1. Compare on-the-ground NDVI measurements with satellite NDVI measurements.
  2. Compare NDVI measurements with respiration.
  3. Fit and test models using NYBG lawn data.
  4. Fit and test models using NYBG and Lamont lawn data.

Compare Satellite NDVI with Hand-held NDVI

Compare NDVI measurements with Respiration

Fit and Test Models Using NYBG Lawn Data

Model 1: Soil temperature + NDVI

  • R2 = .996, p < .000
  • Both variables significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_hhndvi, data = mean_lawns)
## 
## Residuals:
##        18        19        20        21        24        25 
##  0.046532  0.016384 -0.027887  0.005516 -0.017125 -0.023420 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.50284    0.19336  -7.772 0.004431 ** 
## mean_temp    0.07064    0.01184   5.965 0.009427 ** 
## mean_hhndvi  3.09975    0.17042  18.188 0.000363 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03689 on 3 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.9977, Adjusted R-squared:  0.9962 
## F-statistic: 661.9 on 2 and 3 DF,  p-value: 0.0001075

Model 2: Soil temperature + Soil moisture

  • R2 = .567, p = .001
  • Both variables significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_moist, data = mean_lawns)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5849 -0.2384 -0.1063  0.3018  0.5873 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -1.71564    1.05582  -1.625  0.12647   
## mean_temp    0.12658    0.04702   2.692  0.01753 * 
## mean_moist   0.03449    0.01140   3.025  0.00908 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3738 on 14 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.6216, Adjusted R-squared:  0.5675 
## F-statistic:  11.5 on 2 and 14 DF,  p-value: 0.001111

Model 3: Soil temperature + Soil moisture + NDVI

  • R2 = .996, p = .002
  • Moisture variable not significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_moist + mean_hhndvi, 
##     data = mean_lawns)
## 
## Residuals:
##        18        19        20        21        24        25 
##  0.034179  0.021840 -0.012753 -0.023873 -0.006619 -0.012774 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -1.385393   0.217695  -6.364  0.02381 * 
## mean_temp    0.060874   0.014678   4.147  0.05352 . 
## mean_moist  -0.002988   0.002775  -1.077  0.39416   
## mean_hhndvi  3.393742   0.319532  10.621  0.00875 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03595 on 2 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.9986, Adjusted R-squared:  0.9964 
## F-statistic: 465.2 on 3 and 2 DF,  p-value: 0.002146

Fit and Test Models Using NYBG and Lamont Lawn Data

Model 1: Soil Temp/LST + NDVI

  • R2 = .925, p < .00
  • Both variables significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_hhndvi, data = df3)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.257375 -0.035719 -0.003331  0.031631  0.202479 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.002893   0.250974  -0.012   0.9910    
## mean_temp    0.019302   0.008957   2.155   0.0491 *  
## mean_hhndvi  2.668114   0.191058  13.965 1.31e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1315 on 14 degrees of freedom
##   (63 observations deleted due to missingness)
## Multiple R-squared:  0.9345, Adjusted R-squared:  0.9252 
## F-statistic: 99.94 on 2 and 14 DF,  p-value: 5.147e-09

Model 2: Soil Temp/LST + Soil Moisture/NDMI

  • R2 = .532, p < .000
  • Both variables significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_moist, data = df3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.60095 -0.21678 -0.01482  0.18407  0.57641 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.345912   0.635271  -2.119   0.0415 *  
## mean_temp    0.121697   0.025555   4.762 3.49e-05 ***
## mean_moist   0.028122   0.005848   4.809 3.03e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3326 on 34 degrees of freedom
##   (43 observations deleted due to missingness)
## Multiple R-squared:  0.5576, Adjusted R-squared:  0.5316 
## F-statistic: 21.43 on 2 and 34 DF,  p-value: 9.522e-07

Model 3: Soil Temp/LST + Soil Moisture/NDMI + NDVI

  • R2=.938, p < .000
  • Moisture variable not significant.
## 
## Call:
## lm(formula = log(mean_res) ~ mean_temp + mean_moist + mean_hhndvi, 
##     data = df3)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.229701 -0.056080 -0.003251  0.070470  0.211391 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.540433   0.440875  -1.226 0.259903    
## mean_temp    0.039773   0.020598   1.931 0.094792 .  
## mean_moist   0.003980   0.004948   0.804 0.447691    
## mean_hhndvi  2.611731   0.349674   7.469 0.000141 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1392 on 7 degrees of freedom
##   (69 observations deleted due to missingness)
## Multiple R-squared:  0.9566, Adjusted R-squared:  0.9379 
## F-statistic: 51.37 on 3 and 7 DF,  p-value: 3.912e-05

Summary