library(psych)
library(lavaan)
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
##
## cor2cov
library(semTools)
##
## ###############################################################################
## This is semTools 0.5-6
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
##
## Attaching package: 'semTools'
## The following objects are masked from 'package:psych':
##
## reliability, skew
library(semPlot)
library(tibble)
#read in data
cfadata <- read.csv ('/Users/misschelsita/Documents/Spring 2023/PSY214/HW1_Data/WLS_HW1_CFA_rev23.csv')
# Descriptives: gender (1=male, 2=female)
Gender <- factor(cfadata$sexrsp, levels = 1:2, labels = c("Male", "Female"))
summary(Gender)
## Male Female
## 4637 5051
# Descriptives: age
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
CFA_data <- mutate(cfadata, Age = 103-(cfadata$byear))
psych::describe(CFA_data$Age)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 9688 64.16 0.51 64 64.1 0 63 66 3 1.1 2.71 0.01
#average years of education
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 0.3.5
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ readr::clipboard() masks semTools::clipboard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
CFA_data$educ92 <- as.numeric(CFA_data$educ92)
psych::describe(CFA_data$educ92)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 8452 13.61 2.26 12 13.21 0 12 21 9 1.14 0.04 0.02
# Nationality on Father's side
glimpse(CFA_data$ge096fa)
## int [1:9688] NA 14 4 NA 2 14 14 NA 14 14 ...
CFA_data$ge096fa <- as.factor(CFA_data$ge096fa)
summary(CFA_data$ge096fa)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 633 108 52 463 549 166 128 182 6 82 81 231 4 3417 474 202
## 17 18 19 20 22 23 24 25 26 27 28 29 30 31 32 33
## 43 21 47 4 20 10 91 3 8 21 55 2 1 1 1 1
## 34 35 36 37 38 39 40 41 42 NA's
## 1 5 16 11 20 9 16 11 4 2488
# Nationality on Mother's side
glimpse(CFA_data$ge095ma)
## int [1:9688] NA 4 1 NA 41 14 4 NA 14 14 ...
CFA_data$ge095ma <- as.factor(CFA_data$ge095ma)
summary(CFA_data$ge095ma)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 622 91 38 495 554 151 104 168 28 75 81 218 14 3106 527 192
## 17 18 19 20 22 23 24 25 26 27 28 30 32 33 35 36
## 48 31 59 3 50 7 80 5 8 32 36 1 1 1 2 16
## 37 38 39 40 41 42 43 44 46 47 NA's
## 8 58 26 27 32 11 3 1 1 1 2676
#item means, SDs, Skewness etc…
describe(cfadata$in501rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6508 4.92 1.86 5 5.15 1.48 1 7 6 -0.82 -0.36 0.02
describe(cfadata$in502rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6628 4.69 2.09 5 4.86 2.97 1 7 6 -0.5 -1.09 0.03
describe(cfadata$in503rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6581 5.84 1.47 6 6.12 1.48 1 7 6 -1.55 2.04 0.02
describe(cfadata$in504rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6574 3.83 1.73 4 3.83 1.48 1 7 6 -0.02 -0.87 0.02
describe(cfadata$in505rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6489 3.27 1.82 3 3.15 2.97 1 7 6 0.33 -0.98 0.02
describe(cfadata$in506rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6569 3.17 1.81 3 3.04 1.48 1 7 6 0.39 -0.93 0.02
describe(cfadata$in507rer)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 6573 3.18 1.9 3 3.02 2.97 1 7 6 0.43 -0.96 0.02
#TWOFACTOR MODEL
CFA_PII <-
'F1 = ~ in501rer + in502rer + in503rer
F2 = ~ in504rer + in505rer + in506rer + in507rer'
#TWOFACTOR MODEL FIT INDICES
CFA_PIIfit <- cfa(CFA_PII, data = cfadata)
summary(CFA_PIIfit, standard = TRUE, fit.measures = TRUE)
## lavaan 0.6.15 ended normally after 37 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 15
##
## Used Total
## Number of observations 6312 9688
##
## Model Test User Model:
##
## Test statistic 1283.951
## Degrees of freedom 13
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 11105.204
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.885
## Tucker-Lewis Index (TLI) 0.815
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -83717.758
## Loglikelihood unrestricted model (H1) -83075.783
##
## Akaike (AIC) 167465.517
## Bayesian (BIC) 167566.770
## Sample-size adjusted Bayesian (SABIC) 167519.104
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.124
## 90 Percent confidence interval - lower 0.119
## 90 Percent confidence interval - upper 0.130
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.058
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## F1 =~
## in501rer 1.000 0.984 0.530
## in502rer 1.352 0.047 28.747 0.000 1.330 0.637
## in503rer 0.839 0.030 27.522 0.000 0.825 0.562
## F2 =~
## in504rer 1.000 1.315 0.762
## in505rer 1.122 0.021 52.958 0.000 1.475 0.811
## in506rer 0.754 0.019 39.452 0.000 0.991 0.550
## in507rer 0.755 0.020 37.750 0.000 0.992 0.526
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## F1 ~~
## F2 0.896 0.035 25.726 0.000 0.693 0.693
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .in501rer 2.484 0.054 45.658 0.000 2.484 0.720
## .in502rer 2.594 0.069 37.437 0.000 2.594 0.595
## .in503rer 1.474 0.034 43.616 0.000 1.474 0.684
## .in504rer 1.249 0.034 36.875 0.000 1.249 0.419
## .in505rer 1.134 0.037 30.436 0.000 1.134 0.342
## .in506rer 2.269 0.045 50.640 0.000 2.269 0.698
## .in507rer 2.580 0.050 51.314 0.000 2.580 0.724
## F1 0.968 0.053 18.210 0.000 1.000 1.000
## F2 1.729 0.054 31.734 0.000 1.000 1.000
semPaths(CFA_PIIfit)
inspect(cfa(CFA_PIIfit, cfadata), what ="std")
## $lambda
## F1 F2
## in501rer 0.530 0.000
## in502rer 0.637 0.000
## in503rer 0.562 0.000
## in504rer 0.000 0.762
## in505rer 0.000 0.811
## in506rer 0.000 0.550
## in507rer 0.000 0.526
##
## $theta
## in501r in502r in503r in504r in505r in506r in507r
## in501rer 0.720
## in502rer 0.000 0.595
## in503rer 0.000 0.000 0.684
## in504rer 0.000 0.000 0.000 0.419
## in505rer 0.000 0.000 0.000 0.000 0.342
## in506rer 0.000 0.000 0.000 0.000 0.000 0.698
## in507rer 0.000 0.000 0.000 0.000 0.000 0.000 0.724
##
## $psi
## F1 F2
## F1 1.000
## F2 0.693 1.000
#NULL MODEL
PII_0factor <-
'
in501rer ~~ in501rer
in502rer ~~ in502rer
in503rer ~~ in503rer
in504rer ~~ in504rer
in505rer ~~ in505rer
in506rer ~~ in506rer
in507rer ~~ in507rer
'
(PII_0factor)
## [1] "\n in501rer ~~ in501rer\n in502rer ~~ in502rer\n in503rer ~~ in503rer\n in504rer ~~ in504rer\n in505rer ~~ in505rer\n in506rer ~~ in506rer\n in507rer ~~ in507rer\n"
PII_0factorfit <- cfa(PII_0factor, data = cfadata)
summary(PII_0factorfit, standard = TRUE, fit.measures = TRUE)
## lavaan 0.6.15 ended normally after 9 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 7
##
## Used Total
## Number of observations 6312 9688
##
## Model Test User Model:
##
## Test statistic 11105.204
## Degrees of freedom 21
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 11105.204
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.000
## Tucker-Lewis Index (TLI) -0.000
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -88628.385
## Loglikelihood unrestricted model (H1) -83075.783
##
## Akaike (AIC) 177270.770
## Bayesian (BIC) 177318.022
## Sample-size adjusted Bayesian (SABIC) 177295.778
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.289
## 90 Percent confidence interval - lower 0.285
## 90 Percent confidence interval - upper 0.294
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.300
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## in501rer 3.451 0.061 56.178 0.000 3.451 1.000
## in502rer 4.361 0.078 56.178 0.000 4.361 1.000
## in503rer 2.154 0.038 56.178 0.000 2.154 1.000
## in504rer 2.978 0.053 56.178 0.000 2.978 1.000
## in505rer 3.310 0.059 56.178 0.000 3.310 1.000
## in506rer 3.251 0.058 56.178 0.000 3.251 1.000
## in507rer 3.565 0.063 56.178 0.000 3.565 1.000
semPaths(PII_0factorfit)
#ONE FACTOR MODEL
CFA_PIIwhole <-
'
F1 = ~ in501rer + in502rer + in503rer + in504rer + in505rer + in506rer + in507rer'
CFA_PIIwholefit <- cfa(CFA_PIIwhole, data = cfadata)
summary(CFA_PIIwholefit, standard = TRUE, fit.measures = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Used Total
## Number of observations 6312 9688
##
## Model Test User Model:
##
## Test statistic 1858.735
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 11105.204
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.834
## Tucker-Lewis Index (TLI) 0.750
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -84005.150
## Loglikelihood unrestricted model (H1) -83075.783
##
## Akaike (AIC) 168038.301
## Bayesian (BIC) 168132.804
## Sample-size adjusted Bayesian (SABIC) 168088.315
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.144
## 90 Percent confidence interval - lower 0.139
## 90 Percent confidence interval - upper 0.150
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.072
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## F1 =~
## in501rer 1.000 0.840 0.452
## in502rer 1.241 0.046 26.990 0.000 1.042 0.499
## in503rer 0.689 0.030 23.317 0.000 0.579 0.394
## in504rer 1.563 0.048 32.499 0.000 1.312 0.760
## in505rer 1.693 0.052 32.716 0.000 1.421 0.781
## in506rer 1.170 0.041 28.303 0.000 0.982 0.545
## in507rer 1.198 0.043 27.973 0.000 1.006 0.533
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .in501rer 2.746 0.052 52.954 0.000 2.746 0.796
## .in502rer 3.276 0.063 51.999 0.000 3.276 0.751
## .in503rer 1.820 0.034 53.875 0.000 1.820 0.845
## .in504rer 1.256 0.033 38.064 0.000 1.256 0.422
## .in505rer 1.291 0.036 35.663 0.000 1.291 0.390
## .in506rer 2.286 0.045 50.833 0.000 2.286 0.703
## .in507rer 2.554 0.050 51.167 0.000 2.554 0.716
## F1 0.705 0.041 17.178 0.000 1.000 1.000
semPaths(CFA_PIIwholefit)
#CORRELATION MATRIX
corMat <- cor(cfadata, use ="complete.obs", method = "pearson")
corMat
## idpub sexrsp byear educ92 natfth
## idpub 1.000000000 -0.001726446 -0.0019951064 -0.002791839 0.013576254
## sexrsp -0.001726446 1.000000000 0.1116239357 -0.161011874 0.023622399
## byear -0.001995106 0.111623936 1.0000000000 0.126919993 -0.016599634
## educ92 -0.002791839 -0.161011874 0.1269199928 1.000000000 -0.053486500
## natfth 0.013576254 0.023622399 -0.0165996340 -0.053486500 1.000000000
## ge096fa 0.013576254 0.023622399 -0.0165996340 -0.053486500 1.000000000
## ge095ma 0.022276442 0.004042665 -0.0026156014 -0.035639753 0.248740762
## in401rer 0.011689778 -0.070828519 -0.0541280361 -0.148256981 0.016761058
## in402rer -0.014994311 -0.042282321 0.0471153024 0.181576614 -0.024932426
## in403rer 0.017916090 0.046420778 0.0023702204 -0.081582133 0.019443023
## in404rer 0.007922960 0.080476219 0.0068846762 -0.036623500 -0.001492366
## in405rer 0.008152574 0.050904412 -0.0011701778 -0.056675205 0.020357581
## in406rer 0.028592601 -0.110937045 -0.0266344898 -0.061693844 0.009501048
## in501rer 0.007832217 -0.065899957 -0.0024193977 0.058085592 0.005006225
## in502rer -0.001718329 0.190509083 -0.0006636198 -0.136921648 0.053711174
## in503rer 0.003687468 0.061433678 0.0031019034 -0.041380011 0.034019816
## in504rer 0.004939038 0.049190399 0.0089640857 0.001373321 0.009180015
## in505rer 0.007775497 -0.021386917 -0.0335469047 -0.031195484 0.012667865
## in506rer -0.004671209 -0.050598070 -0.0353592293 0.053139685 0.019404320
## in507rer 0.019102923 -0.016984536 -0.0533448837 -0.036126078 0.048248008
## ge096fa ge095ma in401rer in402rer in403rer
## idpub 0.013576254 0.022276442 0.01168978 -0.014994311 0.01791609
## sexrsp 0.023622399 0.004042665 -0.07082852 -0.042282321 0.04642078
## byear -0.016599634 -0.002615601 -0.05412804 0.047115302 0.00237022
## educ92 -0.053486500 -0.035639753 -0.14825698 0.181576614 -0.08158213
## natfth 1.000000000 0.248740762 0.01676106 -0.024932426 0.01944302
## ge096fa 1.000000000 0.248740762 0.01676106 -0.024932426 0.01944302
## ge095ma 0.248740762 1.000000000 0.03564340 -0.008407295 0.01298388
## in401rer 0.016761058 0.035643400 1.00000000 -0.259856705 0.24375347
## in402rer -0.024932426 -0.008407295 -0.25985670 1.000000000 -0.37302253
## in403rer 0.019443023 0.012983876 0.24375347 -0.373022533 1.00000000
## in404rer -0.001492366 -0.019799795 0.23909409 -0.273672094 0.49393932
## in405rer 0.020357581 -0.003661223 0.26388558 -0.306511998 0.45583077
## in406rer 0.009501048 0.017255210 0.56331158 -0.229012735 0.25102206
## in501rer 0.005006225 -0.010789866 -0.17150589 0.113850977 -0.11617398
## in502rer 0.053711174 0.009539007 -0.09764104 0.022444270 -0.03477849
## in503rer 0.034019816 0.015590934 -0.12767719 0.100362821 -0.10067675
## in504rer 0.009180015 -0.004178790 -0.17768112 0.094579107 -0.11671487
## in505rer 0.012667865 -0.004464709 -0.13222632 0.078099241 -0.12704148
## in506rer 0.019404320 -0.011416499 -0.09401632 0.077849385 -0.10645859
## in507rer 0.048248008 0.049526690 -0.06648286 0.031627589 -0.08951338
## in404rer in405rer in406rer in501rer in502rer
## idpub 0.007922960 0.008152574 0.028592601 0.007832217 -0.0017183287
## sexrsp 0.080476219 0.050904412 -0.110937045 -0.065899957 0.1905090826
## byear 0.006884676 -0.001170178 -0.026634490 -0.002419398 -0.0006636198
## educ92 -0.036623500 -0.056675205 -0.061693844 0.058085592 -0.1369216476
## natfth -0.001492366 0.020357581 0.009501048 0.005006225 0.0537111742
## ge096fa -0.001492366 0.020357581 0.009501048 0.005006225 0.0537111742
## ge095ma -0.019799795 -0.003661223 0.017255210 -0.010789866 0.0095390070
## in401rer 0.239094091 0.263885583 0.563311582 -0.171505887 -0.0976410437
## in402rer -0.273672094 -0.306511998 -0.229012735 0.113850977 0.0224442704
## in403rer 0.493939323 0.455830765 0.251022064 -0.116173979 -0.0347784923
## in404rer 1.000000000 0.721371807 0.293800519 -0.110351700 -0.0163471671
## in405rer 0.721371807 1.000000000 0.318702226 -0.127356351 -0.0388363230
## in406rer 0.293800519 0.318702226 1.000000000 -0.163439779 -0.1451720455
## in501rer -0.110351700 -0.127356351 -0.163439779 1.000000000 0.2719723130
## in502rer -0.016347167 -0.038836323 -0.145172046 0.271972313 1.0000000000
## in503rer -0.071101408 -0.109544346 -0.162672525 0.308770901 0.3940479566
## in504rer -0.137113375 -0.140284465 -0.212909146 0.309063136 0.4032461105
## in505rer -0.153247727 -0.149609500 -0.151379742 0.311410414 0.3148317182
## in506rer -0.110471407 -0.113232718 -0.093054410 0.223492083 0.2125153479
## in507rer -0.118920736 -0.123175880 -0.084948162 0.253413367 0.2770119659
## in503rer in504rer in505rer in506rer in507rer
## idpub 0.003687468 0.004939038 0.007775497 -0.004671209 0.01910292
## sexrsp 0.061433678 0.049190399 -0.021386917 -0.050598070 -0.01698454
## byear 0.003101903 0.008964086 -0.033546905 -0.035359229 -0.05334488
## educ92 -0.041380011 0.001373321 -0.031195484 0.053139685 -0.03612608
## natfth 0.034019816 0.009180015 0.012667865 0.019404320 0.04824801
## ge096fa 0.034019816 0.009180015 0.012667865 0.019404320 0.04824801
## ge095ma 0.015590934 -0.004178790 -0.004464709 -0.011416499 0.04952669
## in401rer -0.127677188 -0.177681122 -0.132226322 -0.094016316 -0.06648286
## in402rer 0.100362821 0.094579107 0.078099241 0.077849385 0.03162759
## in403rer -0.100676749 -0.116714874 -0.127041480 -0.106458587 -0.08951338
## in404rer -0.071101408 -0.137113375 -0.153247727 -0.110471407 -0.11892074
## in405rer -0.109544346 -0.140284465 -0.149609500 -0.113232718 -0.12317588
## in406rer -0.162672525 -0.212909146 -0.151379742 -0.093054410 -0.08494816
## in501rer 0.308770901 0.309063136 0.311410414 0.223492083 0.25341337
## in502rer 0.394047957 0.403246110 0.314831718 0.212515348 0.27701197
## in503rer 1.000000000 0.299388850 0.220135060 0.153220731 0.19328911
## in504rer 0.299388850 1.000000000 0.644585142 0.333868249 0.31029653
## in505rer 0.220135060 0.644585142 1.000000000 0.436586090 0.38371253
## in506rer 0.153220731 0.333868249 0.436586090 1.000000000 0.49556653
## in507rer 0.193289114 0.310296528 0.383712532 0.495566531 1.00000000
#COVARIANCE MATRIX
covMat <- cov(cfadata, use ="complete.obs", method = "pearson")
covMat
## idpub sexrsp byear educ92 natfth
## idpub 9.601165e+07 -8.44410429 -9.5122234297 -63.401050685 824.594883490
## sexrsp -8.444104e+00 0.24915939 0.0271112781 -0.186269050 0.073090575
## byear -9.512223e+00 0.02711128 0.2367598489 0.143129195 -0.050066966
## educ92 -6.340105e+01 -0.18626905 0.1431291948 5.371410266 -0.768399502
## natfth 8.245949e+02 0.07309057 -0.0500669660 -0.768399502 38.423548464
## ge096fa 8.245949e+02 0.07309057 -0.0500669660 -0.768399502 38.423548464
## ge095ma 1.549590e+03 0.01432569 -0.0090351370 -0.586391950 10.945984952
## in401rer 7.727461e+01 -0.02385148 -0.0177682607 -0.231807741 0.070092055
## in402rer -1.223841e+02 -0.01758061 0.0190964425 0.350542384 -0.128735917
## in403rer 1.264859e+02 0.01669505 0.0008309589 -0.136231022 0.086835904
## in404rer 5.471779e+01 0.02831297 0.0023611127 -0.059825065 -0.006520084
## in405rer 5.286358e+01 0.01681489 -0.0003767955 -0.086923482 0.083507361
## in406rer 1.876218e+02 -0.03708368 -0.0086789265 -0.095753266 0.039440086
## in501rer 1.412809e+02 -0.06055648 -0.0021671958 0.247827467 0.057127598
## in502rer -3.500094e+01 0.19768141 -0.0006712509 -0.659671602 0.692109629
## in503rer 5.218306e+01 0.04428784 0.0021798252 -0.138507773 0.304558049
## in504rer 8.292900e+01 0.04207470 0.0074741553 0.005454038 0.097508893
## in505rer 1.384102e+02 -0.01939388 -0.0296540761 -0.131345078 0.142652723
## in506rer -8.240193e+01 -0.04546934 -0.0309744018 0.221722237 0.216542566
## in507rer 3.520843e+02 -0.01594693 -0.0488238093 -0.157488860 0.562552399
## ge096fa ge095ma in401rer in402rer in403rer
## idpub 824.594883490 1.549590e+03 77.27461330 -122.38407821 1.264859e+02
## sexrsp 0.073090575 1.432569e-02 -0.02385148 -0.01758061 1.669505e-02
## byear -0.050066966 -9.035137e-03 -0.01776826 0.01909644 8.309589e-04
## educ92 -0.768399502 -5.863920e-01 -0.23180774 0.35054238 -1.362310e-01
## natfth 38.423548464 1.094598e+01 0.07009206 -0.12873592 8.683590e-02
## ge096fa 38.423548464 1.094598e+01 0.07009206 -0.12873592 8.683590e-02
## ge095ma 10.945984952 5.039858e+01 0.17070919 -0.04971666 6.641257e-02
## in401rer 0.070092055 1.707092e-01 0.45513186 -0.14602897 1.184830e-01
## in402rer -0.128735917 -4.971666e-02 -0.14602897 0.69386171 -2.238764e-01
## in403rer 0.086835904 6.641257e-02 0.11848305 -0.22387641 5.191270e-01
## in404rer -0.006520084 -9.907157e-02 0.11368853 -0.16067420 2.508358e-01
## in405rer 0.083507361 -1.720027e-02 0.11781054 -0.16895996 2.173403e-01
## in406rer 0.039440086 8.203459e-02 0.25449831 -0.12775082 1.211201e-01
## in501rer 0.057127598 -1.410139e-01 -0.21300241 0.17458627 -1.540929e-01
## in502rer 0.692109629 1.407744e-01 -0.13693439 0.03886453 -5.209056e-02
## in503rer 0.304558049 1.598530e-01 -0.12440027 0.12073931 -1.047624e-01
## in504rer 0.097508893 -5.083488e-02 -0.20540547 0.13500000 -1.441004e-01
## in505rer 0.142652723 -5.758113e-02 -0.16205575 0.11818468 -1.662877e-01
## in506rer 0.216542566 -1.459111e-01 -0.11418734 0.11674486 -1.380904e-01
## in507rer 0.562552399 6.613530e-01 -0.08436517 0.04955499 -1.213136e-01
## in404rer in405rer in406rer in501rer in502rer
## idpub 54.717792883 52.8635774804 187.621768731 141.280929188 -3.500094e+01
## sexrsp 0.028312966 0.0168148855 -0.037083680 -0.060556480 1.976814e-01
## byear 0.002361113 -0.0003767955 -0.008678926 -0.002167196 -6.712509e-04
## educ92 -0.059825065 -0.0869234816 -0.095753266 0.247827467 -6.596716e-01
## natfth -0.006520084 0.0835073614 0.039440086 0.057127598 6.921096e-01
## ge096fa -0.006520084 0.0835073614 0.039440086 0.057127598 6.921096e-01
## ge095ma -0.099071565 -0.0172002664 0.082034587 -0.141013942 1.407744e-01
## in401rer 0.113688527 0.1178105379 0.254498309 -0.213002406 -1.369344e-01
## in402rer -0.160674202 -0.1689599582 -0.127750819 0.174586267 3.886453e-02
## in403rer 0.250835832 0.2173403109 0.121120120 -0.154092861 -5.209056e-02
## in404rer 0.496773421 0.3364636830 0.138675370 -0.143184188 -2.395153e-02
## in405rer 0.336463683 0.4379249681 0.141238322 -0.155151979 -5.342561e-02
## in406rer 0.138675370 0.1412383224 0.448471862 -0.201494049 -2.020980e-01
## in501rer -0.143184188 -0.1551519785 -0.201494049 3.389016730 1.040814e+00
## in502rer -0.023951526 -0.0534256073 -0.202098042 1.040813847 4.321386e+00
## in503rer -0.072376364 -0.1046957864 -0.157333494 0.820942240 1.183041e+00
## in504rer -0.165600289 -0.1590785147 -0.244322808 0.974958561 1.436428e+00
## in505rer -0.196223552 -0.1798609738 -0.184167620 1.041472733 1.188962e+00
## in506rer -0.140176486 -0.1349018462 -0.112189101 0.740704716 7.953310e-01
## in507rer -0.157660037 -0.1533240876 -0.107005586 0.877508307 1.083166e+00
## in503rer in504rer in505rer in506rer in507rer
## idpub 52.183060703 82.929004524 138.41017741 -82.40192954 352.08427852
## sexrsp 0.044287844 0.042074704 -0.01939388 -0.04546934 -0.01594693
## byear 0.002179825 0.007474155 -0.02965408 -0.03097440 -0.04882381
## educ92 -0.138507773 0.005454038 -0.13134508 0.22172224 -0.15748886
## natfth 0.304558049 0.097508893 0.14265272 0.21654257 0.56255240
## ge096fa 0.304558049 0.097508893 0.14265272 0.21654257 0.56255240
## ge095ma 0.159852956 -0.050834877 -0.05758113 -0.14591106 0.66135298
## in401rer -0.124400266 -0.205405469 -0.16205575 -0.11418734 -0.08436517
## in402rer 0.120739313 0.134999998 0.11818468 0.11674486 0.04955499
## in403rer -0.104762381 -0.144100371 -0.16628775 -0.13809044 -0.12131364
## in404rer -0.072376364 -0.165600289 -0.19622355 -0.14017649 -0.15766004
## in405rer -0.104695786 -0.159078515 -0.17986097 -0.13490185 -0.15332409
## in406rer -0.157333494 -0.244322808 -0.18416762 -0.11218910 -0.10700559
## in501rer 0.820942240 0.974958561 1.04147273 0.74070472 0.87750831
## in502rer 1.183041477 1.436427764 1.18896181 0.79533102 1.08316570
## in503rer 2.085829293 0.740929859 0.57757251 0.39838504 0.52508745
## in504rer 0.740929859 2.936325435 2.00659765 1.02996703 1.00014708
## in505rer 0.577572509 2.006597651 3.30031833 1.42788726 1.31119946
## in506rer 0.398385040 1.029967028 1.42788726 3.24109842 1.67815835
## in507rer 0.525087448 1.000147079 1.31119946 1.67815835 3.53809689
cmat=matrix(covMat,ncol=20)
cat("The Determinant of Cov is", det(cmat))
## The Determinant of Cov is 0
mean(cfadata$byear, na.rm=TRUE)
## [1] 38.84486
#38.84
mean(cfadata$educ92, na.rm=TRUE)
## [1] 13.60968
#13.61
#PATH ANALYSIS - I WANTED TO PRACTICE BUT DID NOT HAVE TIME TO WRITE IT UP DEDICATE MOST OF MY TIME TO CFA
#full model
library(lavaan);
modelData <- read.csv ('/Users/misschelsita/Documents/Spring 2023/PSY214/HW1_Data/WLS_HW1_PathAnalysis.csv', header = TRUE) ;
model<-"
! regressions
TotRecall_2011 ~ TotRecall_2003__TotRecall_2011*TotRecall_2003
TotRecall_2011 ~ 1.0*HUI3_MemProb_03
TotRecall_2003 ~ sexrsp__TotRecall_2003*sexrsp
HUI3_MemProb_03 ~ 1.0*TotRecall_2003
TotRecall_2003 ~ byear__TotRecall_2003*byear
TotRecall_2003 ~ educ92__TotRecall_2003*educ92
TotRecall_2003 ~ Simil92__TotRecall_2003*Simil92
! residuals, variances and covariances
sexrsp ~~ 1.0*sexrsp
byear ~~ 1.0*byear
educ92 ~~ 1.0*educ92
Simil92 ~~ 1.0*Simil92
HUI3_MemProb_03 ~~ VAR_HUI3_MemProb_03*HUI3_MemProb_03
TotRecall_2003 ~~ VAR_TotRecall_2003*TotRecall_2003
TotRecall_2011 ~~ VAR_TotRecall_2011*TotRecall_2011
educ92 ~~ COV_educ92_byear*byear
byear ~~ COV_byear_sexrsp*sexrsp
Simil92 ~~ COV_Simil92_educ92*educ92
! means
sexrsp~0*1;
byear~0*1;
educ92~0*1;
Simil92~0*1;
HUI3_MemProb_03~0*1;
TotRecall_2003~0*1;
TotRecall_2011~0*1;
";
result<-lavaan(model, data=modelData, fixed.x=FALSE, missing="FIML");
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
## WARNING: some observed variances are (at least) a factor 1000 times larger than
## others; use varTable(fit) to investigate
summary(result, fit.measures=TRUE)
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68617e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68275e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68113e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68035e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68017e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68013e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68011e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=1.47447e+08, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=1.47447e+08, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=1.40074e+08, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=7.00372e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=6.82863e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=5.16525e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=4.33355e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.91771e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.70979e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.70459e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.70212e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.70095e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6898e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68423e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68145e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68138e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68072e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68039e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68022e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68014e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68014e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68012e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68011e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.68011e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=3.68617e+07, f=24,
## theta=3.6801e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61754e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61268e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61254e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61247e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61244e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=1.04702e+08, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=1.04702e+08, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=9.94666e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=4.97333e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=4.84899e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=3.66783e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=3.07725e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.78196e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.63431e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.63062e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.62887e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.62803e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.62012e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61616e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61419e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.6132e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.6127e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61246e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61245e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61245e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61245e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.61754e+07, f=24,
## theta=2.61243e+07, ..): not converged in 1000000 iter.
## lavaan 0.6.15 ended normally after 76 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 11
##
## Number of observations 9688
## Number of missing patterns 20
##
## Model Test User Model:
##
## Test statistic 36861707.750
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3662.727
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.000
## Tucker-Lewis Index (TLI) -8855.779
##
## Robust Comparative Fit Index (CFI) 0.000
## Robust Tucker-Lewis Index (TLI) -6102.297
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -18533927.220
## Loglikelihood unrestricted model (H1) -103073.345
##
## Akaike (AIC) 37067876.440
## Bayesian (BIC) 37067955.405
## Sample-size adjusted Bayesian (SABIC) 37067920.448
##
## Root Mean Square Error of Approximation:
##
## RMSEA 12.591
## 90 Percent confidence interval - lower 12.581
## 90 Percent confidence interval - upper 12.581
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Robust RMSEA 13.166
## 90 Percent confidence interval - lower 13.153
## 90 Percent confidence interval - upper 13.153
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 22.408
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## TotRecall_2011 ~
## TR_2003 (TR_2) 0.682 0.005 148.567 0.000
## HUI3_MP 1.000
## TotRecall_2003 ~
## sexrsp (s__T) 1.952 0.094 20.764 0.000
## HUI3_MemProb_03 ~
## TR_2003 1.000
## TotRecall_2003 ~
## byear (b__T) 0.075 0.009 8.762 0.000
## educ92 (e92_) 0.235 0.022 10.581 0.000
## Simil92 (S92_) 0.011 0.003 4.267 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## byear ~~
## educ92 (COV_9) 0.288 0.001 377.854 0.000
## sexrsp ~~
## byear (COV__) 0.039 0.000 150.060 0.000
## educ92 ~~
## Siml92 (COV_S) 0.050 0.001 86.730 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## sexrsp 0.000
## byear 0.000
## educ92 0.000
## Simil92 0.000
## .HUI3_MemPrb_03 0.000
## .TotRecall_2003 0.000
## .TotRecall_2011 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## s 1.000
## b 1.000
## e 1.000
## S 1.000
## .H (VAR_H) 81.004 1.376 58.890 0.000
## .T (VAR_TR_200) 12.080 0.231 52.405 0.000
## .T (VAR_TR_201) 10.437 0.226 46.140 0.000
#remove direct path
model2 <-"
! regressions
TotRecall_2011 ~ 1.0*HUI3_MemProb_03
TotRecall_2003 ~ sexrsp__TotRecall_2003*sexrsp
TotRecall_2003 ~ byear__TotRecall_2003*byear
TotRecall_2003 ~ educ92__TotRecall_2003*educ92
TotRecall_2003 ~ Simil92__TotRecall_2003*Simil92
HUI3_MemProb_03 ~ 1.0*TotRecall_2003
! residuals, variances and covariances
sexrsp ~~ 1.0*sexrsp
byear ~~ 1.0*byear
educ92 ~~ 1.0*educ92
Simil92 ~~ 1.0*Simil92
HUI3_MemProb_03 ~~ VAR_HUI3_MemProb_03*HUI3_MemProb_03
TotRecall_2003 ~~ VAR_TotRecall_2003*TotRecall_2003
TotRecall_2011 ~~ VAR_TotRecall_2011*TotRecall_2011
educ92 ~~ COV_educ92_byear*byear
byear ~~ COV_byear_sexrsp*sexrsp
Simil92 ~~ COV_Simil92_educ92*educ92
! observed means
sexrsp~1;
byear~1;
educ92~1;
Simil92~1;
HUI3_MemProb_03~1;
TotRecall_2003~1;
TotRecall_2011~1;
";
result2<-lavaan(model2, data=modelData, fixed.x=FALSE, missing="FIML");
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
## WARNING: some observed variances are (at least) a factor 1000 times larger than
## others; use varTable(fit) to investigate
summary(result2, fit.measures=TRUE);
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.49628e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48701e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48261e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48052e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=9.9851e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=9.9851e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=9.48585e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=4.74292e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=4.62435e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=3.49791e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.93468e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.65307e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.51227e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.50875e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.50708e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.49119e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48325e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48305e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48116e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48112e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48067e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48066e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48055e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48055e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48052e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.49628e+06, f=18,
## theta=2.48051e+06, ..): not converged in 1000000 iter.
## lavaan 0.6.15 ended normally after 79 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 17
##
## Number of observations 9688
## Number of missing patterns 20
##
## Model Test User Model:
##
## Test statistic 2496275.856
## Degrees of freedom 18
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3662.727
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.000
## Tucker-Lewis Index (TLI) -798.703
##
## Robust Comparative Fit Index (CFI) 0.000
## Robust Tucker-Lewis Index (TLI) -583.151
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1351211.273
## Loglikelihood unrestricted model (H1) -103073.345
##
## Akaike (AIC) 2702456.546
## Bayesian (BIC) 2702578.583
## Sample-size adjusted Bayesian (SABIC) 2702524.559
##
## Root Mean Square Error of Approximation:
##
## RMSEA 3.783
## 90 Percent confidence interval - lower 3.772
## 90 Percent confidence interval - upper 3.772
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Robust RMSEA 4.073
## 90 Percent confidence interval - lower 4.068
## 90 Percent confidence interval - upper 4.078
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 5.100
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## TotRecall_2011 ~
## HUI3_MP 1.000
## TotRecall_2003 ~
## sexrsp (s__T) 1.744 0.084 20.754 0.000
## byear (b__T) 0.224 0.085 2.641 0.008
## educ92 (e92_) 0.206 0.020 10.384 0.000
## Simil92 (S92_) 0.012 0.003 4.581 0.000
## HUI3_MemProb_03 ~
## TR_2003 1.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## byear ~~
## educ92 (COV_9) 0.054 0.004 15.352 0.000
## sexrsp ~~
## byear (COV__) 0.748 0.004 179.316 0.000
## educ92 ~~
## Siml92 (COV_S) 0.049 0.001 77.610 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## sexrsp 1.521 0.010 149.744 0.000
## byear 38.845 0.010 3823.408 0.000
## educ92 13.610 0.011 1251.784 0.000
## Simil92 48.534 0.011 4441.630 0.000
## .HUI3_MemPrb_03 -8.565 0.045 -189.941 0.000
## .TotRecall_2003 -4.711 3.250 -1.449 0.147
## .TotRecall_2011 7.397 0.047 156.174 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## s 1.000
## b 1.000
## e 1.000
## S 1.000
## .H (VAR_H) 12.852 0.219 58.575 0.000
## .T (VAR_TR_200) 10.530 0.183 57.694 0.000
## .T (VAR_TR_201) 9.815 0.209 46.909 0.000
library(lavaan);
modelNULL<-"
! regressions
! residuals, variances and covariances
sexrsp ~~ 1.0*sexrsp
byear ~~ 1.0*byear
educ92 ~~ 1.0*educ92
Simil92 ~~ 1.0*Simil92
HUI3_MemProb_03 ~~ VAR_HUI3_MemProb_03*HUI3_MemProb_03
TotRecall_2003 ~~ VAR_TotRecall_2003*TotRecall_2003
TotRecall_2011 ~~ VAR_TotRecall_2011*TotRecall_2011
! observed means
sexrsp~1;
byear~1;
educ92~1;
Simil92~1;
HUI3_MemProb_03~1;
TotRecall_2003~1;
TotRecall_2011~1;
";
result3<-lavaan(modelNULL, data=modelData, fixed.x=FALSE, missing="FIML");
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
## WARNING: some observed variances are (at least) a factor 1000 times larger than
## others; use varTable(fit) to investigate
summary(result3, fit.measures=TRUE);
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.48574e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47651e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47213e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47005e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47002e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=9.94295e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=9.94295e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=9.4458e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=4.7229e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=4.60483e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=3.48314e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.9223e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.64187e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.50166e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.49816e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.49649e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.48067e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47277e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47257e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47069e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47064e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.4702e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47018e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47008e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47003e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## Warning in pchisq(X2, df = df, ncp = lambda): pnchisq(x=2.48574e+06, f=25,
## theta=2.47e+06, ..): not converged in 1000000 iter.
## lavaan 0.6.15 ended normally after 36 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 10
##
## Number of observations 9688
## Number of missing patterns 20
##
## Model Test User Model:
##
## Test statistic 2485737.406
## Degrees of freedom 25
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 3662.727
## Degrees of freedom 21
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.000
## Tucker-Lewis Index (TLI) -572.354
##
## Robust Comparative Fit Index (CFI) 0.000
## Robust Tucker-Lewis Index (TLI) -417.002
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1345942.048
## Loglikelihood unrestricted model (H1) -103073.345
##
## Akaike (AIC) 2691904.096
## Bayesian (BIC) 2691975.883
## Sample-size adjusted Bayesian (SABIC) 2691944.104
##
## Root Mean Square Error of Approximation:
##
## RMSEA 3.204
## 90 Percent confidence interval - lower 3.193
## 90 Percent confidence interval - upper 3.193
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Robust RMSEA 3.445
## 90 Percent confidence interval - lower 3.441
## 90 Percent confidence interval - upper 3.450
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.751
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## sexrsp 1.521 0.010 149.745 0.000
## byear 38.845 0.010 3823.408 0.000
## educ92 13.610 0.011 1251.202 0.000
## Simil92 48.534 0.011 4441.620 0.000
## HUI3_MemPrb_03 1.540 0.012 133.310 0.000
## TotRecall_2003 10.103 0.050 201.526 0.000
## TotRecall_2011 8.901 0.043 205.164 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## s 1.000
## b 1.000
## e 1.000
## S 1.000
## H (VAR_H) 0.964 0.016 60.112 0.000
## T (VAR_TR_200) 13.485 0.260 51.794 0.000
## T (VAR_TR_201) 8.579 0.180 47.738 0.000
#not accounting for covar...
modelNoCov<-"
! regressions
TotRecall_2011 ~ TotRecall_2003__TotRecall_2011*TotRecall_2003
TotRecall_2011 ~ 1.0*HUI3_MemProb_03
HUI3_MemProb_03 ~ 1.0*TotRecall_2003
! residuals, variances and covariances
HUI3_MemProb_03 ~~ VAR_HUI3_MemProb_03*HUI3_MemProb_03
TotRecall_2003 ~~ VAR_TotRecall_2003*TotRecall_2003
TotRecall_2011 ~~ VAR_TotRecall_2011*TotRecall_2011
! observed means
HUI3_MemProb_03~1;
TotRecall_2003~1;
TotRecall_2011~1;
";
result4<-lavaan(modelNoCov, data=modelData, fixed.x=FALSE, missing="FIML");
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
## 1 8 16 17 19 20 22 23 24 26 28 31 32 35 40 43 45 51 55 63 64 65 66 67 72 76 94 96 101 112 114 117 120 124 126 128 130 131 132 133 147 157 164 165 173 174 178 180 191 196 199 202 203 205 206 207 210 216 225 226 228 230 231 243 245 252 253 254 256 259 264 267 269 277 280 284 288 292 293 294 295 300 308 319 320 323 330 331 339 345 352 354 357 358 361 363 372 373 379 386 392 398 407 412 413 422 425 428 431 437 440 462 466 473 475 476 484 491 493 495 503 506 507 514 515 516 527 528 530 539 541 546 547 548 554 562 568 574 588 601 603 604 608 611 612 617 619 620 625 626 628 632 634 635 639 641 648 652 655 658 660 670 679 682 689 692 698 700 701 703 707 712 714 717 720 728 732 738 742 746 752 756 760 767 770 772 775 776 778 782 784 786 802 803 804 823 825 837 838 839 842 848 853 854 858 860 869 871 872 875 878 886 887 888 889 891 895 897 899 905 906 918 946 949 958 964 968 969 970 972 976 984 986 988 989 999 1004 1011 1012 1015 1020 1025 1027 1030 1038 1039 1043 1053 1063 1065 1071 1074 1083 1089 1096 1099 1101 1106 1108 1109 1112 1113 1118 1121 1123 1137 1141 1142 1153 1157 1167 1176 1178 1180 1183 1190 1212 1217 1224 1225 1229 1231 1232 1240 1241 1243 1244 1246 1250 1254 1258 1264 1270 1272 1273 1277 1279 1285 1287 1296 1298 1300 1301 1303 1304 1312 1313 1315 1330 1348 1349 1353 1356 1364 1371 1379 1394 1404 1410 1416 1420 1427 1431 1432 1434 1437 1440 1443 1444 1447 1450 1452 1455 1459 1464 1465 1477 1479 1481 1489 1494 1495 1496 1497 1502 1506 1509 1510 1515 1521 1524 1527 1530 1532 1537 1546 1549 1556 1562 1573 1574 1575 1578 1579 1588 1589 1590 1592 1598 1601 1604 1609 1616 1618 1619 1620 1624 1629 1631 1632 1633 1634 1638 1641 1643 1646 1651 1655 1662 1664 1665 1667 1675 1679 1682 1684 1689 1694 1699 1700 1708 1710 1711 1715 1716 1720 1722 1723 1727 1730 1732 1733 1735 1737 1741 1742 1743 1745 1753 1763 1769 1776 1780 1782 1783 1805 1808 1813 1816 1820 1821 1824 1825 1827 1831 1840 1841 1842 1865 1866 1874 1881 1885 1887 1889 1891 1892 1893 1899 1903 1904 1911 1914 1918 1929 1935 1940 1944 1950 1954 1955 1956 1971 1981 1986 1988 1997 2001 2002 2003 2013 2015 2017 2018 2021 2023 2030 2035 2038 2041 2043 2046 2050 2072 2075 2078 2084 2090 2091 2094 2117 2122 2124 2133 2134 2136 2143 2145 2150 2161 2166 2174 2178 2179 2180 2181 2184 2189 2191 2192 2193 2195 2196 2197 2198 2199 2200 2207 2209 2216 2217 2218 2222 2227 2243 2254 2257 2262 2268 2269 2279 2280 2282 2288 2290 2292 2294 2296 2298 2305 2306 2307 2308 2314 2316 2319 2321 2324 2325 2333 2334 2335 2336 2342 2343 2348 2352 2353 2356 2361 2363 2367 2376 2378 2380 2384 2386 2387 2389 2390 2399 2403 2409 2418 2420 2428 2429 2432 2433 2434 2435 2437 2441 2444 2454 2456 2457 2459 2460 2472 2474 2476 2481 2482 2483 2484 2485 2494 2495 2502 2504 2511 2513 2522 2526 2530 2532 2534 2539 2542 2543 2548 2550 2553 2555 2556 2557 2560 2567 2569 2582 2585 2590 2597 2605 2608 2615 2617 2627 2630 2631 2638 2639 2640 2645 2646 2650 2658 2662 2667 2671 2677 2682 2691 2693 2701 2714 2718 2719 2723 2737 2741 2743 2746 2750 2754 2756 2760 2776 2792 2795 2796 2797 2805 2808 2809 2811 2814 2817 2821 2828 2832 2834 2837 2845 2846 2854 2856 2866 2869 2871 2879 2882 2885 2888 2890 2896 2900 2903 2906 2907 2913 2921 2923 2925 2928 2930 2935 2936 2943 2951 2953 2964 2967 2973 2980 2987 2999 3018 3021 3024 3032 3034 3035 3038 3039 3043 3046 3050 3053 3058 3064 3065 3078 3080 3085 3093 3095 3096 3101 3120 3124 3127 3133 3144 3152 3160 3162 3163 3171 3175 3181 3189 3195 3198 3199 3204 3205 3209 3210 3213 3223 3231 3232 3235 3248 3256 3259 3264 3266 3270 3277 3281 3293 3296 3301 3311 3315 3316 3322 3323 3325 3326 3331 3339 3344 3345 3348 3350 3355 3365 3375 3379 3380 3383 3384 3395 3398 3408 3409 3410 3413 3423 3424 3426 3428 3437 3440 3445 3448 3450 3455 3460 3461 3469 3470 3476 3482 3483 3485 3493 3502 3503 3509 3513 3516 3523 3525 3529 3531 3533 3536 3544 3547 3560 3563 3567 3572 3576 3579 3581 3588 3591 3597 3599 3606 3613 3623 3624 3633 3634 3636 3637 3640 3648 3658 3666 3667 3675 3679 3680 3685 3691 3696 3700 3702 3707 3710 3715 3728 3731 3732 3742 3743 3747 3749 3750 3753 3757 3758 3764 3766 3772 3776 3777 3784 3786 3790 3794 3795 3800 3803 3804 3806 3810 3813 3816 3817 3820 3822 3835 3839 3843 3844 3849 3859 3860 3866 3869 3871 3872 3874 3875 3881 3883 3887 3889 3892 3897 3911 3913 3926 3928 3929 3932 3935 3937 3942 3946 3951 3952 3953 3958 3962 3965 3966 3969 3971 3973 3974 3976 3978 3980 3989 3995 3998 3999 4006 4016 4021 4026 4032 4033 4042 4049 4050 4052 4054 4055 4057 4060 4061 4080 4081 4083 4087 4096 4098 4100 4101 4103 4105 4106 4107 4109 4112 4118 4121 4123 4124 4128 4136 4141 4151 4158 4163 4164 4167 4170 4171 4174 4182 4183 4186 4187 4188 4195 4197 4199 4206 4211 4215 4218 4222 4223 4226 4232 4241 4242 4243 4248 4249 4262 4263 4264 4265 4266 4271 4272 4273 4276 4280 4284 4286 4289 4291 4293 4298 4303 4306 4316 4319 4320 4322 4324 4328 4335 4336 4351 4353 4369 4376 4381 4382 4383 4388 4389 4399 4405 4406 4407 4409 4421 4425 4427 4434 4436 4437 4439 4441 4442 4445 4446 4452 4455 4459 4468 4473 4474 4476 4479 4483 4484 4485 4489 4497 4498 4499 4511 4513 4523 4532 4535 4542 4544 4552 4554 4558 4560 4564 4565 4569 4572 4574 4579 4589 4594 4598 4600 4601 4602 4604 4608 4609 4616 4620 4624 4629 4639 4648 4650 4664 4671 4675 4680 4681 4686 4690 4692 4698 4701 4705 4711 4715 4724 4728 4729 4740 4752 4754 4755 4759 4767 4776 4780 4781 4785 4791 4796 4798 4805 4811 4818 4819 4825 4833 4836 4862 4870 4871 4875 4879 4882 4886 4887 4890 4893 4894 4898 4918 4922 4938 4946 4951 4963 4966 4977 4984 4985 4989 4991 4993 4994 4996 5004 5007 5017 5019 5029 5035 5037 5044 5052 5055 5057 5060 5067 5088 5093 5095 5098 5105 5109 5112 5115 5116 5119 5125 5128 5135 5145 5147 5152 5154 5157 5158 5164 5177 5180 5183 5186 5189 5190 5195 5202 5204 5210 5211 5218 5220 5222 5227 5230 5231 5235 5238 5243 5244 5245 5247 5250 5256 5257 5260 5261 5274 5278 5279 5283 5284 5285 5288 5292 5298 5299 5305 5306 5311 5320 5325 5326 5330 5344 5348 5352 5353 5354 5359 5360 5362 5365 5366 5368 5369 5371 5390 5392 5400 5409 5413 5418 5425 5429 5440 5443 5445 5447 5448 5453 5454 5457 5458 5461 5467 5468 5469 5470 5471 5473 5477 5478 5480 5483 5485 5487 5490 5492 5497 5498 5502 5508 5511 5515 5519 5522 5524 5528 5529 5534 5537 5541 5546 5548 5557 5559 5561 5563 5565 5568 5572 5574 5579 5585 5590 5591 5603 5608 5609 5610 5616 5621 5624 5626 5632 5634 5637 5638 5643 5655 5662 5663 5672 5677 5679 5680 5681 5685 5687 5693 5697 5699 5704 5707 5708 5716 5722 5733 5751 5754 5756 5757 5761 5771 5772 5776 5780 5782 5784 5786 5788 5789 5790 5800 5808 5811 5812 5821 5825 5837 5848 5850 5853 5866 5869 5871 5874 5877 5884 5888 5889 5890 5897 5911 5912 5913 5915 5921 5923 5925 5930 5951 5953 5956 5958 5966 5967 5969 5976 5977 5978 5986 5993 5997 5999 6003 6004 6009 6010 6014 6021 6025 6027 6040 6044 6048 6055 6057 6061 6063 6065 6074 6084 6087 6092 6093 6096 6099 6103 6108 6111 6113 6122 6123 6124 6131 6132 6141 6155 6160 6163 6165 6172 6173 6175 6183 6186 6209 6210 6234 6235 6240 6250 6251 6254 6262 6272 6273 6277 6289 6292 6293 6295 6299 6306 6307 6309 6315 6321 6326 6328 6330 6345 6349 6351 6354 6356 6357 6363 6365 6368 6369 6375 6380 6397 6400 6407 6415 6423 6426 6428 6431 6448 6455 6456 6458 6463 6476 6488 6489 6490 6491 6506 6511 6517 6522 6524 6526 6529 6534 6543 6549 6553 6555 6557 6560 6569 6578 6586 6587 6590 6591 6592 6593 6597 6598 6599 6610 6612 6616 6624 6630 6634 6636 6643 6645 6653 6656 6662 6666 6668 6669 6685 6686 6690 6692 6695 6696 6701 6706 6711 6714 6715 6727 6729 6744 6764 6770 6773 6777 6779 6783 6785 6789 6791 6792 6793 6805 6815 6820 6825 6829 6837 6839 6841 6848 6855 6857 6858 6862 6863 6867 6873 6884 6885 6886 6893 6894 6897 6899 6901 6904 6905 6912 6927 6929 6932 6934 6935 6936 6942 6948 6951 6957 6959 6962 6964 6974 6979 6982 6986 6995 6996 6997 7002 7003 7013 7018 7027 7029 7030 7031 7037 7043 7044 7045 7047 7049 7051 7055 7060 7064 7065 7072 7074 7079 7084 7088 7092 7096 7098 7099 7105 7108 7109 7116 7117 7120 7121 7127 7137 7139 7140 7141 7146 7147 7159 7160 7165 7168 7169 7171 7183 7186 7194 7197 7198 7204 7206 7209 7210 7224 7226 7241 7259 7261 7263 7269 7271 7281 7
summary(result4, fit.measures=TRUE);
## lavaan 0.6.15 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 7
##
## Used Total
## Number of observations 7486 9688
## Number of missing patterns 7
##
## Model Test User Model:
##
## Test statistic 20131.279
## Degrees of freedom 2
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 679.748
## Degrees of freedom 3
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.000
## Tucker-Lewis Index (TLI) -43.616
##
## Robust Comparative Fit Index (CFI) 0.000
## Robust Tucker-Lewis Index (TLI) -25.869
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -45804.240
## Loglikelihood unrestricted model (H1) -35738.600
##
## Akaike (AIC) 91622.479
## Bayesian (BIC) 91670.925
## Sample-size adjusted Bayesian (SABIC) 91648.680
##
## Root Mean Square Error of Approximation:
##
## RMSEA 1.160
## 90 Percent confidence interval - lower 1.146
## 90 Percent confidence interval - upper 1.173
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Robust RMSEA 1.220
## 90 Percent confidence interval - lower 1.203
## 90 Percent confidence interval - upper 1.237
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 8.880
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## TotRecall_2011 ~
## TR_2003 (TR_2) 0.308 0.013 24.556 0.000
## HUI3_MP 1.000
## HUI3_MemProb_03 ~
## TR_2003 1.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## .HUI3_MemPrb_03 -8.568 0.045 -189.150 0.000
## TotRecall_2003 10.081 0.043 234.367 0.000
## .TotRecall_2011 4.270 0.135 31.678 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .H (VAR_H) 12.857 0.220 58.520 0.000
## T (VAR_TR_200) 11.482 0.197 58.295 0.000
## .T (VAR_TR_201) 8.559 0.184 46.629 0.000