl4-s-la1511" " pl3-s-la1511" " pl2-s-LA1511" " pl1-s-la1511"
## [37] " pl10-c-la1511" " pl9-c-la1511" " pl8-c-la1511" " pl7-c-la1511"
## [41] " pl5-c-la1511" " pl4-c-la1511" " pl3-c-la1511" " pl2-c-la1511"
## [45] " pl1-c-la1511" " pl10-s-f1" " pl9-s-f1" " pl8-s-f1"
## [49] " pl7-s-f1" " pl6-s-f1" " pl4-s-f1" " pl3-s-f1"
## [53] " pl2-s-f1" " pl1-s-f1" " pl2-s-m058" " pl1-s-m058"
## [57] " pl9-c-f1" " pl8-c-f1" " pl7-c-f1" " pl6-c-f1"
## [61] " pl5-c-f1" " pl4-c-f1" " pl3-c-f1" " pl2-c-f1"
## [65] " pl1-c-f1" " pl10-c-m058" " pl9-c-m058" " pl6-c-m058"
## [69] " pl5-c-m058" " pl4-c-m058" " pl2-c-m058" " pl7-s-m058"
## [73] " pl2-s-la1511" " pl9-s-F1" " pl6-c-1f" " pl7-c-m058"
## [77] " pl1-c-m058" " pl9-c-LA1511" " pl3-s-m058" " root_0"
unique(MR_all$genotype)
## [1] "m248" "la1511" "f1" "m058" "LA1511" "F1" "1f" NA
good_stuff <- c("m248", "m058", "la1511", "f1")
funk <- subset(MR_all, !(MR_all$genotype %in% good_stuff))
funk
unique(MR_all$genotype)
## [1] "m248" "la1511" "f1" "m058" "LA1511" "F1" "1f" NA
MR_all <- subset(MR_all, (MR_all$genotype %in% good_stuff))
start visualizing
library(ggplot2)
library(ggpubr)
histogram_TRS <- ggdensity(MR_all, x = "TRS",
add = "mean", rug = TRUE, facet.by = "day",
color = "condition", fill = "condition",
palette = c("#00AFBB", "#E7B800"))
histogram_TRS
histogram_LRno <- ggdensity(MR_all, x = "LRno",
add = "mean", rug = TRUE, facet.by = "day",
color = "condition", fill = "condition",
palette = c("#00AFBB", "#E7B800"))
histogram_LRno
pdf("histogram.TRS.F1.pdf")
plot(histogram_TRS)
# if plotting multiple graphs - this command is extremely important
dev.off()
## png
## 2
pdf("histogram.LRno.F1.pdf")
plot(histogram_LRno)
# if plotting multiple graphs - this command is extremely important
dev.off()
## png
## 2
library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
pdf("Figure_MAIN_1.pdf", height = 15, width = 12)
plot_grid(histogram_TRS, histogram_LRno, ncol=2,
align = "hv", labels=c("AUTO"),
label_size = 24)
dev.off()
## png
## 2
unique(MR_all$genotype)
## [1] "m248" "la1511" "f1" "m058"
#we need to compare everything together here……Tukey test
library(ggsci)
library(ggbeeswarm)
library(gapminder)
library(RColorBrewer)
library(ggridges)
MR_all$genotype <- factor(MR_all$genotype, levels = c("m248", "m058", "la1511", "f1"))
#better_TRS_graph <- ggplot(data=MR_all, aes(x= genotype, y=TRS, color = genotype))
#better_TRS_graph <- better_TRS_graph + geom_beeswarm(alpha=0.6, priority = "density")
#better_TRS_graph <- better_TRS_graph + stat_summary(fun.y=mean, geom="point", shape=95, size=6, color="black", fill="black")
#better_TRS_graph <- better_TRS_graph + facet_grid(day ~ condition, scales = "free") + scale_color_manual(values=c("turquoise3", "maroon3", "dark orange", "green"))
#better_TRS_graph <- better_TRS_graph + ylab("Total root size (cm)") + xlab("Genotype") + theme(legend.position='none')
#better_TRS_graph <- better_TRS_graph + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
#better_TRS_graph <- better_TRS_graph + stat_compare_means(label = "p.signif", method = "t.test", ref.group = "a", hide.ns = TRUE)
#better_TRS_graph
#need to create column all ID
MR_all$All.ID<-paste(MR_all$genotype, MR_all$condition, MR_all$day, sep="_")
MR_all
aov(TRS ~ All.ID, data = MR_all)
## Call:
## aov(formula = TRS ~ All.ID, data = MR_all)
##
## Terms:
## All.ID Residuals
## Sum of Squares 70505.56 9178.53
## Deg. of Freedom 39 336
##
## Residual standard error: 5.226573
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(TRS ~ All.ID, data = MR_all))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = TRS ~ All.ID, data = MR_all)
##
## $All.ID
## diff lwr upr p adj
## f1_c_6-f1_c_5 3.16444144 -6.50466618 12.83354907 0.9999998
## f1_c_7-f1_c_5 16.30260991 6.33592191 26.26929792 0.0000004
## f1_c_8-f1_c_5 32.28933357 22.62022594 41.95844119 0.0000000
## f1_c_9-f1_c_5 58.39658986 48.72748223 68.06569748 0.0000000
## f1_s_5-f1_c_5 0.56375761 -8.86052274 9.98803796 1.0000000
## f1_s_6-f1_c_5 2.95557199 -6.46870836 12.37985234 0.9999999
## f1_s_7-f1_c_5 10.96190237 1.29279475 20.63100999 0.0070939
## f1_s_8-f1_c_5 23.84025483 14.41597448 33.26453518 0.0000000
## f1_s_9-f1_c_5 42.84362778 33.41934743 52.26790813 0.0000000
## la1511_c_5-f1_c_5 -0.15104770 -9.57532805 9.27323265 1.0000000
## la1511_c_6-f1_c_5 1.33756720 -8.08671315 10.76184755 1.0000000
## la1511_c_7-f1_c_5 8.36262108 -1.06165927 17.78690143 0.1879160
## la1511_c_8-f1_c_5 17.95647084 8.28736321 27.62557846 0.0000000
## la1511_c_9-f1_c_5 33.60692724 24.18264689 43.03120759 0.0000000
## la1511_s_5-f1_c_5 0.05087919 -9.37340116 9.47515954 1.0000000
## la1511_s_6-f1_c_5 0.86275254 -8.80635508 10.53186016 1.0000000
## la1511_s_7-f1_c_5 4.89139222 -4.53288813 14.31567257 0.9929113
## la1511_s_8-f1_c_5 10.72663519 1.30235484 20.15091554 0.0066031
## la1511_s_9-f1_c_5 15.40676325 5.98248290 24.83104360 0.0000004
## m058_c_5-f1_c_5 0.06481397 -9.35946638 9.48909432 1.0000000
## m058_c_6-f1_c_5 2.41092837 -7.01335198 11.83520872 1.0000000
## m058_c_7-f1_c_5 6.26982812 -3.15445223 15.69410847 0.8226670
## m058_c_8-f1_c_5 10.76235548 1.33807513 20.18663583 0.0062133
## m058_c_9-f1_c_5 19.17737801 9.75309766 28.60165836 0.0000000
## m058_s_5-f1_c_5 1.53745919 -8.79925165 11.87417004 1.0000000
## m058_s_6-f1_c_5 2.62845198 -7.70825887 12.96516282 1.0000000
## m058_s_7-f1_c_5 4.26399364 -6.07271721 14.60070448 0.9999292
## m058_s_8-f1_c_5 6.49378102 -3.84292982 16.83049187 0.9001273
## m058_s_9-f1_c_5 10.34682150 0.01011066 20.68353235 0.0493596
## m248_c_5-f1_c_5 3.02026751 -6.40401284 12.44454786 0.9999999
## m248_c_6-f1_c_5 3.44997808 -5.97430227 12.87425843 0.9999962
## m248_c_7-f1_c_5 11.02200658 1.59772623 20.44628693 0.0039619
## m248_c_8-f1_c_5 23.25941530 13.83513495 32.68369565 0.0000000
## m248_c_9-f1_c_5 43.49743012 34.07314977 52.92171047 0.0000000
## m248_s_5-f1_c_5 0.49509575 -8.92918460 9.91937610 1.0000000
## m248_s_6-f1_c_5 2.00066201 -7.42361834 11.42494236 1.0000000
## m248_s_7-f1_c_5 4.98965462 -4.43462573 14.41393497 0.9901614
## m248_s_8-f1_c_5 10.10899571 0.68471536 19.53327606 0.0181106
## m248_s_9-f1_c_5 19.07609906 9.65181871 28.50037941 0.0000000
## f1_c_7-f1_c_6 13.13816847 3.17148046 23.10485648 0.0002814
## f1_c_8-f1_c_6 29.12489212 19.45578450 38.79399975 0.0000000
## f1_c_9-f1_c_6 55.23214841 45.56304079 64.90125604 0.0000000
## f1_s_5-f1_c_6 -2.60068383 -12.02496418 6.82359652 1.0000000
## f1_s_6-f1_c_6 -0.20886946 -9.63314981 9.21541089 1.0000000
## f1_s_7-f1_c_6 7.79746093 -1.87164670 17.46656855 0.3890550
## f1_s_8-f1_c_6 20.67581339 11.25153304 30.10009374 0.0000000
## f1_s_9-f1_c_6 39.67918633 30.25490598 49.10346668 0.0000000
## la1511_c_5-f1_c_6 -3.31548914 -12.73976949 6.10879121 0.9999987
## la1511_c_6-f1_c_6 -1.82687424 -11.25115459 7.59740611 1.0000000
## la1511_c_7-f1_c_6 5.19817963 -4.22610072 14.62245998 0.9813977
## la1511_c_8-f1_c_6 14.79202939 5.12292177 24.46113702 0.0000038
## la1511_c_9-f1_c_6 30.44248579 21.01820544 39.86676614 0.0000000
## la1511_s_5-f1_c_6 -3.11356226 -12.53784261 6.31071809 0.9999998
## la1511_s_6-f1_c_6 -2.30168891 -11.97079653 7.36741872 1.0000000
## la1511_s_7-f1_c_6 1.72695077 -7.69732958 11.15123112 1.0000000
## la1511_s_8-f1_c_6 7.56219375 -1.86208660 16.98647410 0.4011646
## la1511_s_9-f1_c_6 12.24232181 2.81804146 21.66660216 0.0004035
## m058_c_5-f1_c_6 -3.09962747 -12.52390782 6.32465288 0.9999998
## m058_c_6-f1_c_6 -0.75351307 -10.17779342 8.67076728 1.0000000
## m058_c_7-f1_c_6 3.10538667 -6.31889368 12.52966702 0.9999998
## m058_c_8-f1_c_6 7.59791404 -1.82636631 17.02219439 0.3897264
## m058_c_9-f1_c_6 16.01293656 6.58865621 25.43721691 0.0000001
## m058_s_5-f1_c_6 -1.62698225 -11.96369310 8.70972859 1.0000000
## m058_s_6-f1_c_6 -0.53598947 -10.87270031 9.80072138 1.0000000
## m058_s_7-f1_c_6 1.09955219 -9.23715865 11.43626304 1.0000000
## m058_s_8-f1_c_6 3.32933958 -7.00737127 13.66605043 0.9999999
## m058_s_9-f1_c_6 7.18238006 -3.15433079 17.51909090 0.7434217
## m248_c_5-f1_c_6 -0.14417393 -9.56845428 9.28010642 1.0000000
## m248_c_6-f1_c_6 0.28553664 -9.13874371 9.70981699 1.0000000
## m248_c_7-f1_c_6 7.85756513 -1.56671522 17.28184548 0.3113750
## m248_c_8-f1_c_6 20.09497385 10.67069350 29.51925420 0.0000000
## m248_c_9-f1_c_6 40.33298867 30.90870832 49.75726902 0.0000000
## m248_s_5-f1_c_6 -2.66934569 -12.09362604 6.75493466 1.0000000
## m248_s_6-f1_c_6 -1.16377943 -10.58805978 8.26050092 1.0000000
## m248_s_7-f1_c_6 1.82521317 -7.59906718 11.24949352 1.0000000
## m248_s_8-f1_c_6 6.94455427 -2.47972608 16.36883462 0.6124347
## m248_s_9-f1_c_6 15.91165761 6.48737726 25.33593796 0.0000001
## f1_c_8-f1_c_7 15.98672365 6.02003565 25.95341166 0.0000007
## f1_c_9-f1_c_7 42.09397994 32.12729193 52.06066795 0.0000000
## f1_s_5-f1_c_7 -15.73885230 -25.46820417 -6.00950044 0.0000005
## f1_s_6-f1_c_7 -13.34703793 -23.07638979 -3.61768606 0.0000999
## f1_s_7-f1_c_7 -5.34070754 -15.30739555 4.62598047 0.9880729
## f1_s_8-f1_c_7 7.53764492 -2.19170695 17.26699678 0.4883373
## f1_s_9-f1_c_7 26.54101786 16.81166599 36.27036973 0.0000000
## la1511_c_5-f1_c_7 -16.45365761 -26.18300948 -6.72430574 0.0000001
## la1511_c_6-f1_c_7 -14.96504271 -24.69439458 -5.23569085 0.0000032
## la1511_c_7-f1_c_7 -7.93998884 -17.66934070 1.78936303 0.3606141
## la1511_c_8-f1_c_7 1.65386092 -8.31282709 11.62054893 1.0000000
## la1511_c_9-f1_c_7 17.30431732 7.57496546 27.03366919 0.0000000
## la1511_s_5-f1_c_7 -16.25173073 -25.98108260 -6.52237886 0.0000002
## la1511_s_6-f1_c_7 -15.43985738 -25.40654538 -5.47316937 0.0000025
## la1511_s_7-f1_c_7 -11.41121770 -21.14056956 -1.68186583 0.0037486
## la1511_s_8-f1_c_7 -5.57597472 -15.30532659 4.15337715 0.9677813
## la1511_s_9-f1_c_7 -0.89584666 -10.62519853 8.83350521 1.0000000
## m058_c_5-f1_c_7 -16.23779594 -25.96714781 -6.50844408 0.0000002
## m058_c_6-f1_c_7 -13.89168154 -23.62103341 -4.16232968 0.0000325
## m058_c_7-f1_c_7 -10.03278180 -19.76213367 -0.30342993 0.0327936
## m058_c_8-f1_c_7 -5.54025443 -15.26960630 4.18909743 0.9705247
## m058_c_9-f1_c_7 2.87476809 -6.85458378 12.60411996 1.0000000
## m058_s_5-f1_c_7 -14.76515072 -25.38074391 -4.14955753 0.0000685
## m058_s_6-f1_c_7 -13.67415794 -24.28975113 -3.05856475 0.0004941
## m058_s_7-f1_c_7 -12.03861628 -22.65420946 -1.42302309 0.0070548
## m058_s_8-f1_c_7 -9.80882889 -20.42442208 0.80676430 0.1267223
## m058_s_9-f1_c_7 -5.95578841 -16.57138160 4.65980478 0.9761218
## m248_c_5-f1_c_7 -13.28234240 -23.01169427 -3.55299053 0.0001139
## m248_c_6-f1_c_7 -12.85263183 -22.58198370 -3.12327997 0.0002668
## m248_c_7-f1_c_7 -5.28060334 -15.00995520 4.44874853 0.9854367
## m248_c_8-f1_c_7 6.95680538 -2.77254648 16.68615725 0.6824288
## m248_c_9-f1_c_7 27.19482020 17.46546833 36.92417207 0.0000000
## m248_s_5-f1_c_7 -15.80751416 -25.53686603 -6.07816230 0.0000005
## m248_s_6-f1_c_7 -14.30194790 -24.03129977 -4.57259604 0.0000136
## m248_s_7-f1_c_7 -11.31295530 -21.04230716 -1.58360343 0.0044304
## m248_s_8-f1_c_7 -6.19361420 -15.92296607 3.53573766 0.8849541
## m248_s_9-f1_c_7 2.77348914 -6.95586273 12.50284101 1.0000000
## f1_c_9-f1_c_8 26.10725629 16.43814867 35.77636391 0.0000000
## f1_s_5-f1_c_8 -31.72557596 -41.14985631 -22.30129561 0.0000000
## f1_s_6-f1_c_8 -29.33376158 -38.75804193 -19.90948123 0.0000000
## f1_s_7-f1_c_8 -21.32743120 -30.99653882 -11.65832357 0.0000000
## f1_s_8-f1_c_8 -8.44907874 -17.87335909 0.97520161 0.1708766
## f1_s_9-f1_c_8 10.55429421 1.13001386 19.97857456 0.0088228
## la1511_c_5-f1_c_8 -32.44038127 -41.86466162 -23.01610092 0.0000000
## la1511_c_6-f1_c_8 -30.95176637 -40.37604672 -21.52748602 0.0000000
## la1511_c_7-f1_c_8 -23.92671249 -33.35099284 -14.50243214 0.0000000
## la1511_c_8-f1_c_8 -14.33286273 -24.00197035 -4.66375511 0.0000105
## la1511_c_9-f1_c_8 1.31759367 -8.10668668 10.74187402 1.0000000
## la1511_s_5-f1_c_8 -32.23845438 -41.66273473 -22.81417403 0.0000000
## la1511_s_6-f1_c_8 -31.42658103 -41.09568865 -21.75747341 0.0000000
## la1511_s_7-f1_c_8 -27.39794135 -36.82222170 -17.97366100 0.0000000
## la1511_s_8-f1_c_8 -21.56269838 -30.98697873 -12.13841803 0.0000000
## la1511_s_9-f1_c_8 -16.88257031 -26.30685066 -7.45828996 0.0000000
## m058_c_5-f1_c_8 -32.22451960 -41.64879995 -22.80023925 0.0000000
## m058_c_6-f1_c_8 -29.87840520 -39.30268555 -20.45412485 0.0000000
## m058_c_7-f1_c_8 -26.01950545 -35.44378580 -16.59522510 0.0000000
## m058_c_8-f1_c_8 -21.52697809 -30.95125844 -12.10269774 0.0000000
## m058_c_9-f1_c_8 -13.11195556 -22.53623591 -3.68767521 0.0000680
## m058_s_5-f1_c_8 -30.75187438 -41.08858522 -20.41516353 0.0000000
## m058_s_6-f1_c_8 -29.66088159 -39.99759244 -19.32417075 0.0000000
## m058_s_7-f1_c_8 -28.02533993 -38.36205078 -17.68862908 0.0000000
## m058_s_8-f1_c_8 -25.79555254 -36.13226339 -15.45884170 0.0000000
## m058_s_9-f1_c_8 -21.94251207 -32.27922291 -11.60580122 0.0000000
## m248_c_5-f1_c_8 -29.26906606 -38.69334641 -19.84478571 0.0000000
## m248_c_6-f1_c_8 -28.83935549 -38.26363584 -19.41507514 0.0000000
## m248_c_7-f1_c_8 -21.26732699 -30.69160734 -11.84304664 0.0000000
## m248_c_8-f1_c_8 -9.02991827 -18.45419862 0.39436208 0.0849511
## m248_c_9-f1_c_8 11.20809655 1.78381620 20.63237690 0.0028464
## m248_s_5-f1_c_8 -31.79423782 -41.21851817 -22.36995747 0.0000000
## m248_s_6-f1_c_8 -30.28867156 -39.71295191 -20.86439121 0.0000000
## m248_s_7-f1_c_8 -27.29967895 -36.72395930 -17.87539860 0.0000000
## m248_s_8-f1_c_8 -22.18033786 -31.60461821 -12.75605751 0.0000000
## m248_s_9-f1_c_8 -13.21323451 -22.63751486 -3.78895416 0.0000548
## f1_s_5-f1_c_9 -57.83283225 -67.25711260 -48.40855190 0.0000000
## f1_s_6-f1_c_9 -55.44101787 -64.86529822 -46.01673752 0.0000000
## f1_s_7-f1_c_9 -47.43468749 -57.10379511 -37.76557986 0.0000000
## f1_s_8-f1_c_9 -34.55633503 -43.98061538 -25.13205468 0.0000000
## f1_s_9-f1_c_9 -15.55296208 -24.97724243 -6.12868173 0.0000003
## la1511_c_5-f1_c_9 -58.54763755 -67.97191790 -49.12335720 0.0000000
## la1511_c_6-f1_c_9 -57.05902266 -66.48330301 -47.63474231 0.0000000
## la1511_c_7-f1_c_9 -50.03396878 -59.45824913 -40.60968843 0.0000000
## la1511_c_8-f1_c_9 -40.44011902 -50.10922664 -30.77101140 0.0000000
## la1511_c_9-f1_c_9 -24.78966262 -34.21394297 -15.36538227 0.0000000
## la1511_s_5-f1_c_9 -58.34571067 -67.76999102 -48.92143032 0.0000000
## la1511_s_6-f1_c_9 -57.53383732 -67.20294494 -47.86472970 0.0000000
## la1511_s_7-f1_c_9 -53.50519764 -62.92947799 -44.08091729 0.0000000
## la1511_s_8-f1_c_9 -47.66995466 -57.09423501 -38.24567431 0.0000000
## la1511_s_9-f1_c_9 -42.98982660 -52.41410695 -33.56554625 0.0000000
## m058_c_5-f1_c_9 -58.33177589 -67.75605624 -48.90749554 0.0000000
## m058_c_6-f1_c_9 -55.98566149 -65.40994184 -46.56138114 0.0000000
## m058_c_7-f1_c_9 -52.12676174 -61.55104209 -42.70248139 0.0000000
## m058_c_8-f1_c_9 -47.63423438 -57.05851473 -38.20995403 0.0000000
## m058_c_9-f1_c_9 -39.21921185 -48.64349220 -29.79493150 0.0000000
## m058_s_5-f1_c_9 -56.85913067 -67.19584151 -46.52241982 0.0000000
## m058_s_6-f1_c_9 -55.76813788 -66.10484873 -45.43142704 0.0000000
## m058_s_7-f1_c_9 -54.13259622 -64.46930706 -43.79588537 0.0000000
## m058_s_8-f1_c_9 -51.90280883 -62.23951968 -41.56609799 0.0000000
## m058_s_9-f1_c_9 -48.04976836 -58.38647920 -37.71305751 0.0000000
## m248_c_5-f1_c_9 -55.37632235 -64.80060270 -45.95204200 0.0000000
## m248_c_6-f1_c_9 -54.94661178 -64.37089213 -45.52233143 0.0000000
## m248_c_7-f1_c_9 -47.37458328 -56.79886363 -37.95030293 0.0000000
## m248_c_8-f1_c_9 -35.13717456 -44.56145491 -25.71289421 0.0000000
## m248_c_9-f1_c_9 -14.89915974 -24.32344009 -5.47487939 0.0000012
## m248_s_5-f1_c_9 -57.90149411 -67.32577446 -48.47721376 0.0000000
## m248_s_6-f1_c_9 -56.39592785 -65.82020820 -46.97164750 0.0000000
## m248_s_7-f1_c_9 -53.40693524 -62.83121559 -43.98265489 0.0000000
## m248_s_8-f1_c_9 -48.28759415 -57.71187450 -38.86331380 0.0000000
## m248_s_9-f1_c_9 -39.32049080 -48.74477115 -29.89621045 0.0000000
## f1_s_6-f1_s_5 2.39181438 -6.78110653 11.56473528 1.0000000
## f1_s_7-f1_s_5 10.39814476 0.97386441 19.82242511 0.0114098
## f1_s_8-f1_s_5 23.27649722 14.10357631 32.44941813 0.0000000
## f1_s_9-f1_s_5 42.27987016 33.10694925 51.45279107 0.0000000
## la1511_c_5-f1_s_5 -0.71480531 -9.88772622 8.45811560 1.0000000
## la1511_c_6-f1_s_5 0.77380959 -8.39911132 9.94673050 1.0000000
## la1511_c_7-f1_s_5 7.79886347 -1.37405744 16.97178437 0.2691834
## la1511_c_8-f1_s_5 17.39271323 7.96843288 26.81699358 0.0000000
## la1511_c_9-f1_s_5 33.04316963 23.87024872 42.21609054 0.0000000
## la1511_s_5-f1_s_5 -0.51287843 -9.68579934 8.66004248 1.0000000
## la1511_s_6-f1_s_5 0.29899493 -9.12528542 9.72327528 1.0000000
## la1511_s_7-f1_s_5 4.32763461 -4.84528630 13.50055552 0.9987499
## la1511_s_8-f1_s_5 10.16287758 0.98995667 19.33579849 0.0106316
## la1511_s_9-f1_s_5 14.84300564 5.67008473 24.01592655 0.0000005
## m058_c_5-f1_s_5 -0.49894364 -9.67186455 8.67397727 1.0000000
## m058_c_6-f1_s_5 1.84717076 -7.32575015 11.02009167 1.0000000
## m058_c_7-f1_s_5 5.70607050 -3.46685041 14.87899141 0.9104438
## m058_c_8-f1_s_5 10.19859787 1.02567696 19.37151878 0.0100094
## m058_c_9-f1_s_5 18.61362039 9.44069948 27.78654130 0.0000000
## m058_s_5-f1_s_5 0.97370158 -9.13436495 11.08176811 1.0000000
## m058_s_6-f1_s_5 2.06469436 -8.04337217 12.17276090 1.0000000
## m058_s_7-f1_s_5 3.70023603 -6.40783050 13.80830256 0.9999962
## m058_s_8-f1_s_5 5.93002341 -4.17804312 16.03808994 0.9559460
## m058_s_9-f1_s_5 9.78306389 -0.32500264 19.89113042 0.0754231
## m248_c_5-f1_s_5 2.45650990 -6.71641101 11.62943081 1.0000000
## m248_c_6-f1_s_5 2.88622047 -6.28670044 12.05914138 0.9999999
## m248_c_7-f1_s_5 10.45824897 1.28532806 19.63116988 0.0064018
## m248_c_8-f1_s_5 22.69565769 13.52273678 31.86857859 0.0000000
## m248_c_9-f1_s_5 42.93367250 33.76075159 52.10659341 0.0000000
## m248_s_5-f1_s_5 -0.06866186 -9.24158277 9.10425905 1.0000000
## m248_s_6-f1_s_5 1.43690440 -7.73601651 10.60982531 1.0000000
## m248_s_7-f1_s_5 4.42589701 -4.74702390 13.59881792 0.9980743
## m248_s_8-f1_s_5 9.54523810 0.37231719 18.71815901 0.0287555
## m248_s_9-f1_s_5 18.51234144 9.33942053 27.68526235 0.0000000
## f1_s_7-f1_s_6 8.00633038 -1.41794997 17.43061073 0.2708103
## f1_s_8-f1_s_6 20.88468284 11.71176193 30.05760375 0.0000000
## f1_s_9-f1_s_6 39.88805579 30.71513488 49.06097670 0.0000000
## la1511_c_5-f1_s_6 -3.10661968 -12.27954059 6.06630122 0.9999995
## la1511_c_6-f1_s_6 -1.61800479 -10.79092570 7.55491612 1.0000000
## la1511_c_7-f1_s_6 5.40704909 -3.76587182 14.57997000 0.9531495
## la1511_c_8-f1_s_6 15.00089885 5.57661850 24.42517920 0.0000010
## la1511_c_9-f1_s_6 30.65135525 21.47843434 39.82427616 0.0000000
## la1511_s_5-f1_s_6 -2.90469280 -12.07761371 6.26822811 0.9999999
## la1511_s_6-f1_s_6 -2.09281945 -11.51709980 7.33146090 1.0000000
## la1511_s_7-f1_s_6 1.93582023 -7.23710068 11.10874114 1.0000000
## la1511_s_8-f1_s_6 7.77106321 -1.40185770 16.94398411 0.2766800
## la1511_s_9-f1_s_6 12.45119127 3.27827036 21.62411218 0.0001326
## m058_c_5-f1_s_6 -2.89075802 -12.06367893 6.28216289 0.9999999
## m058_c_6-f1_s_6 -0.54464362 -9.71756453 8.62827729 1.0000000
## m058_c_7-f1_s_6 3.31425613 -5.85866478 12.48717704 0.9999973
## m058_c_8-f1_s_6 7.80678349 -1.36613742 16.97970440 0.2670711
## m058_c_9-f1_s_6 16.22180602 7.04888511 25.39472693 0.0000000
## m058_s_5-f1_s_6 -1.41811280 -11.52617933 8.68995374 1.0000000
## m058_s_6-f1_s_6 -0.32712001 -10.43518654 9.78094652 1.0000000
## m058_s_7-f1_s_6 1.30842165 -8.79964488 11.41648818 1.0000000
## m058_s_8-f1_s_6 3.53820904 -6.56985750 13.64627557 0.9999988
## m058_s_9-f1_s_6 7.39124951 -2.71681702 17.49931605 0.6308273
## m248_c_5-f1_s_6 0.06469552 -9.10822538 9.23761643 1.0000000
## m248_c_6-f1_s_6 0.49440609 -8.67851482 9.66732700 1.0000000
## m248_c_7-f1_s_6 8.06643459 -1.10648632 17.23935550 0.2036956
## m248_c_8-f1_s_6 20.30384331 11.13092240 29.47676422 0.0000000
## m248_c_9-f1_s_6 40.54185813 31.36893722 49.71477904 0.0000000
## m248_s_5-f1_s_6 -2.46047624 -11.63339715 6.71244467 1.0000000
## m248_s_6-f1_s_6 -0.95490998 -10.12783088 8.21801093 1.0000000
## m248_s_7-f1_s_6 2.03408263 -7.13883828 11.20700354 1.0000000
## m248_s_8-f1_s_6 7.15342372 -2.01949719 16.32634463 0.4718555
## m248_s_9-f1_s_6 16.12052707 6.94760616 25.29344798 0.0000000
## f1_s_8-f1_s_7 12.87835246 3.45407211 22.30263281 0.0001110
## f1_s_9-f1_s_7 31.88172540 22.45744505 41.30600575 0.0000000
## la1511_c_5-f1_s_7 -11.11295007 -20.53723042 -1.68866972 0.0033735
## la1511_c_6-f1_s_7 -9.62433517 -19.04861552 -0.20005482 0.0376116
## la1511_c_7-f1_s_7 -2.59928129 -12.02356164 6.82499906 1.0000000
## la1511_c_8-f1_s_7 6.99456847 -2.67453916 16.66367609 0.6560099
## la1511_c_9-f1_s_7 22.64502487 13.22074452 32.06930522 0.0000000
## la1511_s_5-f1_s_7 -10.91102319 -20.33530354 -1.48674284 0.0048100
## la1511_s_6-f1_s_7 -10.09914983 -19.76825746 -0.43004221 0.0272197
## la1511_s_7-f1_s_7 -6.07051015 -15.49479050 3.35377020 0.8700994
## la1511_s_8-f1_s_7 -0.23526718 -9.65954753 9.18901317 1.0000000
## la1511_s_9-f1_s_7 4.44486088 -4.97941947 13.86914123 0.9987573
## m058_c_5-f1_s_7 -10.89708840 -20.32136875 -1.47280805 0.0049278
## m058_c_6-f1_s_7 -8.55097400 -17.97525435 0.87330635 0.1522970
## m058_c_7-f1_s_7 -4.69207426 -14.11635461 4.73220609 0.9965629
## m058_c_8-f1_s_7 -0.19954689 -9.62382724 9.22473346 1.0000000
## m058_c_9-f1_s_7 8.21547563 -1.20880472 17.63975598 0.2196684
## m058_s_5-f1_s_7 -9.42444318 -19.76115403 0.91226767 0.1451740
## m058_s_6-f1_s_7 -8.33345040 -18.67016124 2.00326045 0.3897470
## m058_s_7-f1_s_7 -6.69790873 -17.03461958 3.63880211 0.8621198
## m058_s_8-f1_s_7 -4.46812135 -14.80483219 5.86858950 0.9997968
## m058_s_9-f1_s_7 -0.61508087 -10.95179172 9.72162998 1.0000000
## m248_c_5-f1_s_7 -7.94163486 -17.36591521 1.48264549 0.2880357
## m248_c_6-f1_s_7 -7.51192429 -16.93620464 1.91235606 0.4174935
## m248_c_7-f1_s_7 0.06010421 -9.36417614 9.48438456 1.0000000
## m248_c_8-f1_s_7 12.29751293 2.87323258 21.72179328 0.0003617
## m248_c_9-f1_s_7 32.53552774 23.11124739 41.95980809 0.0000000
## m248_s_5-f1_s_7 -10.46680662 -19.89108697 -1.04252627 0.0101966
## m248_s_6-f1_s_7 -8.96124036 -18.38552071 0.46303999 0.0927545
## m248_s_7-f1_s_7 -5.97224775 -15.39652810 3.45203260 0.8903356
## m248_s_8-f1_s_7 -0.85290666 -10.27718701 8.57137369 1.0000000
## m248_s_9-f1_s_7 8.11419668 -1.31008367 17.53847703 0.2435568
## f1_s_9-f1_s_8 19.00337295 9.83045204 28.17629386 0.0000000
## la1511_c_5-f1_s_8 -23.99130253 -33.16422344 -14.81838162 0.0000000
## la1511_c_6-f1_s_8 -22.50268763 -31.67560854 -13.32976672 0.0000000
## la1511_c_7-f1_s_8 -15.47763375 -24.65055466 -6.30471284 0.0000001
## la1511_c_8-f1_s_8 -5.88378399 -15.30806434 3.54049636 0.9067404
## la1511_c_9-f1_s_8 9.76667241 0.59375150 18.93959332 0.0203436
## la1511_s_5-f1_s_8 -23.78937564 -32.96229655 -14.61645474 0.0000000
## la1511_s_6-f1_s_8 -22.97750229 -32.40178264 -13.55322194 0.0000000
## la1511_s_7-f1_s_8 -18.94886261 -28.12178352 -9.77594170 0.0000000
## la1511_s_8-f1_s_8 -13.11361964 -22.28654055 -3.94069873 0.0000314
## la1511_s_9-f1_s_8 -8.43349157 -17.60641248 0.73942933 0.1334370
## m058_c_5-f1_s_8 -23.77544086 -32.94836177 -14.60251995 0.0000000
## m058_c_6-f1_s_8 -21.42932646 -30.60224737 -12.25640555 0.0000000
## m058_c_7-f1_s_8 -17.57042671 -26.74334762 -8.39750581 0.0000000
## m058_c_8-f1_s_8 -13.07789935 -22.25082026 -3.90497844 0.0000340
## m058_c_9-f1_s_8 -4.66287682 -13.83579773 4.51004409 0.9950330
## m058_s_5-f1_s_8 -22.30279564 -32.41086217 -12.19472911 0.0000000
## m058_s_6-f1_s_8 -21.21180285 -31.31986939 -11.10373632 0.0000000
## m058_s_7-f1_s_8 -19.57626119 -29.68432772 -9.46819466 0.0000000
## m058_s_8-f1_s_8 -17.34647381 -27.45454034 -7.23840727 0.0000001
## m058_s_9-f1_s_8 -13.49343333 -23.60149986 -3.38536680 0.0002047
## m248_c_5-f1_s_8 -20.81998732 -29.99290823 -11.64706641 0.0000000
## m248_c_6-f1_s_8 -20.39027675 -29.56319766 -11.21735584 0.0000000
## m248_c_7-f1_s_8 -12.81824825 -21.99116916 -3.64532734 0.0000602
## m248_c_8-f1_s_8 -0.58083953 -9.75376044 8.59208138 1.0000000
## m248_c_9-f1_s_8 19.65717529 10.48425438 28.83009619 0.0000000
## m248_s_5-f1_s_8 -23.34515908 -32.51807999 -14.17223817 0.0000000
## m248_s_6-f1_s_8 -21.83959282 -31.01251373 -12.66667191 0.0000000
## m248_s_7-f1_s_8 -18.85060021 -28.02352112 -9.67767930 0.0000000
## m248_s_8-f1_s_8 -13.73125912 -22.90418003 -4.55833821 0.0000077
## m248_s_9-f1_s_8 -4.76415577 -13.93707668 4.40876514 0.9928304
## la1511_c_5-f1_s_9 -42.99467547 -52.16759638 -33.82175456 0.0000000
## la1511_c_6-f1_s_9 -41.50606057 -50.67898148 -32.33313967 0.0000000
## la1511_c_7-f1_s_9 -34.48100670 -43.65392761 -25.30808579 0.0000000
## la1511_c_8-f1_s_9 -24.88715694 -34.31143729 -15.46287659 0.0000000
## la1511_c_9-f1_s_9 -9.23670054 -18.40962145 -0.06377963 0.0455998
## la1511_s_5-f1_s_9 -42.79274859 -51.96566950 -33.61982768 0.0000000
## la1511_s_6-f1_s_9 -41.98087524 -51.40515559 -32.55659489 0.0000000
## la1511_s_7-f1_s_9 -37.95223556 -47.12515647 -28.77931465 0.0000000
## la1511_s_8-f1_s_9 -32.11699258 -41.28991349 -22.94407167 0.0000000
## la1511_s_9-f1_s_9 -27.43686452 -36.60978543 -18.26394361 0.0000000
## m058_c_5-f1_s_9 -42.77881380 -51.95173471 -33.60589290 0.0000000
## m058_c_6-f1_s_9 -40.43269941 -49.60562031 -31.25977850 0.0000000
## m058_c_7-f1_s_9 -36.57379966 -45.74672057 -27.40087875 0.0000000
## m058_c_8-f1_s_9 -32.08127230 -41.25419321 -22.90835139 0.0000000
## m058_c_9-f1_s_9 -23.66624977 -32.83917068 -14.49332886 0.0000000
## m058_s_5-f1_s_9 -41.30616858 -51.41423512 -31.19810205 0.0000000
## m058_s_6-f1_s_9 -40.21517580 -50.32324233 -30.10710927 0.0000000
## m058_s_7-f1_s_9 -38.57963414 -48.68770067 -28.47156761 0.0000000
## m058_s_8-f1_s_9 -36.34984675 -46.45791328 -26.24178022 0.0000000
## m058_s_9-f1_s_9 -32.49680627 -42.60487281 -22.38873974 0.0000000
## m248_c_5-f1_s_9 -39.82336026 -48.99628117 -30.65043935 0.0000000
## m248_c_6-f1_s_9 -39.39364970 -48.56657060 -30.22072879 0.0000000
## m248_c_7-f1_s_9 -31.82162120 -40.99454211 -22.64870029 0.0000000
## m248_c_8-f1_s_9 -19.58421248 -28.75713339 -10.41129157 0.0000000
## m248_c_9-f1_s_9 0.65380234 -8.51911857 9.82672325 1.0000000
## m248_s_5-f1_s_9 -42.34853203 -51.52145293 -33.17561112 0.0000000
## m248_s_6-f1_s_9 -40.84296576 -50.01588667 -31.67004485 0.0000000
## m248_s_7-f1_s_9 -37.85397316 -47.02689407 -28.68105225 0.0000000
## m248_s_8-f1_s_9 -32.73463206 -41.90755297 -23.56171116 0.0000000
## m248_s_9-f1_s_9 -23.76752872 -32.94044963 -14.59460781 0.0000000
## la1511_c_6-la1511_c_5 1.48861490 -7.68430601 10.66153581 1.0000000
## la1511_c_7-la1511_c_5 8.51366877 -0.65925213 17.68658968 0.1209393
## la1511_c_8-la1511_c_5 18.10751853 8.68323818 27.53179888 0.0000000
## la1511_c_9-la1511_c_5 33.75797494 24.58505403 42.93089584 0.0000000
## la1511_s_5-la1511_c_5 0.20192688 -8.97099403 9.37484779 1.0000000
## la1511_s_6-la1511_c_5 1.01380024 -8.41048011 10.43808059 1.0000000
## la1511_s_7-la1511_c_5 5.04243992 -4.13048099 14.21536083 0.9823176
## la1511_s_8-la1511_c_5 10.87768289 1.70476198 20.05060380 0.0030162
## la1511_s_9-la1511_c_5 15.55781095 6.38489004 24.73073186 0.0000001
## m058_c_5-la1511_c_5 0.21586167 -8.95705924 9.38878258 1.0000000
## m058_c_6-la1511_c_5 2.56197607 -6.61094484 11.73489698 1.0000000
## m058_c_7-la1511_c_5 6.42087581 -2.75204510 15.59379672 0.7283386
## m058_c_8-la1511_c_5 10.91340318 1.74048227 20.08632409 0.0028242
## m058_c_9-la1511_c_5 19.32842570 10.15550479 28.50134661 0.0000000
## m058_s_5-la1511_c_5 1.68850689 -8.41955964 11.79657342 1.0000000
## m058_s_6-la1511_c_5 2.77949967 -7.32856686 12.88756620 1.0000000
## m058_s_7-la1511_c_5 4.41504134 -5.69302520 14.52310787 0.9997450
## m058_s_8-la1511_c_5 6.64482872 -3.46323781 16.75289525 0.8413747
## m058_s_9-la1511_c_5 10.49786920 0.38980267 20.60593573 0.0295859
## m248_c_5-la1511_c_5 3.17131521 -6.00160570 12.34423612 0.9999992
## m248_c_6-la1511_c_5 3.60102578 -5.57189513 12.77394669 0.9999781
## m248_c_7-la1511_c_5 11.17305428 2.00013337 20.34597519 0.0017376
## m248_c_8-la1511_c_5 23.41046299 14.23754209 32.58338390 0.0000000
## m248_c_9-la1511_c_5 43.64847781 34.47555690 52.82139872 0.0000000
## m248_s_5-la1511_c_5 0.64614345 -8.52677746 9.81906436 1.0000000
## m248_s_6-la1511_c_5 2.15170971 -7.02121120 11.32463062 1.0000000
## m248_s_7-la1511_c_5 5.14070232 -4.03221859 14.31362323 0.9764996
## m248_s_8-la1511_c_5 10.26004341 1.08712250 19.43296432 0.0090170
## m248_s_9-la1511_c_5 19.22714675 10.05422584 28.40006766 0.0000000
## la1511_c_7-la1511_c_6 7.02505388 -2.14786703 16.19797479 0.5172837
## la1511_c_8-la1511_c_6 16.61890364 7.19462329 26.04318399 0.0000000
## la1511_c_9-la1511_c_6 32.26936004 23.09643913 41.44228095 0.0000000
## la1511_s_5-la1511_c_6 -1.28668802 -10.45960892 7.88623289 1.0000000
## la1511_s_6-la1511_c_6 -0.47481466 -9.89909501 8.94946569 1.0000000
## la1511_s_7-la1511_c_6 3.55382502 -5.61909589 12.72674593 0.9999842
## la1511_s_8-la1511_c_6 9.38906799 0.21614708 18.56198890 0.0364287
## la1511_s_9-la1511_c_6 14.06919605 4.89627514 23.24211696 0.0000035
## m058_c_5-la1511_c_6 -1.27275323 -10.44567414 7.90016768 1.0000000
## m058_c_6-la1511_c_6 1.07336117 -8.09955974 10.24628208 1.0000000
## m058_c_7-la1511_c_6 4.93226091 -4.24065999 14.10518182 0.9874099
## m058_c_8-la1511_c_6 9.42478828 0.25186737 18.59770919 0.0345297
## m058_c_9-la1511_c_6 17.83981080 8.66688990 27.01273171 0.0000000
## m058_s_5-la1511_c_6 0.19989199 -9.90817454 10.30795852 1.0000000
## m058_s_6-la1511_c_6 1.29088477 -8.81718176 11.39895131 1.0000000
## m058_s_7-la1511_c_6 2.92642644 -7.18164009 13.03449297 1.0000000
## m058_s_8-la1511_c_6 5.15621382 -4.95185271 15.26428035 0.9947228
## m058_s_9-la1511_c_6 9.00925430 -1.09881223 19.11732083 0.1804434
## m248_c_5-la1511_c_6 1.68270031 -7.49022060 10.85562122 1.0000000
## m248_c_6-la1511_c_6 2.11241088 -7.06051003 11.28533179 1.0000000
## m248_c_7-la1511_c_6 9.68443938 0.51151847 18.85736029 0.0231667
## m248_c_8-la1511_c_6 21.92184810 12.74892719 31.09476900 0.0000000
## m248_c_9-la1511_c_6 42.15986291 32.98694201 51.33278382 0.0000000
## m248_s_5-la1511_c_6 -0.84247145 -10.01539236 8.33044946 1.0000000
## m248_s_6-la1511_c_6 0.66309481 -8.50982610 9.83601572 1.0000000
## m248_s_7-la1511_c_6 3.65208742 -5.52083349 12.82500833 0.9999693
## m248_s_8-la1511_c_6 8.77142851 -0.40149240 17.94434942 0.0869566
## m248_s_9-la1511_c_6 17.73853185 8.56561095 26.91145276 0.0000000
## la1511_c_8-la1511_c_7 9.59384976 0.16956941 19.01813011 0.0393053
## la1511_c_9-la1511_c_7 25.24430616 16.07138525 34.41722707 0.0000000
## la1511_s_5-la1511_c_7 -8.31174189 -17.48466280 0.86117902 0.1543088
## la1511_s_6-la1511_c_7 -7.49986854 -16.92414889 1.92441181 0.4214476
## la1511_s_7-la1511_c_7 -3.47122886 -12.64414977 5.70169205 0.9999912
## la1511_s_8-la1511_c_7 2.36401412 -6.80890679 11.53693502 1.0000000
## la1511_s_9-la1511_c_7 7.04414218 -2.12877873 16.21706309 0.5104783
## m058_c_5-la1511_c_7 -8.29780711 -17.47072802 0.87511380 0.1568478
## m058_c_6-la1511_c_7 -5.95169271 -15.12461362 3.22122820 0.8602928
## m058_c_7-la1511_c_7 -2.09279296 -11.26571387 7.08012795 1.0000000
## m058_c_8-la1511_c_7 2.39973440 -6.77318651 11.57265531 1.0000000
## m058_c_9-la1511_c_7 10.81475693 1.64183602 19.98767784 0.0033846
## m058_s_5-la1511_c_7 -6.82516189 -16.93322842 3.28290465 0.7975902
## m058_s_6-la1511_c_7 -5.73416910 -15.84223563 4.37389743 0.9720462
## m058_s_7-la1511_c_7 -4.09862744 -14.20669397 6.00943909 0.9999526
## m058_s_8-la1511_c_7 -1.86884005 -11.97690659 8.23922648 1.0000000
## m058_s_9-la1511_c_7 1.98420042 -8.12386611 12.09226696 1.0000000
## m248_c_5-la1511_c_7 -5.34235357 -14.51527447 3.83056734 0.9599655
## m248_c_6-la1511_c_7 -4.91264300 -14.08556391 4.26027791 0.9881769
## m248_c_7-la1511_c_7 2.65938550 -6.51353541 11.83230641 1.0000000
## m248_c_8-la1511_c_7 14.89679422 5.72387331 24.06971513 0.0000005
## m248_c_9-la1511_c_7 35.13480904 25.96188813 44.30772995 0.0000000
## m248_s_5-la1511_c_7 -7.86752533 -17.04044624 1.30539558 0.2512199
## m248_s_6-la1511_c_7 -6.36195907 -15.53487997 2.81096184 0.7471342
## m248_s_7-la1511_c_7 -3.37296646 -12.54588737 5.79995445 0.9999958
## m248_s_8-la1511_c_7 1.74637463 -7.42654628 10.91929554 1.0000000
## m248_s_9-la1511_c_7 10.71347798 1.54055707 19.88639889 0.0040674
## la1511_c_9-la1511_c_8 15.65045640 6.22617605 25.07473675 0.0000002
## la1511_s_5-la1511_c_8 -17.90559165 -27.32987200 -8.48131130 0.0000000
## la1511_s_6-la1511_c_8 -17.09371830 -26.76282592 -7.42461068 0.0000000
## la1511_s_7-la1511_c_8 -13.06507862 -22.48935897 -3.64079827 0.0000751
## la1511_s_8-la1511_c_8 -7.22983564 -16.65411599 2.19444471 0.5130212
## la1511_s_9-la1511_c_8 -2.54970758 -11.97398793 6.87457277 1.0000000
## m058_c_5-la1511_c_8 -17.89165687 -27.31593722 -8.46737652 0.0000000
## m058_c_6-la1511_c_8 -15.54554247 -24.96982282 -6.12126212 0.0000003
## m058_c_7-la1511_c_8 -11.68664272 -21.11092307 -2.26236237 0.0011803
## m058_c_8-la1511_c_8 -7.19411536 -16.61839571 2.23016499 0.5254345
## m058_c_9-la1511_c_8 1.22090717 -8.20337318 10.64518752 1.0000000
## m058_s_5-la1511_c_8 -16.41901165 -26.75572249 -6.08230080 0.0000010
## m058_s_6-la1511_c_8 -15.32801886 -25.66472971 -4.99130802 0.0000104
## m058_s_7-la1511_c_8 -13.69247720 -24.02918804 -3.35576635 0.0002491
## m058_s_8-la1511_c_8 -11.46268981 -21.79940066 -1.12597897 0.0104671
## m058_s_9-la1511_c_8 -7.60964934 -17.94636018 2.72706151 0.6147247
## m248_c_5-la1511_c_8 -14.93620333 -24.36048368 -5.51192298 0.0000011
## m248_c_6-la1511_c_8 -14.50649276 -23.93077311 -5.08221241 0.0000031
## m248_c_7-la1511_c_8 -6.93446426 -16.35874461 2.48981609 0.6159267
## m248_c_8-la1511_c_8 5.30294446 -4.12133589 14.72722481 0.9750944
## m248_c_9-la1511_c_8 25.54095928 16.11667893 34.96523963 0.0000000
## m248_s_5-la1511_c_8 -17.46137509 -26.88565544 -8.03709474 0.0000000
## m248_s_6-la1511_c_8 -15.95580883 -25.38008918 -6.53152848 0.0000001
## m248_s_7-la1511_c_8 -12.96681622 -22.39109657 -3.54253587 0.0000923
## m248_s_8-la1511_c_8 -7.84747513 -17.27175548 1.57680522 0.3142469
## m248_s_9-la1511_c_8 1.11962822 -8.30465213 10.54390857 1.0000000
## la1511_s_5-la1511_c_9 -33.55604805 -42.72896896 -24.38312714 0.0000000
## la1511_s_6-la1511_c_9 -32.74417470 -42.16845505 -23.31989435 0.0000000
## la1511_s_7-la1511_c_9 -28.71553502 -37.88845593 -19.54261411 0.0000000
## la1511_s_8-la1511_c_9 -22.88029205 -32.05321295 -13.70737114 0.0000000
## la1511_s_9-la1511_c_9 -18.20016398 -27.37308489 -9.02724307 0.0000000
## m058_c_5-la1511_c_9 -33.54211327 -42.71503418 -24.36919236 0.0000000
## m058_c_6-la1511_c_9 -31.19599887 -40.36891978 -22.02307796 0.0000000
## m058_c_7-la1511_c_9 -27.33709912 -36.51002003 -18.16417821 0.0000000
## m058_c_8-la1511_c_9 -22.84457176 -32.01749267 -13.67165085 0.0000000
## m058_c_9-la1511_c_9 -14.42954923 -23.60247014 -5.25662832 0.0000015
## m058_s_5-la1511_c_9 -32.06946805 -42.17753458 -21.96140152 0.0000000
## m058_s_6-la1511_c_9 -30.97847526 -41.08654179 -20.87040873 0.0000000
## m058_s_7-la1511_c_9 -29.34293360 -39.45100013 -19.23486707 0.0000000
## m058_s_8-la1511_c_9 -27.11314622 -37.22121275 -17.00507968 0.0000000
## m058_s_9-la1511_c_9 -23.26010574 -33.36817227 -13.15203921 0.0000000
## m248_c_5-la1511_c_9 -30.58665973 -39.75958064 -21.41373882 0.0000000
## m248_c_6-la1511_c_9 -30.15694916 -39.32987007 -20.98402825 0.0000000
## m248_c_7-la1511_c_9 -22.58492066 -31.75784157 -13.41199975 0.0000000
## m248_c_8-la1511_c_9 -10.34751194 -19.52043285 -1.17459103 0.0077603
## m248_c_9-la1511_c_9 9.89050288 0.71758197 19.06342379 0.0166758
## m248_s_5-la1511_c_9 -33.11183149 -42.28475240 -23.93891058 0.0000000
## m248_s_6-la1511_c_9 -31.60626523 -40.77918614 -22.43334432 0.0000000
## m248_s_7-la1511_c_9 -28.61727262 -37.79019353 -19.44435171 0.0000000
## m248_s_8-la1511_c_9 -23.49793153 -32.67085244 -14.32501062 0.0000000
## m248_s_9-la1511_c_9 -14.53082818 -23.70374909 -5.35790727 0.0000012
## la1511_s_6-la1511_s_5 0.81187335 -8.61240700 10.23615370 1.0000000
## la1511_s_7-la1511_s_5 4.84051303 -4.33240788 14.01343394 0.9906764
## la1511_s_8-la1511_s_5 10.67575601 1.50283510 19.84867692 0.0043532
## la1511_s_9-la1511_s_5 15.35588407 6.18296316 24.52880498 0.0000001
## m058_c_5-la1511_s_5 0.01393479 -9.15898612 9.18685569 1.0000000
## m058_c_6-la1511_s_5 2.36004918 -6.81287172 11.53297009 1.0000000
## m058_c_7-la1511_s_5 6.21894893 -2.95397198 15.39186984 0.7903579
## m058_c_8-la1511_s_5 10.71147629 1.53855538 19.88439720 0.0040821
## m058_c_9-la1511_s_5 19.12649882 9.95357791 28.29941973 0.0000000
## m058_s_5-la1511_s_5 1.48658001 -8.62148653 11.59464654 1.0000000
## m058_s_6-la1511_s_5 2.57757279 -7.53049374 12.68563932 1.0000000
## m058_s_7-la1511_s_5 4.21311445 -5.89495208 14.32118099 0.9999101
## m058_s_8-la1511_s_5 6.44290184 -3.66516469 16.55096837 0.8834097
## m058_s_9-la1511_s_5 10.29594232 0.18787578 20.40400885 0.0389894
## m248_c_5-la1511_s_5 2.96938833 -6.20353258 12.14230924 0.9999999
## m248_c_6-la1511_s_5 3.39909890 -5.77382201 12.57201980 0.9999948
## m248_c_7-la1511_s_5 10.97112739 1.79820648 20.14404830 0.0025380
## m248_c_8-la1511_s_5 23.20853611 14.03561520 32.38145702 0.0000000
## m248_c_9-la1511_s_5 43.44655093 34.27363002 52.61947184 0.0000000
## m248_s_5-la1511_s_5 0.44421656 -8.72870434 9.61713747 1.0000000
## m248_s_6-la1511_s_5 1.94978283 -7.22313808 11.12270374 1.0000000
## m248_s_7-la1511_s_5 4.93877543 -4.23414548 14.11169634 0.9871464
## m248_s_8-la1511_s_5 10.05811653 0.88519562 19.23103743 0.0126671
## m248_s_9-la1511_s_5 19.02521987 9.85229896 28.19814078 0.0000000
## la1511_s_7-la1511_s_6 4.02863968 -5.39564067 13.45292003 0.9998411
## la1511_s_8-la1511_s_6 9.86388265 0.43960230 19.28816300 0.0263946
## la1511_s_9-la1511_s_6 14.54401072 5.11973037 23.96829107 0.0000028
## m058_c_5-la1511_s_6 -0.79793857 -10.22221892 8.62634178 1.0000000
## m058_c_6-la1511_s_6 1.54817583 -7.87610452 10.97245618 1.0000000
## m058_c_7-la1511_s_6 5.40707558 -4.01720477 14.83135593 0.9672914
## m058_c_8-la1511_s_6 9.89960294 0.47532259 19.32388329 0.0250069
## m058_c_9-la1511_s_6 18.31462547 8.89034512 27.73890582 0.0000000
## m058_s_5-la1511_s_6 0.67470665 -9.66200419 11.01141750 1.0000000
## m058_s_6-la1511_s_6 1.76569944 -8.57101141 12.10241028 1.0000000
## m058_s_7-la1511_s_6 3.40124110 -6.93546975 13.73795195 0.9999998
## m058_s_8-la1511_s_6 5.63102848 -4.70568236 15.96773933 0.9845852
## m058_s_9-la1511_s_6 9.48406896 -0.85264188 19.82077981 0.1362475
## m248_c_5-la1511_s_6 2.15751497 -7.26676538 11.58179532 1.0000000
## m248_c_6-la1511_s_6 2.58722554 -6.83705481 12.01150589 1.0000000
## m248_c_7-la1511_s_6 10.15925404 0.73497369 19.58353439 0.0167356
## m248_c_8-la1511_s_6 22.39666276 12.97238241 31.82094311 0.0000000
## m248_c_9-la1511_s_6 42.63467758 33.21039723 52.05895793 0.0000000
## m248_s_5-la1511_s_6 -0.36765679 -9.79193714 9.05662356 1.0000000
## m248_s_6-la1511_s_6 1.13790947 -8.28637088 10.56218982 1.0000000
## m248_s_7-la1511_s_6 4.12690208 -5.29737827 13.55118243 0.9997305
## m248_s_8-la1511_s_6 9.24624317 -0.17803718 18.67052352 0.0638526
## m248_s_9-la1511_s_6 18.21334652 8.78906617 27.63762687 0.0000000
## la1511_s_8-la1511_s_7 5.83524297 -3.33767794 15.00816388 0.8858101
## la1511_s_9-la1511_s_7 10.51537104 1.34245013 19.68829194 0.0057908
## m058_c_5-la1511_s_7 -4.82657825 -13.99949916 4.34634266 0.9911051
## m058_c_6-la1511_s_7 -2.48046385 -11.65338476 6.69245706 1.0000000
## m058_c_7-la1511_s_7 1.37843590 -7.79448501 10.55135681 1.0000000
## m058_c_8-la1511_s_7 5.87096326 -3.30195765 15.04388417 0.8783155
## m058_c_9-la1511_s_7 14.28598579 5.11306488 23.45890670 0.0000021
## m058_s_5-la1511_s_7 -3.35393303 -13.46199956 6.75413350 0.9999997
## m058_s_6-la1511_s_7 -2.26294024 -12.37100677 7.84512629 1.0000000
## m058_s_7-la1511_s_7 -0.62739858 -10.73546511 9.48066795 1.0000000
## m058_s_8-la1511_s_7 1.60238880 -8.50567773 11.71045534 1.0000000
## m058_s_9-la1511_s_7 5.45542928 -4.65263725 15.56349581 0.9866516
## m248_c_5-la1511_s_7 -1.87112471 -11.04404562 7.30179620 1.0000000
## m248_c_6-la1511_s_7 -1.44141414 -10.61433505 7.73150677 1.0000000
## m248_c_7-la1511_s_7 6.13061436 -3.04230655 15.30353527 0.8151403
## m248_c_8-la1511_s_7 18.36802308 9.19510217 27.54094399 0.0000000
## m248_c_9-la1511_s_7 38.60603790 29.43311699 47.77895881 0.0000000
## m248_s_5-la1511_s_7 -4.39629647 -13.56921738 4.77662444 0.9983050
## m248_s_6-la1511_s_7 -2.89073021 -12.06365112 6.28219070 0.9999999
## m248_s_7-la1511_s_7 0.09826240 -9.07465851 9.27118331 1.0000000
## m248_s_8-la1511_s_7 5.21760349 -3.95531742 14.39052440 0.9709784
## m248_s_9-la1511_s_7 14.18470684 5.01178593 23.35762775 0.0000027
## la1511_s_9-la1511_s_8 4.68012806 -4.49279285 13.85304897 0.9947044
## m058_c_5-la1511_s_8 -10.66182122 -19.83474213 -1.48890031 0.0044634
## m058_c_6-la1511_s_8 -8.31570682 -17.48862773 0.85721409 0.1535920
## m058_c_7-la1511_s_8 -4.45680708 -13.62972799 4.71611383 0.9978048
## m058_c_8-la1511_s_8 0.03572029 -9.13720062 9.20864120 1.0000000
## m058_c_9-la1511_s_8 8.45074281 -0.72217810 17.62366372 0.1306661
## m058_s_5-la1511_s_8 -9.18917600 -19.29724253 0.91889053 0.1494250
## m058_s_6-la1511_s_8 -8.09818322 -18.20624975 2.00988331 0.4049845
## m058_s_7-la1511_s_8 -6.46264155 -16.57070809 3.64542498 0.8796401
## m058_s_8-la1511_s_8 -4.23285417 -14.34092070 5.87521236 0.9999000
## m058_s_9-la1511_s_8 -0.37981369 -10.48788022 9.72825284 1.0000000
## m248_c_5-la1511_s_8 -7.70636768 -16.87928859 1.46655323 0.2946159
## m248_c_6-la1511_s_8 -7.27665711 -16.44957802 1.89626380 0.4292995
## m248_c_7-la1511_s_8 0.29537139 -8.87754952 9.46829230 1.0000000
## m248_c_8-la1511_s_8 12.53278010 3.35985920 21.70570101 0.0001115
## m248_c_9-la1511_s_8 32.77079492 23.59787401 41.94371583 0.0000000
## m248_s_5-la1511_s_8 -10.23153944 -19.40446035 -1.05861853 0.0094655
## m248_s_6-la1511_s_8 -8.72597318 -17.89889409 0.44694773 0.0923025
## m248_s_7-la1511_s_8 -5.73698057 -14.90990148 3.43594034 0.9049002
## m248_s_8-la1511_s_8 -0.61763948 -9.79056039 8.55528143 1.0000000
## m248_s_9-la1511_s_8 8.34946386 -0.82345705 17.52238477 0.1475919
## m058_c_5-la1511_s_9 -15.34194928 -24.51487019 -6.16902837 0.0000002
## m058_c_6-la1511_s_9 -12.99583488 -22.16875579 -3.82291398 0.0000407
## m058_c_7-la1511_s_9 -9.13693514 -18.30985605 0.03598577 0.0526414
## m058_c_8-la1511_s_9 -4.64440778 -13.81732868 4.52851313 0.9953655
## m058_c_9-la1511_s_9 3.77061475 -5.40230616 12.94353566 0.9999347
## m058_s_5-la1511_s_9 -13.86930406 -23.97737059 -3.76123753 0.0000994
## m058_s_6-la1511_s_9 -12.77831128 -22.88637781 -2.67024475 0.0007659
## m058_s_7-la1511_s_9 -11.14276962 -21.25083615 -1.03470308 0.0115813
## m058_s_8-la1511_s_9 -8.91298223 -19.02104876 1.19508430 0.1988615
## m058_s_9-la1511_s_9 -5.05994175 -15.16800828 5.04812478 0.9962109
## m248_c_5-la1511_s_9 -12.38649574 -21.55941665 -3.21357483 0.0001521
## m248_c_6-la1511_s_9 -11.95678517 -21.12970608 -2.78386427 0.0003712
## m248_c_7-la1511_s_9 -4.38475668 -13.55767758 4.78816423 0.9983882
## m248_c_8-la1511_s_9 7.85265204 -1.32026887 17.02557295 0.2550439
## m248_c_9-la1511_s_9 28.09066686 18.91774595 37.26358777 0.0000000
## m248_s_5-la1511_s_9 -14.91166750 -24.08458841 -5.73874660 0.0000005
## m248_s_6-la1511_s_9 -13.40610124 -22.57902215 -4.23318033 0.0000162
## m248_s_7-la1511_s_9 -10.41710864 -19.59002955 -1.24418773 0.0068784
## m248_s_8-la1511_s_9 -5.29776754 -14.47068845 3.87515337 0.9642117
## m248_s_9-la1511_s_9 3.66933580 -5.50358511 12.84225671 0.9999656
## m058_c_6-m058_c_5 2.34611440 -6.82680651 11.51903531 1.0000000
## m058_c_7-m058_c_5 6.20501414 -2.96790676 15.37793505 0.7943699
## m058_c_8-m058_c_5 10.69754151 1.52462060 19.87046242 0.0041859
## m058_c_9-m058_c_5 19.11256403 9.93964313 28.28548494 0.0000000
## m058_s_5-m058_c_5 1.47264522 -8.63542131 11.58071175 1.0000000
## m058_s_6-m058_c_5 2.56363800 -7.54442853 12.67170454 1.0000000
## m058_s_7-m058_c_5 4.19917967 -5.90888686 14.30724620 0.9999167
## m058_s_8-m058_c_5 6.42896705 -3.67909948 16.53703358 0.8860260
## m058_s_9-m058_c_5 10.28200753 0.17394100 20.39007406 0.0397261
## m248_c_5-m058_c_5 2.95545354 -6.21746737 12.12837445 0.9999999
## m248_c_6-m058_c_5 3.38516411 -5.78775680 12.55808502 0.9999953
## m248_c_7-m058_c_5 10.95719261 1.78427170 20.13011352 0.0026045
## m248_c_8-m058_c_5 23.19460133 14.02168042 32.36752223 0.0000000
## m248_c_9-m058_c_5 43.43261614 34.25969524 52.60553705 0.0000000
## m248_s_5-m058_c_5 0.43028178 -8.74263913 9.60320269 1.0000000
## m248_s_6-m058_c_5 1.93584804 -7.23707287 11.10876895 1.0000000
## m248_s_7-m058_c_5 4.92484065 -4.24808026 14.09776156 0.9877046
## m248_s_8-m058_c_5 10.04418174 0.87126083 19.21710265 0.0129633
## m248_s_9-m058_c_5 19.01128508 9.83836418 28.18420599 0.0000000
## m058_c_7-m058_c_6 3.85889975 -5.31402116 13.03182065 0.9998890
## m058_c_8-m058_c_6 8.35142711 -0.82149380 17.52434802 0.1472485
## m058_c_9-m058_c_6 16.76644964 7.59352873 25.93937054 0.0000000
## m058_s_5-m058_c_6 -0.87346918 -10.98153571 9.23459735 1.0000000
## m058_s_6-m058_c_6 0.21752361 -9.89054293 10.32559014 1.0000000
## m058_s_7-m058_c_6 1.85306527 -8.25500126 11.96113180 1.0000000
## m058_s_8-m058_c_6 4.08285265 -6.02521388 14.19091918 0.9999567
## m058_s_9-m058_c_6 7.93589313 -2.17217340 18.04395966 0.4550331
## m248_c_5-m058_c_6 0.60933914 -8.56358177 9.78226005 1.0000000
## m248_c_6-m058_c_6 1.03904971 -8.13387120 10.21197062 1.0000000
## m248_c_7-m058_c_6 8.61107821 -0.56184270 17.78399912 0.1070242
## m248_c_8-m058_c_6 20.84848693 11.67556602 30.02140784 0.0000000
## m248_c_9-m058_c_6 41.08650175 31.91358084 50.25942265 0.0000000
## m248_s_5-m058_c_6 -1.91583262 -11.08875353 7.25708829 1.0000000
## m248_s_6-m058_c_6 -0.41026636 -9.58318727 8.76265455 1.0000000
## m248_s_7-m058_c_6 2.57872625 -6.59419466 11.75164716 1.0000000
## m248_s_8-m058_c_6 7.69806734 -1.47485357 16.87098825 0.2969659
## m248_s_9-m058_c_6 16.66517069 7.49224978 25.83809159 0.0000000
## m058_c_8-m058_c_7 4.49252736 -4.68039354 13.66544827 0.9974533
## m058_c_9-m058_c_7 12.90754989 3.73462898 22.08047080 0.0000495
## m058_s_5-m058_c_7 -4.73236892 -14.84043545 5.37569761 0.9989250
## m058_s_6-m058_c_7 -3.64137614 -13.74944267 6.46669039 0.9999975
## m058_s_7-m058_c_7 -2.00583448 -12.11390101 8.10223206 1.0000000
## m058_s_8-m058_c_7 0.22395291 -9.88411362 10.33201944 1.0000000
## m058_s_9-m058_c_7 4.07699339 -6.03107314 14.18505992 0.9999581
## m248_c_5-m058_c_7 -3.24956060 -12.42248151 5.92336031 0.9999984
## m248_c_6-m058_c_7 -2.81985003 -11.99277094 6.35307087 1.0000000
## m248_c_7-m058_c_7 4.75217846 -4.42074245 13.92509937 0.9931272
## m248_c_8-m058_c_7 16.98958718 7.81666627 26.16250809 0.0000000
## m248_c_9-m058_c_7 37.22760200 28.05468109 46.40052291 0.0000000
## m248_s_5-m058_c_7 -5.77473236 -14.94765327 3.39818854 0.8978306
## m248_s_6-m058_c_7 -4.26916610 -13.44208701 4.90375481 0.9990444
## m248_s_7-m058_c_7 -1.28017350 -10.45309441 7.89274741 1.0000000
## m248_s_8-m058_c_7 3.83916760 -5.33375331 13.01208850 0.9999012
## m248_s_9-m058_c_7 12.80627094 3.63335003 21.97919185 0.0000618
## m058_c_9-m058_c_8 8.41502253 -0.75789838 17.58794344 0.1364540
## m058_s_5-m058_c_8 -9.22489629 -19.33296282 0.88317024 0.1437803
## m058_s_6-m058_c_8 -8.13390350 -18.24197003 1.97416303 0.3942722
## m058_s_7-m058_c_8 -6.49836184 -16.60642837 3.60970469 0.8726299
## m058_s_8-m058_c_8 -4.26857446 -14.37664099 5.83949208 0.9998790
## m058_s_9-m058_c_8 -0.41553398 -10.52360051 9.69253255 1.0000000
## m248_c_5-m058_c_8 -7.74208797 -16.91500888 1.43083294 0.2846289
## m248_c_6-m058_c_8 -7.31237740 -16.48529831 1.86054351 0.4172220
## m248_c_7-m058_c_8 0.25965110 -8.91326981 9.43257201 1.0000000
## m248_c_8-m058_c_8 12.49705982 3.32413891 21.66998073 0.0001203
## m248_c_9-m058_c_8 32.73507464 23.56215373 41.90799555 0.0000000
## m248_s_5-m058_c_8 -10.26725973 -19.44018064 -1.09433882 0.0089066
## m248_s_6-m058_c_8 -8.76169347 -17.93461438 0.41122744 0.0880795
## m248_s_7-m058_c_8 -5.77270086 -14.94562177 3.40022005 0.8982194
## m248_s_8-m058_c_8 -0.65335977 -9.82628068 8.51956114 1.0000000
## m248_s_9-m058_c_8 8.31374358 -0.85917733 17.48666449 0.1539466
## m058_s_5-m058_c_9 -17.63991881 -27.74798535 -7.53185228 0.0000000
## m058_s_6-m058_c_9 -16.54892603 -26.65699256 -6.44085950 0.0000003
## m058_s_7-m058_c_9 -14.91338437 -25.02145090 -4.80531784 0.0000121
## m058_s_8-m058_c_9 -12.68359698 -22.79166351 -2.57553045 0.0009070
## m058_s_9-m058_c_9 -8.83055650 -18.93862304 1.27751003 0.2156605
## m248_c_5-m058_c_9 -16.15711049 -25.33003140 -6.98418958 0.0000000
## m248_c_6-m058_c_9 -15.72739993 -24.90032083 -6.55447902 0.0000001
## m248_c_7-m058_c_9 -8.15537143 -17.32829234 1.01754948 0.1846275
## m248_c_8-m058_c_9 4.08203729 -5.09088362 13.25495820 0.9996197
## m248_c_9-m058_c_9 24.32005211 15.14713120 33.49297302 0.0000000
## m248_s_5-m058_c_9 -18.68228226 -27.85520316 -9.50936135 0.0000000
## m248_s_6-m058_c_9 -17.17671599 -26.34963690 -8.00379508 0.0000000
## m248_s_7-m058_c_9 -14.18772339 -23.36064430 -5.01480248 0.0000026
## m248_s_8-m058_c_9 -9.06838229 -18.24130320 0.10453861 0.0580073
## m248_s_9-m058_c_9 -0.10127895 -9.27419986 9.07164196 1.0000000
## m058_s_6-m058_s_5 1.09099278 -9.87274472 12.05473029 1.0000000
## m058_s_7-m058_s_5 2.72653445 -8.23720305 13.69027195 1.0000000
## m058_s_8-m058_s_5 4.95632183 -6.00741567 15.92005933 0.9994713
## m058_s_9-m058_s_5 8.80936231 -2.15437519 19.77309981 0.3978792
## m248_c_5-m058_s_5 1.48280832 -8.62525821 11.59087485 1.0000000
## m248_c_6-m058_s_5 1.91251889 -8.19554764 12.02058542 1.0000000
## m248_c_7-m058_s_5 9.48454739 -0.62351914 19.59261392 0.1075679
## m248_c_8-m058_s_5 21.72195611 11.61388957 31.83002264 0.0000000
## m248_c_9-m058_s_5 41.95997092 31.85190439 52.06803746 0.0000000
## m248_s_5-m058_s_5 -1.04236344 -11.15042997 9.06570309 1.0000000
## m248_s_6-m058_s_5 0.46320282 -9.64486371 10.57126935 1.0000000
## m248_s_7-m058_s_5 3.45219543 -6.65587110 13.56026196 0.9999994
## m248_s_8-m058_s_5 8.57153652 -1.53653001 18.67960305 0.2746505
## m248_s_9-m058_s_5 17.53863986 7.43057333 27.64670640 0.0000000
## m058_s_7-m058_s_6 1.63554166 -9.32819584 12.59927916 1.0000000
## m058_s_8-m058_s_6 3.86532905 -7.09840845 14.82906655 0.9999986
## m058_s_9-m058_s_6 7.71836953 -3.24536798 18.68210703 0.7163490
## m248_c_5-m058_s_6 0.39181554 -9.71625100 10.49988207 1.0000000
## m248_c_6-m058_s_6 0.82152610 -9.28654043 10.92959264 1.0000000
## m248_c_7-m058_s_6 8.39355460 -1.71451193 18.50162113 0.3204806
## m248_c_8-m058_s_6 20.63096332 10.52289679 30.73902985 0.0000000
## m248_c_9-m058_s_6 40.86897814 30.76091161 50.97704467 0.0000000
## m248_s_5-m058_s_6 -2.13335623 -12.24142276 7.97471031 1.0000000
## m248_s_6-m058_s_6 -0.62778996 -10.73585650 9.48027657 1.0000000
## m248_s_7-m058_s_6 2.36120264 -7.74686389 12.46926917 1.0000000
## m248_s_8-m058_s_6 7.48054373 -2.62752280 17.58861027 0.6020459
## m248_s_9-m058_s_6 16.44764708 6.33958055 26.55571361 0.0000004
## m058_s_8-m058_s_7 2.22978738 -8.73395012 13.19352489 1.0000000
## m058_s_9-m058_s_7 6.08282786 -4.88090964 17.04656536 0.9797082
## m248_c_5-m058_s_7 -1.24372613 -11.35179266 8.86434040 1.0000000
## m248_c_6-m058_s_7 -0.81401556 -10.92208209 9.29405097 1.0000000
## m248_c_7-m058_s_7 6.75801294 -3.35005359 16.86607947 0.8145471
## m248_c_8-m058_s_7 18.99542166 8.88735513 29.10348819 0.0000000
## m248_c_9-m058_s_7 39.23343648 29.12536995 49.34150301 0.0000000
## m248_s_5-m058_s_7 -3.76889789 -13.87696442 6.33916864 0.9999939
## m248_s_6-m058_s_7 -2.26333163 -12.37139816 7.84473490 1.0000000
## m248_s_7-m058_s_7 0.72566098 -9.38240555 10.83372751 1.0000000
## m248_s_8-m058_s_7 5.84500207 -4.26306446 15.95306860 0.9636162
## m248_s_9-m058_s_7 14.81210542 4.70403889 24.92017195 0.0000150
## m058_s_9-m058_s_8 3.85304048 -7.11069702 14.81677798 0.9999987
## m248_c_5-m058_s_8 -3.47351351 -13.58158004 6.63455302 0.9999993
## m248_c_6-m058_s_8 -3.04380294 -13.15186947 7.06426359 1.0000000
## m248_c_7-m058_s_8 4.52822556 -5.57984098 14.63629209 0.9995625
## m248_c_8-m058_s_8 16.76563427 6.65756774 26.87370081 0.0000002
## m248_c_9-m058_s_8 37.00364909 26.89558256 47.11171562 0.0000000
## m248_s_5-m058_s_8 -5.99868527 -16.10675180 4.10938126 0.9489267
## m248_s_6-m058_s_8 -4.49311901 -14.60118554 5.61494752 0.9996287
## m248_s_7-m058_s_8 -1.50412640 -11.61219294 8.60394013 1.0000000
## m248_s_8-m058_s_8 3.61521469 -6.49285184 13.72328122 0.9999979
## m248_s_9-m058_s_8 12.58231803 2.47425150 22.69038456 0.0010852
## m248_c_5-m058_s_9 -7.32655399 -17.43462052 2.78151254 0.6514417
## m248_c_6-m058_s_9 -6.89684342 -17.00490995 3.21122311 0.7786855
## m248_c_7-m058_s_9 0.67518508 -9.43288145 10.78325161 1.0000000
## m248_c_8-m058_s_9 12.91259380 2.80452726 23.02066033 0.0006012
## m248_c_9-m058_s_9 33.15060861 23.04254208 43.25867515 0.0000000
## m248_s_5-m058_s_9 -9.85172575 -19.95979228 0.25634078 0.0692933
## m248_s_6-m058_s_9 -8.34615949 -18.45422602 1.76190704 0.3333689
## m248_s_7-m058_s_9 -5.35716688 -15.46523341 4.75089965 0.9899972
## m248_s_8-m058_s_9 -0.23782579 -10.34589232 9.87024074 1.0000000
## m248_s_9-m058_s_9 8.72927755 -1.37878898 18.83734409 0.2376102
## m248_c_6-m248_c_5 0.42971057 -8.74321034 9.60263148 1.0000000
## m248_c_7-m248_c_5 8.00173907 -1.17118184 17.17465998 0.2184119
## m248_c_8-m248_c_5 20.23914778 11.06622688 29.41206869 0.0000000
## m248_c_9-m248_c_5 40.47716260 31.30424169 49.65008351 0.0000000
## m248_s_5-m248_c_5 -2.52517176 -11.69809267 6.64774915 1.0000000
## m248_s_6-m248_c_5 -1.01960550 -10.19252641 8.15331541 1.0000000
## m248_s_7-m248_c_5 1.96938711 -7.20353380 11.14230802 1.0000000
## m248_s_8-m248_c_5 7.08872820 -2.08419271 16.26164911 0.4946428
## m248_s_9-m248_c_5 16.05583154 6.88291063 25.22875245 0.0000000
## m248_c_7-m248_c_6 7.57202850 -1.60089241 16.74494941 0.3339712
## m248_c_8-m248_c_6 19.80943722 10.63651631 28.98235813 0.0000000
## m248_c_9-m248_c_6 40.04745204 30.87453113 49.22037294 0.0000000
## m248_s_5-m248_c_6 -2.95488233 -12.12780324 6.21803858 0.9999999
## m248_s_6-m248_c_6 -1.44931607 -10.62223698 7.72360484 1.0000000
## m248_s_7-m248_c_6 1.53967654 -7.63324437 10.71259745 1.0000000
## m248_s_8-m248_c_6 6.65901763 -2.51390328 15.83193854 0.6478506
## m248_s_9-m248_c_6 15.62612098 6.45320007 24.79904188 0.0000001
## m248_c_8-m248_c_7 12.23740872 3.06448781 21.41032963 0.0002080
## m248_c_9-m248_c_7 32.47542354 23.30250263 41.64834445 0.0000000
## m248_s_5-m248_c_7 -10.52691083 -19.69983174 -1.35398992 0.0056742
## m248_s_6-m248_c_7 -9.02134457 -18.19426548 0.15157634 0.0619546
## m248_s_7-m248_c_7 -6.03235196 -15.20527287 3.14056895 0.8408069
## m248_s_8-m248_c_7 -0.91301087 -10.08593178 8.25991004 1.0000000
## m248_s_9-m248_c_7 8.05409248 -1.11882843 17.22701339 0.2064479
## m248_c_9-m248_c_8 20.23801482 11.06509391 29.41093573 0.0000000
## m248_s_5-m248_c_8 -22.76431955 -31.93724046 -13.59139864 0.0000000
## m248_s_6-m248_c_8 -21.25875329 -30.43167419 -12.08583238 0.0000000
## m248_s_7-m248_c_8 -18.26976068 -27.44268159 -9.09683977 0.0000000
## m248_s_8-m248_c_8 -13.15041959 -22.32334050 -3.97749868 0.0000289
## m248_s_9-m248_c_8 -4.18331624 -13.35623715 4.98960467 0.9993663
## m248_s_5-m248_c_9 -43.00233437 -52.17525527 -33.82941346 0.0000000
## m248_s_6-m248_c_9 -41.49676810 -50.66968901 -32.32384719 0.0000000
## m248_s_7-m248_c_9 -38.50777550 -47.68069641 -29.33485459 0.0000000
## m248_s_8-m248_c_9 -33.38843440 -42.56135531 -24.21551350 0.0000000
## m248_s_9-m248_c_9 -24.42133106 -33.59425197 -15.24841015 0.0000000
## m248_s_6-m248_s_5 1.50556626 -7.66735465 10.67848717 1.0000000
## m248_s_7-m248_s_5 4.49455887 -4.67836204 13.66747978 0.9974319
## m248_s_8-m248_s_5 9.61389996 0.44097905 18.78682087 0.0258638
## m248_s_9-m248_s_5 18.58100331 9.40808240 27.75392421 0.0000000
## m248_s_7-m248_s_6 2.98899261 -6.18392830 12.16191352 0.9999998
## m248_s_8-m248_s_6 8.10833370 -1.06458721 17.28125461 0.1945454
## m248_s_9-m248_s_6 17.07543704 7.90251613 26.24835795 0.0000000
## m248_s_8-m248_s_7 5.11934109 -4.05357982 14.29226200 0.9778770
## m248_s_9-m248_s_7 14.08644444 4.91352353 23.25936535 0.0000033
## m248_s_9-m248_s_8 8.96710335 -0.20581756 18.14002425 0.0667885
library(multcompView)
P17 = Output$All.ID[,'p adj']
stat.test<- multcompLetters(P17)
stat.test
## f1_c_6 f1_c_7 f1_c_8 f1_c_9 f1_s_5 f1_s_6 f1_s_7
## "abcd" "efg" "hi" "j" "ab" "abcd" "cefk"
## f1_s_8 f1_s_9 la1511_c_5 la1511_c_6 la1511_c_7 la1511_c_8 la1511_c_9
## "gh" "l" "a" "abd" "abcdek" "fg" "i"
## la1511_s_5 la1511_s_6 la1511_s_7 la1511_s_8 la1511_s_9 m058_c_5 m058_c_6
## "a" "abd" "abcd" "cefk" "efgk" "a" "abcd"
## m058_c_7 m058_c_8 m058_c_9 m058_s_5 m058_s_6 m058_s_7 m058_s_8
## "abcdk" "cefk" "fg" "abcd" "abcd" "abcd" "abcdek"
## m058_s_9 m248_c_5 m248_c_6 m248_c_7 m248_c_8 m248_c_9 m248_s_5
## "bcdefk" "abcd" "abcd" "cefk" "gh" "l" "ab"
## m248_s_6 m248_s_7 m248_s_8 m248_s_9 f1_c_5
## "abcd" "abcd" "cdefk" "fg" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test
for(i in 1:nrow(test)){
test$genotype[i] <- strsplit(test$group1[i], "_")[[1]][1]
test$condition[i] <- strsplit(test$group1[i], "_")[[1]][2]
test$day[i] <- strsplit(test$group1[i], "_")[[1]][3]
}
test
MR_all$genotype<- factor(MR_all$genotype, levels=c("la1511", "m058", "m248","f1"))
TRS_graph <- ggplot(data=MR_all, mapping = aes(x = All.ID, y = TRS , colour = condition))
TRS_graph <- TRS_graph + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
TRS_graph <- TRS_graph + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
TRS_graph <- TRS_graph + scale_color_manual(values = c("turquoise3", "maroon3", "dark orange", "green"))
TRS_graph <- TRS_graph + ylab("Total root size (cm)") + xlab("")
TRS_graph <- TRS_graph + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
TRS_graph <- TRS_graph + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
TRS_graph <- TRS_graph + rremove("legend")
TRS_graph
###I am not sure the graph below represents what day????? very confusing
so I continue with line 240….
test
test2 <- test[,c(1,4:6)]
rownames(test) <- 1:40
MR_all$genotype <- factor(MR_all$genotype, levels = c("m248", "m058", "la1511", "f1"))
better_TRS_graph <- ggplot(data=MR_all, aes(x= genotype, y=TRS, color = genotype))
better_TRS_graph <- better_TRS_graph + geom_beeswarm(alpha=0.6, priority = "density")
better_TRS_graph <- better_TRS_graph + stat_summary(fun.y=mean, geom="point", shape=95, size=6, color="black", fill="black")
## Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
## ℹ Please use the `fun` argument instead.
better_TRS_graph <- better_TRS_graph + facet_grid(condition ~ day, scales = "free") + scale_color_manual(values=c("turquoise3", "maroon3", "dark orange", "green"))
better_TRS_graph <- better_TRS_graph + ylab("Total root size (cm)") + xlab("Genotype") + theme(legend.position='none')
better_TRS_graph <- better_TRS_graph + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
better_TRS_graph <- better_TRS_graph + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
better_TRS_graph
## Warning: Combining variables of class <numeric> and <character> was deprecated in
## ggplot2 3.4.0.
## ℹ Please ensure your variables are compatible before plotting (location:
## `combine_vars()`)
#to avoid the complication of comparing all days together, we better
graph each indvidual and compare everything with that setting. below is
the d9.
MR_all_d5 <- subset(MR_all, MR_all$day == 5)
MR_all_d6 <- subset(MR_all, MR_all$day == 6)
MR_all_d7 <- subset(MR_all, MR_all$day == 7)
MR_all_d8 <- subset(MR_all, MR_all$day == 8)
MR_all_d9 <- subset(MR_all, MR_all$day == 9)
MR_all_d9$new_id <- paste(MR_all_d9$genotype, MR_all_d9$condition, sep="_")
Output <- TukeyHSD(aov(TRS ~ new_id, data = MR_all_d9))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = TRS ~ new_id, data = MR_all_d9)
##
## $new_id
## diff lwr upr p adj
## f1_s-f1_c -15.5529621 -27.683258 -3.422666 0.0036469
## la1511_c-f1_c -24.7896626 -36.919959 -12.659367 0.0000005
## la1511_s-f1_c -42.9898266 -55.120123 -30.859531 0.0000000
## m058_c-f1_c -39.2192119 -51.349508 -27.088916 0.0000000
## m058_s-f1_c -48.0497684 -61.354483 -34.745054 0.0000000
## m248_c-f1_c -14.8991597 -27.029456 -2.768864 0.0062724
## m248_s-f1_c -39.3204908 -51.450787 -27.190195 0.0000000
## la1511_c-f1_s -9.2367005 -21.043464 2.570063 0.2365053
## la1511_s-f1_s -27.4368645 -39.243628 -15.630101 0.0000000
## m058_c-f1_s -23.6662498 -35.473013 -11.859487 0.0000008
## m058_s-f1_s -32.4968063 -45.507226 -19.486387 0.0000000
## m248_c-f1_s 0.6538023 -11.152961 12.460565 0.9999997
## m248_s-f1_s -23.7675287 -35.574292 -11.960766 0.0000007
## la1511_s-la1511_c -18.2001640 -30.006927 -6.393401 0.0002171
## m058_c-la1511_c -14.4295492 -26.236312 -2.622786 0.0066631
## m058_s-la1511_c -23.2601057 -36.270525 -10.249686 0.0000117
## m248_c-la1511_c 9.8905029 -1.916260 21.697266 0.1669376
## m248_s-la1511_c -14.5308282 -26.337591 -2.724065 0.0061214
## m058_c-la1511_s 3.7706148 -8.036148 15.577378 0.9731105
## m058_s-la1511_s -5.0599418 -18.070361 7.950478 0.9243310
## m248_c-la1511_s 28.0906669 16.283904 39.897430 0.0000000
## m248_s-la1511_s 3.6693358 -8.137427 15.476099 0.9768981
## m058_s-m058_c -8.8305565 -21.840976 4.179863 0.4114128
## m248_c-m058_c 24.3200521 12.513289 36.126815 0.0000004
## m248_s-m058_c -0.1012789 -11.908042 11.705484 1.0000000
## m248_c-m058_s 33.1506086 20.140189 46.161028 0.0000000
## m248_s-m058_s 8.7292776 -4.281142 21.739697 0.4265530
## m248_s-m248_c -24.4213311 -36.228094 -12.614568 0.0000003
P17 = Output$new_id[,'p adj']
stat.test<- multcompLetters(P17)
stat.test
## f1_s la1511_c la1511_s m058_c m058_s m248_c m248_s f1_c
## "a" "a" "b" "b" "b" "a" "b" "c"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
for(i in 1:nrow(test)){
test$genotype[i] <- strsplit(test$group1[i], "_")[[1]][1]
test$condition[i] <- strsplit(test$group1[i], "_")[[1]][2]
}
MR_all_d9$genotype <- factor(MR_all_d9$genotype, levels = c("m248", "m058", "la1511", "f1"))
TRS_graph_d9 <- ggplot(data=MR_all_d9, aes(x= new_id, y=TRS, color = genotype))
TRS_graph_d9 <- TRS_graph_d9 + geom_beeswarm(alpha=0.6, priority = "density")
TRS_graph_d9 <- TRS_graph_d9 + stat_summary(fun.y=mean, geom="point", shape=95, size=6, color="black", fill="black")
TRS_graph_d9 <- TRS_graph_d9 + facet_grid( ~ condition, scales = "free") + scale_color_manual(values=c("turquoise3", "maroon3", "dark orange", "green"))
TRS_graph_d9 <- TRS_graph_d9 + ylab("Total root size (cm)") + xlab("Genotype") + theme(legend.position='none')
TRS_graph_d9 <- TRS_graph_d9 + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
TRS_graph_d9 <- TRS_graph_d9 + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
TRS_graph_d9
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
head(MR_all)
#to remove outliers from the day 5, for two seedlings, we can subset the following
MR_all2 <- subset(MR_all, MR_all$length < 10)
my_graph <- ggplot(data=MR_all2, aes(x= day, y=length, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length") + xlab("time (day)") + ggtitle("Main Root Length") + theme(legend.position='none')
my_graph
ggplotly(my_graph)
geno_m248 <- subset(MR_all2, MR_all2$genotype == "m248")
my_graph <- ggplot(data=geno_m248, aes(x= day, y=length, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length") + xlab("time (day)") + ggtitle("Main Root Length (cm)") + theme(legend.position='none')
my_graph
ggplotly(my_graph)
my_graph <- ggplot(data=geno_m248, aes(x= day, y=TRS, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Total Root Length") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_m248, aes(x= day, y=LRno, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("number") + xlab("time (day)") + ggtitle("Lateral Root number") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_m248, aes(x= day, y=LRL, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Lateral Root Length") + theme(legend.position='none')
my_graph
geno_m058 <- subset(MR_all2, MR_all2$genotype == "m058")
geno_m058
my_graph <- ggplot(data=geno_m058, aes(x= day, y=length, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length") + xlab("time (day)") + ggtitle("Main Root Length (cm)") + theme(legend.position='none')
my_graph
ggplotly(my_graph)
my_graph <- ggplot(data=geno_m058, aes(x= day, y=TRS, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Total Root Length") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_m058, aes(x= day, y=LRno, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("number") + xlab("time (day)") + ggtitle("Lateral Root number") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_m058, aes(x= day, y=LRL, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Lateral Root Length") + theme(legend.position='none')
my_graph
geno_la1511 <- subset(MR_all2, MR_all2$genotype == "la1511")
geno_la1511
my_graph <- ggplot(data=geno_la1511, aes(x= day, y=length, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length") + xlab("time (day)") + ggtitle("Main Root Length (cm)") + theme(legend.position='none')
my_graph
ggplotly(my_graph)
my_graph <- ggplot(data=geno_la1511, aes(x= day, y=TRS, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Total Root Length") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_la1511, aes(x= day, y=LRno, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("number") + xlab("time (day)") + ggtitle("Lateral Root number") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_la1511, aes(x= day, y=LRL, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Lateral Root Length") + theme(legend.position='none')
my_graph
geno_f1 <- subset(MR_all2, MR_all2$genotype == "f1")
geno_f1
my_graph <- ggplot(data=geno_f1, aes(x= day, y=length, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length") + xlab("time (day)") + ggtitle("Main Root Length (cm)") + theme(legend.position='none')
my_graph
ggplotly(my_graph)
my_graph <- ggplot(data=geno_f1, aes(x= day, y=TRS, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Total Root Length") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_f1, aes(x= day, y=LRno, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("number") + xlab("time (day)") + ggtitle("Lateral Root number") + theme(legend.position='none')
my_graph
my_graph <- ggplot(data=geno_f1, aes(x= day, y=LRL, group = root_name, color = genotype))
my_graph <- my_graph + geom_line(alpha = 0.2)
my_graph <- my_graph + facet_grid(~ condition)
my_graph <- my_graph + ylab("length (cm)") + xlab("time (day)") + ggtitle("Lateral Root Length") + theme(legend.position='none')
my_graph
MR <- rbind(geno_m248, geno_m058)
MR <- rbind(MR, geno_la1511)
MR <- rbind(MR, geno_f1)
MR_time_graph <- ggplot(data=MR, aes(x= day, y=length, group = root_name, color = genotype))
MR_time_graph <- MR_time_graph + geom_line(alpha = 0.2)
MR_time_graph <- MR_time_graph + facet_grid(~ condition)
MR_time_graph <- MR_time_graph + ylab("Main root length (cm)") + xlab("Time (days after germination)") #+ ggtitle("Main Root Length")
MR_time_graph <- MR_time_graph + stat_summary(fun.y=mean, aes(group= genotype), size=0.7, geom="line", linetype = "dashed")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
MR_time_graph
###very interesting to see m058 growth is more than la and m248!!!!!!!
LRL_time_graph <- ggplot(data=MR, aes(x= day, y=LRL, group = root_name, color = genotype))
LRL_time_graph <- LRL_time_graph + geom_line(alpha = 0.2)
LRL_time_graph <- LRL_time_graph + facet_grid(~ condition)
LRL_time_graph <- LRL_time_graph + ylab("Lateral root length (cm)") + xlab("Time (days after germination)") #+ ggtitle("Lateral Root Length")
LRL_time_graph <- LRL_time_graph + stat_summary(fun.y=mean, aes(group= genotype), size=0.7, geom="line", linetype = "dashed")
LRL_time_graph
LRno_time_graph <- ggplot(data=MR, aes(x= day, y=LRno, group = root_name, color = genotype))
LRno_time_graph <- LRno_time_graph + geom_line(alpha = 0.2)
LRno_time_graph <- LRno_time_graph + facet_grid(~ condition)
LRno_time_graph <- LRno_time_graph + ylab("Lateral root number") + xlab("Time (days after germination)") #+ ggtitle("Lateral Root Number")
LRno_time_graph <- LRno_time_graph + stat_summary(fun.y=mean, aes(group= genotype), size=0.7, geom="line", linetype = "dashed")
LRno_time_graph
TRS_time_graph <- ggplot(data=MR, aes(x= day, y=TRS, group = root_name, color = genotype))
TRS_time_graph <- TRS_time_graph + geom_line(alpha = 0.2)
TRS_time_graph <- TRS_time_graph + facet_grid(~ condition)
TRS_time_graph <- TRS_time_graph + ylab("length (cm)") + xlab("time (days after germination)") + ggtitle("Total Root Length")
TRS_time_graph <- TRS_time_graph + stat_summary(fun.y=mean, aes(group= genotype), size=0.7, geom="line", linetype = "dashed")
TRS_time_graph
So for calculating growth rate - lets first establish calculations on one plant. Let’s take the first plant that is within the experiment:
temp1 <- subset(MR, MR$root_name == unique(MR$root_name)[1])
temp2 <- temp1[order(temp1$day),]
temp2
# For Main Root Growth Rate - we want to remove all the data points that are repeating, because that indicates root hitting the plate edge:
temp_MR <- temp2[,c("day", "length")]
plot(temp_MR$length~ temp_MR$day)
#Although I do not have growth inhibition for the M248 M058 LA1511 in all days but I still would follow the following steps to make sure this is true for all plants……“so in this case - we should remove day 8 and day 9 MR, but we won;t have time to look at individual pictures, and thus let’s make it into a logical removal loop”:
temp_MR$MRdouble <- "no"
for(i in 2:nrow(temp_MR)){
# we want the root to be at least 1 mm larger than the previous day - all the other ones will just indicate noise:
if(temp_MR$length[i] <= temp_MR$length[i-1]+0.09){
temp_MR$MRdouble[i] <- "yes"
}
else{
temp_MR$MRdouble[i] <- "no"
}
}
temp_MR
OK - the above looks good - so now we have to subset into MR temp where MRdouble == no, and calculate the growth rate:
temp_MR2 <- subset(temp_MR, temp_MR$MRdouble == "no")
plot(temp_MR2$length~ temp_MR2$day)
# let's add the regression line to this graph
abline(lm(temp_MR2$length~ temp_MR2$day))
This looks good! now we just have to get the model paramerers out of the
linear model (lm) that was used to draw the regression line:
MR_model <- lm(temp_MR2$length~ temp_MR2$day)
MR_model
##
## Call:
## lm(formula = temp_MR2$length ~ temp_MR2$day)
##
## Coefficients:
## (Intercept) temp_MR2$day
## -1.982 1.064
summary(MR_model)
##
## Call:
## lm(formula = temp_MR2$length ~ temp_MR2$day)
##
## Residuals:
## 1 2 3 4 5
## -0.25105 0.13882 0.30524 -0.02275 -0.17027
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.98182 0.59030 -3.357 0.04382 *
## temp_MR2$day 1.06352 0.08266 12.866 0.00101 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2614 on 3 degrees of freedom
## Multiple R-squared: 0.9822, Adjusted R-squared: 0.9763
## F-statistic: 165.5 on 1 and 3 DF, p-value: 0.001013
MR_growth_rate <- MR_model$coefficients[[2]]
Cool - now we have to do this for LRno and aLRL, which are much easier, because we just need to remove all the ‘n.a.’
# Let's remove all NA for LRno and aLRL in temp2
LR_temp <- temp2[,c("day", "LRno", "aLRL")]
LR_temp2 <- na.omit(LR_temp)
# Let's start with LRno
plot(LR_temp2$LRno ~ LR_temp2$day)
abline(lm(LR_temp2$LRno ~ LR_temp2$day))
LRno_model <- lm(LR_temp2$LRno ~ LR_temp2$day)
LRno_model
##
## Call:
## lm(formula = LR_temp2$LRno ~ LR_temp2$day)
##
## Coefficients:
## (Intercept) LR_temp2$day
## -35.8 7.0
summary(LRno_model)
##
## Call:
## lm(formula = LR_temp2$LRno ~ LR_temp2$day)
##
## Residuals:
## 1 2 3 4 5
## 1.8 -1.2 -2.2 0.8 0.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35.800 4.285 -8.355 0.00359 **
## LR_temp2$day 7.000 0.600 11.667 0.00135 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.897 on 3 degrees of freedom
## Multiple R-squared: 0.9784, Adjusted R-squared: 0.9712
## F-statistic: 136.1 on 1 and 3 DF, p-value: 0.001353
LRno_increase <- as.numeric(as.character(LRno_model$coefficients[[2]]))
LRno_increase
## [1] 7
Now let’s move on to aLRL
# Let's start with LRno
plot(LR_temp2$aLRL ~ LR_temp2$day)
abline(lm(LR_temp2$aLRL ~ LR_temp2$day))
aLRL_model <- lm(LR_temp2$aLRL ~ LR_temp2$day)
aLRL_model
##
## Call:
## lm(formula = LR_temp2$aLRL ~ LR_temp2$day)
##
## Coefficients:
## (Intercept) LR_temp2$day
## -1.2775 0.2778
summary(aLRL_model)
##
## Call:
## lm(formula = LR_temp2$aLRL ~ LR_temp2$day)
##
## Residuals:
## 1 2 3 4 5
## 0.13648 -0.10089 -0.05686 -0.12951 0.15078
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.27748 0.34875 -3.663 0.0352 *
## LR_temp2$day 0.27781 0.04884 5.689 0.0108 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1544 on 3 degrees of freedom
## Multiple R-squared: 0.9152, Adjusted R-squared: 0.8869
## F-statistic: 32.36 on 1 and 3 DF, p-value: 0.01077
aLRL_growth <- as.numeric(as.character(aLRL_model$coefficients[[2]]))
aLRL_growth
## [1] 0.2778086
OK - so now let’s make a new empty table to save all of the data from these calculations
names <- c(text="root_name", "genotype", "condition", "MR.delta", "LRno.delta", "aLRL.delta")
growth_factors <- data.frame()
for (k in names) growth_factors[[k]] <- as.character()
growth_factors[1,1] <- temp2$root_name[1]
growth_factors[1,2] <- as.character(temp2$genotype[1])
growth_factors[1,3] <- as.character(temp2$condition[1])
growth_factors[1,4] <- as.numeric(as.character(MR_growth_rate))
growth_factors[1,5] <- as.numeric(as.character(LRno_increase))
growth_factors[1,6] <- as.numeric(as.character(aLRL_growth))
growth_factors
OK - the above data table looks good - let’s loop it for all the root_names in the MR_OK dataset:
length(unique(MR$root_name))
## [1] 75
# we are starting the loop from 2nd plant (i in 2:...), because we already calculated growth rates for the 1st plant:
for(e in 1:75){
temp1 <- subset(MR, MR$root_name == unique(MR$root_name)[e])
temp2 <- temp1[order(temp1$day),]
temp2
############ MR calculations
temp_MR <- temp2[,c("day", "length")]
temp_MR$MRdouble <- "no"
for(i in 2:nrow(temp_MR)){
# we want the root to be at least 1 mm larger than the previous day - all the other ones will just indicate noise:
if(temp_MR$length[i] <= temp_MR$length[i-1]+0.09){
temp_MR$MRdouble[i] <- "yes"
} else{temp_MR$MRdouble[i] <- "no"}}
temp_MR2 <- subset(temp_MR, temp_MR$MRdouble == "no")
temp_MR2
MR_model <- lm(temp_MR2$length~ temp_MR2$day)
MR_growth_rate <- MR_model$coefficients[[2]]
MR_growth_rate
############ LRno calculations
LR_temp <- temp2[,c("day", "LRno", "aLRL")]
LR_temp2 <- na.omit(LR_temp)
LR_temp2
dim(LR_temp2)
####################### safety precaution to calculate LR growth rate only for the plants that have LR at least for two days:
if(dim(LR_temp2)[1] > 1){
LRno_model <- lm(LR_temp2$LRno ~ LR_temp2$day)
LRno_increase <- as.numeric(as.character(LRno_model$coefficients[[2]]))
############ aLRL calculations
aLRL_model <- lm(LR_temp2$aLRL ~ LR_temp2$day)
aLRL_growth <- as.numeric(as.character(aLRL_model$coefficients[[2]]))
} else{
####################### safety precaution continued:
####################### so if you only have one day where LR are there - this wont be good enough to calculate LRno or LRL rate
####################### and thus:
LRno_increase <- 0
aLRL_growth <- 0
}
LRno_increase
aLRL_growth
############ adding the information to the table:
growth_factors[e,1] <- temp2$root_name[1]
growth_factors[e,2] <- as.character(temp2$genotype[1])
growth_factors[e,3] <- as.character(temp2$cond[1])
growth_factors[e,4] <- as.numeric(as.character(MR_growth_rate))
growth_factors[e,5] <- as.numeric(as.character(LRno_increase))
growth_factors[e,6] <- as.numeric(as.character(aLRL_growth))
}
growth_factors
Looks good - now let’s save this file and have a look at how the growth factos compare between stress and genotypes
write.csv(growth_factors, "202305_RSA_F1_growth_factors.csv", row.names = FALSE)
growth_factors$MR.delta <- as.numeric(as.character(growth_factors$MR.delta))
growth_factors$aLRL.delta <- as.numeric(as.character(growth_factors$aLRL.delta))
growth_factors$LRno.delta <- as.numeric(as.character(growth_factors$LRno.delta))
library(multcompView)
growth_factors$GenoCond <- paste(growth_factors$condition, "_", growth_factors$genotype, sep = "")
growth_factors
Output <- TukeyHSD(aov(MR.delta ~ GenoCond, data = growth_factors))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = MR.delta ~ GenoCond, data = growth_factors)
##
## $GenoCond
## diff lwr upr p adj
## c_la1511-c_f1 0.0363174935 -0.5389293 0.611564322 0.9999993
## c_m058-c_f1 0.1492396531 -0.4260072 0.724486482 0.9918892
## c_m248-c_f1 -0.3035762609 -0.8788231 0.271670568 0.7177686
## s_f1-c_f1 -0.0004483468 -0.5756952 0.574798482 1.0000000
## s_la1511-c_f1 -0.3073100169 -0.8825568 0.267936812 0.7051815
## s_m058-c_f1 -0.7202639476 -1.3512044 -0.089323450 0.0144597
## s_m248-c_f1 -0.5834031628 -1.1735940 0.006787631 0.0549046
## c_m058-c_la1511 0.1129221596 -0.4469820 0.672826308 0.9983010
## c_m248-c_la1511 -0.3398937544 -0.8997979 0.220010394 0.5562566
## s_f1-c_la1511 -0.0367658403 -0.5966700 0.523138308 0.9999991
## s_la1511-c_la1511 -0.3436275104 -0.9035317 0.216276638 0.5423677
## s_m058-c_la1511 -0.7565814411 -1.3735658 -0.139597120 0.0064195
## s_m248-c_la1511 -0.6197206563 -1.1949675 -0.044473827 0.0258931
## c_m248-c_m058 -0.4528159140 -1.0127201 0.107088234 0.2009488
## s_f1-c_m058 -0.1496879999 -0.7095921 0.410216149 0.9902949
## s_la1511-c_m058 -0.4565496700 -1.0164538 0.103354478 0.1926639
## s_m058-c_m058 -0.8695036007 -1.4864879 -0.252519279 0.0009596
## s_m248-c_m058 -0.7326428159 -1.3078896 -0.157395987 0.0039963
## s_f1-c_m248 0.3031279141 -0.2567762 0.863032063 0.6910844
## s_la1511-c_m248 -0.0037337560 -0.5636379 0.556170392 1.0000000
## s_m058-c_m248 -0.4166876867 -1.0336720 0.200296635 0.4174791
## s_m248-c_m248 -0.2798269019 -0.8550737 0.295419927 0.7929561
## s_la1511-s_f1 -0.3068616701 -0.8667658 0.253042478 0.6778082
## s_m058-s_f1 -0.7198156009 -1.3367999 -0.102831279 0.0114242
## s_m248-s_f1 -0.5829548160 -1.1582016 -0.007707987 0.0447704
## s_m058-s_la1511 -0.4129539307 -1.0299383 0.204030391 0.4292944
## s_m248-s_la1511 -0.2760931459 -0.8513400 0.299153683 0.8038709
## s_m248-s_m058 0.1368607849 -0.4940797 0.767801283 0.9973046
P4 = Output$GenoCond[,'p adj']
P4
## c_la1511-c_f1 c_m058-c_f1 c_m248-c_f1 s_f1-c_f1
## 0.9999993357 0.9918891941 0.7177686316 1.0000000000
## s_la1511-c_f1 s_m058-c_f1 s_m248-c_f1 c_m058-c_la1511
## 0.7051815372 0.0144596527 0.0549046215 0.9983010003
## c_m248-c_la1511 s_f1-c_la1511 s_la1511-c_la1511 s_m058-c_la1511
## 0.5562566400 0.9999991275 0.5423677229 0.0064194612
## s_m248-c_la1511 c_m248-c_m058 s_f1-c_m058 s_la1511-c_m058
## 0.0258931035 0.2009487896 0.9902949385 0.1926639450
## s_m058-c_m058 s_m248-c_m058 s_f1-c_m248 s_la1511-c_m248
## 0.0009595996 0.0039963138 0.6910843690 1.0000000000
## s_m058-c_m248 s_m248-c_m248 s_la1511-s_f1 s_m058-s_f1
## 0.4174791446 0.7929560662 0.6778081777 0.0114242212
## s_m248-s_f1 s_m058-s_la1511 s_m248-s_la1511 s_m248-s_m058
## 0.0447703873 0.4292944311 0.8038709352 0.9973046392
stat.test<- multcompLetters(P4)
stat.test
## c_la1511 c_m058 c_m248 s_f1 s_la1511 s_m058 s_m248 c_f1
## "a" "a" "abc" "a" "abc" "b" "bc" "ac"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
growth_factors$GenoCond <- factor(growth_factors$GenoCond, levels = c("c_m248", "c_m058", "c_la1511", "c_f1","s_m248", "s_m058", "s_la1511", "s_f1"))
MR.delta_p_geno <- ggerrorplot(growth_factors, y = "MR.delta", x = "GenoCond", fill="genotype",
color="genotype",
desc_stat = "mean_sd", add = "jitter",
add.params = list(color = "darkgray"),
xlab="Genotype", ylab="Growth Rate (cm / day)")
MR.delta_p_geno <- MR.delta_p_geno + rremove("legend")
MR.delta_p_geno <- MR.delta_p_geno + stat_pvalue_manual(test, label = "Tukey", y.position = 3)
MR.delta_p_geno <- MR.delta_p_geno + ggtitle("Main Root Growth")
MR.delta_p_geno
Output <- TukeyHSD(aov(LRno.delta ~ GenoCond, data = growth_factors))
P4 = Output$GenoCond[,'p adj']
stat.test<- multcompLetters(P4)
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
LRno.delta_p_geno <- ggerrorplot(growth_factors, y = "LRno.delta", x = "GenoCond", fill="genotype",
color="genotype",
desc_stat = "mean_sd", add = "jitter",
add.params = list(color = "darkgray"),
xlab="Genotype", ylab="LR increase Rate (# LR / day)")
LRno.delta_p_geno <- LRno.delta_p_geno + rremove("legend")
LRno.delta_p_geno <- LRno.delta_p_geno + stat_pvalue_manual(test, label = "Tukey", y.position = 11)
LRno.delta_p_geno <- LRno.delta_p_geno + ggtitle("Lateral Root Number Increase")
LRno.delta_p_geno
Output <- TukeyHSD(aov(aLRL.delta ~ GenoCond, data = growth_factors))
P4 = Output$GenoCond[,'p adj']
stat.test<- multcompLetters(P4)
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
aLRL.delta_p_geno <- ggerrorplot(growth_factors, y = "aLRL.delta", x = "GenoCond", fill="genotype",
color="genotype",
desc_stat = "mean_sd", add = "jitter",
add.params = list(color = "darkgray"),
xlab="Genotype", ylab="growth (cm / day)")
aLRL.delta_p_geno <- aLRL.delta_p_geno + rremove("legend")
aLRL.delta_p_geno <- aLRL.delta_p_geno + stat_pvalue_manual(test, label = "Tukey", y.position = 1.3)
aLRL.delta_p_geno <- aLRL.delta_p_geno + ggtitle("average Lateral Root Growth")
aLRL.delta_p_geno
### Calculating the relative growth rates (Salt Tolerance Indixes):
So in order to calculate relative plant performance at salt, we need to divide all the growth rates by the average value for that specific genotype under control conditions.
Let’s start with calculating the average growth rate per accession per condition then:
library(doBy)
avg_growth <- summaryBy(data = growth_factors, MR.delta + aLRL.delta + LRno.delta ~ genotype + condition)
avg_growth
Then - we subset the data into only control condition, and merge the average control with the growth_factors in all conditions:
avg_growth_C <- subset(avg_growth, avg_growth$condition == "c")
avg_growth_C <- avg_growth_C[,c(1,3:5)]
colnames(avg_growth_C) <- gsub(".mean", ".avg.Control", colnames(avg_growth_C))
avg_growth_C
now let’s merge it into the growth_factors:
STI_growth_factors <- merge(growth_factors, avg_growth_C, id="genotype")
STI_growth_factors
Now - let’s calculate Salt Tolerance Indexes (STI) by dividing individual growth rates by their avg.Control:
STI_growth_factors$MR.STI <- STI_growth_factors$MR.delta / STI_growth_factors$MR.delta.avg.Control
STI_growth_factors$aLRL.STI <- STI_growth_factors$aLRL.delta / STI_growth_factors$aLRL.delta.avg.Control
STI_growth_factors$LRno.STI <- STI_growth_factors$LRno.delta / STI_growth_factors$LRno.delta.avg.Control
head(STI_growth_factors)
and because we are only interested in STI under SALT conditions - we subset this dataset for cond == s
STI <- subset(STI_growth_factors, STI_growth_factors$condition == "s")
STI
Cool - now let’s visualize this thing for MR:
Output <- TukeyHSD(aov(MR.STI ~ genotype, data = STI))
P4 = Output$genotype[,'p adj']
stat.test<- multcompLetters(P4)
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
STI$genotype <- factor(STI$genotype, levels = c("la1511", "m058", "m248", "f1"))
MR.STI_plot <- ggplot(data = STI, mapping = aes(x = genotype, y = MR.STI, colour = genotype))
MR.STI_plot <- MR.STI_plot + geom_beeswarm(alpha=0.6, priority = "density")
MR.STI_plot <- MR.STI_plot + stat_summary(fun.y=mean, geom="point", shape=95, size=10, color="black", fill="black")
MR.STI_plot <- MR.STI_plot + theme(legend.position = "none")
MR.STI_plot <- MR.STI_plot + xlab("")
MR.STI_plot <- MR.STI_plot + ylab("Fraction of control") + ggtitle("Salt Tolerance Index based on Main Root Growth")
MR.STI_plot <- MR.STI_plot + stat_pvalue_manual(test, label = "Tukey", y.position = 1.2)
MR.STI_plot <- MR.STI_plot + scale_color_manual(values=c("royalblue", "coral3", "deeppink", "green"))
MR.STI_plot
Then for aLRL:
Output <- TukeyHSD(aov(aLRL.STI ~ genotype, data = STI))
P4 = Output$genotype[,'p adj']
stat.test<- multcompLetters(P4)
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
aLRL.STI_plot <- ggplot(data = STI, mapping = aes(x = genotype, y = aLRL.STI, colour = genotype))
aLRL.STI_plot <- aLRL.STI_plot + geom_beeswarm(alpha=0.6, priority = "density")
aLRL.STI_plot <- aLRL.STI_plot + stat_summary(fun.y=mean, geom="point", shape=95, size=10, color="black", fill="black")
aLRL.STI_plot <- aLRL.STI_plot + theme(legend.position = "none")
aLRL.STI_plot <- aLRL.STI_plot + xlab("")
aLRL.STI_plot <- aLRL.STI_plot + ylab("Salt tolerance index based on average lateral root growth (Fraction of control)") #+ ggtitle("Salt Tolerance Index based on average Lateral Root Growth")
aLRL.STI_plot <- aLRL.STI_plot + stat_pvalue_manual(test, label = "Tukey", y.position = 2.2)
aLRL.STI_plot <- aLRL.STI_plot + scale_color_manual(values=c("royalblue", "coral3", "deeppink", "green"))
aLRL.STI_plot
#very weired, m058 has increased STI....I never saw that!!!
Output <- TukeyHSD(aov(LRno.STI ~ genotype, data = STI))
P4 = Output$genotype[,'p adj']
stat.test<- multcompLetters(P4)
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
LRno.STI_plot <- ggplot(data = STI, mapping = aes(x = genotype, y = LRno.STI, colour = genotype))
LRno.STI_plot <- LRno.STI_plot + geom_beeswarm(alpha=0.6, priority = "density")
LRno.STI_plot <- LRno.STI_plot + stat_summary(fun.y=mean, geom="point", shape=95, size=10, color="black", fill="black")
LRno.STI_plot <- LRno.STI_plot + theme(legend.position = "none")
LRno.STI_plot <- LRno.STI_plot + xlab("")
LRno.STI_plot <- LRno.STI_plot + ylab("Salt tolerance index based on average increase in lateral root number (Fraction of control)") #+ ggtitle("Salt Tolerance Index based on average Increase in Lateral Root Number")
LRno.STI_plot <- LRno.STI_plot + stat_pvalue_manual(test, label = "Tukey", y.position = 2.2)
LRno.STI_plot <- LRno.STI_plot + scale_color_manual(values=c("royalblue", "coral3", "deeppink", "green"))
LRno.STI_plot
####I decided to plot Main root length, Lateral root length, and lateral
root number, and main root growth together in one pdf. Let’s see
library(cowplot)
pdf("Figure1_F1-MainRootLength.pdf", height = 6, width = 12)
plot_grid(MR_time_graph,
align = "hv", labels=c(""),
label_size = 24)
dev.off()
## png
## 2
pdf("Figure2_F1-LateralRootLength.pdf", height = 6, width = 12)
plot_grid(LRL_time_graph,
align = "hv", labels=c(""),
label_size = 24)
dev.off()
## png
## 2
pdf("Figure3_F1-LateralRootNumber.pdf", height = 6, width = 12)
plot_grid(LRno_time_graph,
align = "hv", labels=c(""),
label_size = 24)
dev.off()
## png
## 2
pdf("Figure4_F1-MainRootGrowth.pdf", height = 6, width = 12)
plot_grid(MR.delta_p_geno,
align = "hv", labels=c(""),
label_size = 24)
dev.off()
## png
## 2
lets try to create a single pdf for all 4 graphs here
library(cowplot)
plot_grid(MR_time_graph, LRL_time_graph, LRno_time_graph, MR.delta_p_geno, labels = c("AUTO"), ncol = 2)
pdf("20230503_F1_RSA_analysis_all.pdf", width = 13, height = 10)
plot_grid(MR_time_graph, LRL_time_graph, LRno_time_graph, MR.delta_p_geno, labels = c("AUTO"), ncol = 2)
dev.off()
## png
## 2
plot_grid(MR.STI_plot, LRno.STI_plot, aLRL.STI_plot,labels = c("AUTO"), ncol = 2)
pdf("20230503_F1_STI.pdf", width = 13, height = 10)
plot_grid(MR.STI_plot, LRno.STI_plot, aLRL.STI_plot, labels = c("AUTO"), ncol = 2)
dev.off()
## png
## 2
plot_grid(MR_time_graph, LRL_time_graph, LRno_time_graph, MR.delta_p_geno,LRno.delta_p_geno,aLRL.delta_p_geno, labels = c("AUTO"), ncol = 3)
pdf("20230503_F1-RSA_analysis_allv2.pdf", width = 13, height = 10)
plot_grid(MR_time_graph, LRL_time_graph, LRno_time_graph, MR.delta_p_geno,LRno.delta_p_geno,aLRL.delta_p_geno, labels = c("AUTO"), ncol = 2)
dev.off()
## png
## 2